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Abstract

Relativistic MRSF-TDDFT is developed considering the spin-orbit coupling (SOC) within

the mean-field approximation. The resulting SOC-MRSF faithfully reproduces the experiments

with very high accuracy, which is also consistent with the values by four-component (4c)

relativistic CASSCF and 4c-CASPT2 in the spin-orbit-energy splitting calculations of the C,

Si and Ge atoms. Even for the fifth-row element Sn, the SOC-MRSF yielded accurate splittings

(∼ 3 % error). In the SOC calculations of the molecular 4-thiothymine with a third-row

element, SOC-MRSF values are in excellent agreement with those of SO-GMC-QDPT2 level,

regardless of geometries and exchange-correlation functionals. The same SOC-MRSF predicted

the anticipated chance of S1 (nπ∗) −→ T1 (ππ∗) intersystem crossing, even in thymine with

only second-row elements. With its accuracy and practicality, thus, SOC-MRSF is a promising

electronic structure protocol in challenging situations such as nonadiabatic molecular dynamics

(NAMD) incorporating both internal conversions and intersystem crossings in large systems.
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Introduction

The interest in intersystem crossings (ISC) or spin crossovers has been intensified by the advent of

femtosecond time-resolved spectroscopic studies showing that ISC may occur at the picosecond

timescale. In the case of xanthone,1 the 1nπ∗ −→ 3ππ∗ ISC takes place within ∼ 2.0 ps right

after an ultrafast 1ππ∗ −→ 1nπ∗ internal conversion (IC). Wolf et al. 2 have also obtained a

circumstantial experimental evidence of the population transfer to triplet states on the timescale

of 3.5±0.3 ps in the photo-dynamics of thymine. El-Sayed’s rule forbids ISC between singlet

and triplet (doublet and quartet, triplet and quintet, etc.) states with the same occupation scheme.

For instance, the 1ππ∗ ↔ 3ππ∗ and 1nπ∗ ↔ 3nπ∗ conversions are forbidden due to the lack of

orientational changes of spatial orbitals. As implied above, therefore, same-configuration ISCs

must involve the cooperation of IC and ISC, e.g., 3ππ∗ IC−→ 3nπ∗ ISC−−→ 1ππ∗, emphasizing the

importance of treating IC and ISC on the equal footing in many dynamical processes involving

spin-flipping.3,4

In addition, recent experimental advances of X–ray spectroscopy also require accurate computational

methods with the proper spin-orbit couplings (SOC) to account for the spectra of heavy element

compounds.5 The ISC plays a major role in the phenomenon of thermally activated delayed fluorescence

(TADF)6 as well, in which the triplet-to-singlet ISC facilitates the harvesting of the triplet excitons

in organic light-emitting diodes (OLEDs). As the typical system size of TADF materials increases,

efficient quantum chemistry methods are highly desirable for the computations of SOCs among

various excited states.

Regarding excited state dynamics, its non-adiabatic dynamical nature of IC and ISC requires

intensive computations of excited states’ energies, wave functions, and overlaps of the wave functions

at adjacent time steps. Proper descriptions of various excited states are also challenging due to

their distinctively different characters. Considering these, it is necessary to perform theoretical

simulations using a methodology that: (i) provides a balanced and accurate treatment of both

dynamic correlation and non-dynamic correlation (e.g. including the important double excitations)

of the electronic states; (ii) is capable of correctly describing the conical intersections (CI) between
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ground and excited states as well as between different excited states; (iii) can provide efficient

computations of both non-adiabatic and spin-orbit couplings; (iv) is efficient enough to perform

statistical sampling for several picoseconds of large molecular systems. Perhaps, one of the most

popular and practical electronic structure theories for ab initio NAMD is TDDFT,7 although it

produces topologically wrong CI10.8 Throughout this work, CIIJ is used to denote the conical

intersection between adiabatic states I and J . Also, it was recently shown that both CASSCF and

TDDFT fail to describe the S2-to-S1 internal conversions (ICs) of s-trans-butadiene and s-trans-hexatriene

via CI21,9 which is due to the missing of either dynamic correlation or the doubly excited configurations.

In contrast, the recently developed mixed-reference spin-flip time-dependent density functional

theory (MRSF-TDDFT, MRSF for brevity)10–12 properly described not only CI10 8 but also CI21s,9

in satisfactory agreement with the results of EOMCC as well as multi-state many-body perturbation

theory, such as XMS-CASPT2.

In MRSF, the electronic ground and excited states are obtained from the poles of a novel

mixed reference (MR) within the linear response (LR) regime. With the help of a novel spinor-like

transformation, a hypothetical single reference is constructed from the MS = ±1 components of

the restricted open-shell KS determinant, expanding its response space significantly. Consequently,

it nearly eliminates the problematic spin-contamination pitfalls of SF-TDDFT.13 It also considers

the singlet ground state and other excited states on the same footing, which not only eliminates

the general topological problem8 of CI10 by TDDFT but also allows to study open-shell ground

singlet states.14 Furthermore, the one-electron spin-flip excitation from the mixed triplet reference

includes the HOMO-to-LUMO doubly excited configuration, which is the main ingredient to

properly account for the 21A−
g dark states of s-trans-butadiene and s-trans-hexatriene.9 Thus,

MRSF gives a balanced treatment of dynamic and nondynamic electron correlations for both

ground and excited states, with the convenience of single determinant orbital optimization. These

advantages allow the MRSF to overcome the major limitations of the conventional TDDFT variants,

while reliably reproducing the results of the more expensive multi-reference ab initio wave function

theories.9 In a series of studies,8,12,14–22 it has been demonstrated that the MRSF approach can also
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yield accurate nonadiabatic coupling matrix elements (NACMEs),15,17 enabling reliable non-adiabatic

molecular dynamics (NAMD) simulations,22–24 a topologically correct description of conical intersections,8,18,21

and accurate values of singlet–triplet gaps.14,16 This method has also been successfully used in

designing high-performance optoelectronic materials.25–27

Given the efficiency and accuracy of the MRSF for both ground and excited states, it is imperative

to introduce spin-orbit coupling (SOC) functionality in this scheme for expanding its applicabilities

to intersystem crossing (ISC), which is the main subject of the present work. In the following, the

basic spin-orbit coupling formulations of MRSF and its applications in some real systems are

presented in order.

Theoretical Details of Relativistic MRSF-TDDFT

The introduction of SOC to DFT theory has been done either by variational or perturbative approaches.4

Although there have been significant efforts of implementing the relativistic full four-component

(4c) Dirac–Kohn–Sham formalism such as the recent linear damped response (LD)-TDDFT,28 the

four-component relativistic Hamiltonian is impractical for large systems.29,30 On the other hand,

various transformation schemes, e.g., Pauli, Douglas-Kroll, elimination of small components,

infinite-order two-component, etc., are available to reduce the relativistic Hamiltonian to a two-component

(2c) form, which can be separated to a spin-independent (Ĥ0) and a spin-dependent part. (ĤSOC)

Ĥ = Ĥ0 + ĤSOC. (1)

The spin-independent term includes the conventional non-relativistic Hamiltonian and the scalar

relativistic Hamiltonian, while the spin-dependent second term contains the spin-orbit coupling

(SOC) operator.
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Figure 1: Electronic configurations of the MS = +1 and MS = −1 components of triplet reference
in the upper panel and a complete set of configurations for MRSF-TDDFT in the lower panel.
Response states are described by configurations represented with blue, black, and red arrows in
MRSF-TDDFT. The configurations of red arrows are absent in SF-TDDFT.

Non-Relativistic and Relativistic States

In this work, we introduce the SOC effect in a perturbative manner. Accordingly, we solve the

spin-independent Hamiltonian (Ĥ0) problem using the normal MRSF response calculations.10,11

The resulting response states are constituting non-SOC singlet and triplet MRSF states with scalar

relativistic corrections. With Casida’s wavefunction ansatz,31 they are labeled as ΨSMS
I , where I

denotes the I-th state in energy order within the manifold of total spin quantum number (S) and MS

indicates the total spin magnetic quantum number. The ΨSMS
I is given by a linear combination of

configuration state functions (CSFs, ΦSMS
Type,k) and broken symmetry configurations. (see Figure 1)

There are three different “Type”s of CSFs originating from four types of single spin-flip (de-)excitation

in MRSF abbreviated as OO, CO, OV and a broken symmetry “Type” CV. It should be emphasized

that although all four OO, CO, OV, and CV contributions are utilized in the spin-independent
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Hamiltonian problem including the scalar relativistic effect, the last CV-type is excluded in the

evaluations of the SOC Hamiltonian matrix elements. This is because it breaks the time-reversal

symmetry of SOC. Since the CV-types make minor contributions to the ground and low-lying

excited states, they are not anticipated to be of importance for SOC values in those states. Without

CV-types, the non-SOC MRSF wavefunction of the I-th electronic state of the singlet (Ψ00
I ) and

the triplet with MS = 0 (Ψ10
I ) can be represented as

|Ψ00
I ⟩ = X00,I

G |Φ00
G ⟩+X00,I

D |Φ00
D ⟩+X00,I

OO |Φ00
OO⟩+

∑
k

X00,I
CO,k|Φ

00
CO,k⟩+

∑
k

X00,I
OV,k|Φ

00
OV,k⟩, (2)

|Ψ10
I ⟩ = X10,I

OO |Φ10
OO⟩+

∑
k

X10,I
CO,k|Φ

10
CO,k⟩+

∑
k

X10,I
OV,k|Φ

10
OV,k⟩, (3)

respectively, where XSMS
Type,k denotes amplitude of the CSF. As MRSF response calculations only

generate MS = 0 triplets, the rest MS = ±1 triplets are obtained by applying the spin ladder

operators (Ŝ+, Ŝ−) on the MS = 0 components of the triplet states as

|Ψ11
I ⟩ = 1√

2
Ŝ+|Ψ10

I ⟩, (4)

|Ψ11̄
I ⟩ = 1√

2
Ŝ−|Ψ10

I ⟩. (5)

These non-SOC states then form a multi-electronic basis set in the construction of the SOC

Hamiltonian matrix, i.e. H
SMSS

′M ′
S

IJ = ⟨ΨSMS
I |Ĥ0 + ĤSOC|Ψ

S′M ′
S

J ⟩. Within the linear response

formalism, the wavefunction introduced above is the eigenfunction of Casida’s A matrix, which is

different from the H0 Hamiltonian matrix. To take it into account, we assume that the off-diagonal

matrix elements for Ĥ0 are zero to be consistent with the rest of formulations, i.e. ⟨ΨSMS
I |Ĥ0|Ψ

S′M ′
S

J ⟩ =

ES
I δIJδSS′δMSM

′
S

where ES
I is the total energy of MRSF non-SOC state. Accordingly, the final

SOC states and their corresponding energies are obtained by diagonalizing the matrix, HSMSS
′M ′

S
IJ =

ES
I δIJδSS′δMSM

′
S
+⟨ΨSMS

I |ĤSOC|Ψ
S′M ′

S
J ⟩. The resulting SOC states (indexed by J ) are represented
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as a linear combination of the non-SOC MRSF states:

|ΨJ ⟩ =
∑
S=0,1

S∑
MS=−S

∑
I

cSMS
J I |ΨSMS

I ⟩, (6)

with the complex-valued coefficients
{
cSMS
J I

}
.

Matrix Elements of ĤSOC

To describe the matrix elements of ĤSOC, it is convenient to adopt the historic Breit-Pauli (BP)

operator, which is composed of one- and two-electron terms. Both terms arise from the interaction

between electronic spin magnetic dipole and the magnetic fields generated by electronic rotation.

The magnetic fields in the one- and two-electron terms stem from electronic rotation around

nuclei and around other electrons, respectively.32 Although the Breit-Pauli spin-orbit operator is

adopted for demonstrating the SOC, the current implementation of SOC-MRSF accommodates

other operators such as DK, RESC, and IOTC. The Breit-Pauli spin-orbit Hamiltonian is given by

ĤSOC = Ĥen + Ĥee =
α2

2

∑
aA

ZA

r̂3aA
l̂aA · ŝa −

α2

2

∑
a

∑
b ̸=a

1

r̂3ab
l̂ab · (ŝa + 2ŝb) (7)

where l̂aA = r̂aA×p̂a is the angular momentum operator of the electron a relative to the nucleus A,

and l̂ab = r̂ab× p̂a is that relative to the electron b. The r̂a, p̂a, and ŝa are the position, momentum,

and spin operators of the ath electron, and r̂ab = |r̂ab| = |r̂a − r̂b| and r̂aA = |r̂aA| = |r̂a − R̂A|

are the distance between the electrons a and b and that between the electron a and the nucleus A,

respectively.

The two-electron SOC is dominated by the interaction between core and valence electrons.

Such a core-valence interaction reduces the nuclei-valence SOC. It can thus be treated as a mean-field

screening of the one-electron SOC. In such a mean-field (MF) screening approximation,33 the SOC

becomes an effective one-electron operator, ĤSOMF, with the following matrix element between
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spin-orbital i and j of

⟨i|ĤSOMF|j⟩ = ⟨i|ĥen|j⟩+
∑
kl

Dkl

(
⟨ik|ĥee|jl⟩ −

3

2
⟨ik|ĥee|lj⟩ −

3

2
⟨ki|ĥee|jl⟩

)
, (8)

where Dkl is the single-particle density matrix element, which is approximated by the density of

the restricted open-shell triplet reference state in this work. This is a reasonable choice, since most

CSFs that contribute to low-lying states differ only by one-electron (de)excitation and spin-flip

from the reference Kohn-Sham determinant within the space of the valence orbitals and the external

unoccupied orbitals. Therefore, the core-valence screening of SOC is largely captured by using the

reference density matrix.

In the second quantization formalism, the SOMF Hamiltonian can be rewritten as

ĤSOMF =
∑
ij

(V x
ij T̂

x
ij + V y

ij T̂
y
ij + V z

ij T̂
z
ij), (9)

with the effective one-electron integrals (V x,y,z
ij )

Vij = ⟨i|ĥen|j⟩+
∑
kl

Dkl

(
⟨ik|ĥee|jl⟩ −

3

2
⟨ik|ĥee|lj⟩ −

3

2
⟨ki|ĥee|jl⟩

)
, (10)

ĥen =
α2

2

∑
A

ZA

r̂31A
l̂1A, ĥee = −α2

2

1

r̂312
l̂12, (11)

and the Cartesian triplet operators (T̂ x,y,z
ij )

T̂ x
ij =

1

2
(â†iαâjβ + â†iβâjα), (12)

T̂ y
ij =

1

2i
(â†iαâjβ − â†iβâjα), (13)

T̂ z
ij =

1

2
(â†iαâjα − â†iβâjβ). (14)

Note that i and j here index spatial MOs, instead of spin orbitals, and the transition operators are

introduced in Cartesian form for convenient representation. The Cartesian and spherical forms of
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triplet operators connected by the following linear transformation:


T̂ x

T̂ y

T̂ z

 =


−1

2
− 1

2i
0

1
2

− 1
2i

0

0 0 1√
2




T̂ 1,1

T̂ 1,−1

T̂ 1,0

 . (15)

Spin-Dependent Transition Density Matrix

To incorporate the ⟨i|ĤSOMF|j⟩ effective one-electron SOC matrix elements between spin orbitals

into the SOC matrix elements between MRSF multi-electronic states, the one-electron spin-dependent

transition density matrices between the MRSF states need to be constructed. Their elements adopt

the forms of:

DIJ
ij (1, 1) = ⟨ΨSMS

I |T̂ 1,1|ΨS′M ′
S

J ⟩δMS ,M
′
S+1, (16)

DIJ
ij (1,−1) = ⟨ΨSMS

I |T̂ 1,−1|ΨS′M ′
S

J ⟩δMS ,M
′
S−1, (17)

DIJ
ij (1, 0) = ⟨ΨSMS

I |T̂ 1,0|ΨS′M ′
S

J ⟩δMS ,M
′
S
. (18)

Explicit expressions of the density matrices were obtained (see SI for detailed forms) by using the

python-based SecondQuantizationAlgebra library34,35 and Wick’s theorem.36 Finally, the matrix

elements of the SOMF Hamiltonian can be obtained by the contraction of the transformed density

matrices with the effective one-electron integrals in Eq. 10. The complex-valued Hermitian matrix

is then diagonalized to give eigenvalues and eigenstates of the SOC-included Hamiltonian operator.

Time-reversal Symmetry for Transition Density Matrix

Using the relations from the time reversal symmetry,

T̂ â†pαT̂ −1 = â†pβ, T̂ â†pβT̂
−1 = −â†pα, T̂ âqαT̂ −1 = âqβ, T̂ âqβT̂ −1 = −âqα, (19)

T̂ |S,MS⟩ = (−1)S−MS |S,−MS⟩, T̂ −1|S,MS⟩ = (−1)S+MS |S,−MS⟩⟩, (20)
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14 relations can be deduced as summarized in supporting information, which we can reduce the

effort to compute the spin-dependent transition density matrices. For example, we can find an

equality between two different transition density matrices

⟨Ψ00
I |a†pβaqβ|Ψ

00
J ⟩ = ⟨Ψ00

I |T̂ a†pαT̂ −1T̂ aqαT̂ −1|Ψ00
J ⟩ = ⟨Ψ00

I |a†pαaqα|Ψ00
J ⟩. (21)

or

⟨Ψ00
I |a†pβaqα|Ψ

11
J ⟩ = 1√

2
⟨Ψ00

I |a†pβaqαŜ+|Ψ10
J ⟩ = 1√

2
⟨Ψ00

I |a†pβaqβ|Ψ
10
J ⟩+ 1√

2
⟨Ψ00

I |a†pβŜ+aqα|Ψ10
J ⟩

=
1√
2
⟨Ψ00

I |T̂ a†pαT̂ −1T̂ aqαT̂ −1|Ψ10
J ⟩ − 1√

2
⟨Ψ00

I |a†pαaqα|Ψ10
J ⟩ = −

√
2 ⟨Ψ00

I |a†pαaqα|Ψ10
J ⟩, (22)

with Eq. (4) and the commutation relations: [Ŝ+, aqα] = −aqβ and [Ŝ+, a
†
pβ] = a†pα. Other

examples are also listed in Supporting Information.

Results and Discussions

In order to carefully analyze the accuracy of the relativistic MRSF-TDDFT (SOC-MRSF), the

SOC-corrected energy levels of C, Si, Ge and Sn atoms were considered, since both accurate

high-level calculations and experimental data of those atoms are available. Following these atomic

systems, SOC-MRSF was applied to the real molecular systems of 4-thiothymine, which has a

third-row element of Sulfur. Finally, the chance of the intersystem crossing (ISC) in thymine was

investigated.

3P1 −3 P0 Gap of Group 14 Elements

Without SOC, the Group 14 elements (C, Si, Ge and Sn) have a 3-fold spin degeneracy and a 3-fold

spatial degeneracy in their 3P ground state. The degeneracy is lifted by the SOC, resulting in the

3P0, 3P1, and 3P2 levels. The energy gap between the lowest 3P0 ground state and the first excited
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Figure 2: Absolute spin-orbit splitting errors (3P1 −3 P0 Gap in cm−1) of (a) C, (b) Si, (c) Ge and
(d) Sn as compared to the experimental values. The PBE0 (red), BH&HLYP (blue) and M06-2X
(green) functionals were adopted for SOC-MRSF. For comparison, the results of 4c-CASPT2
(dotted) and 4c-CASSCF (solid black line) using uncontracted cc-pVXZ (X = D, T, Q)37 were
also shown.
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3P1 state can be a good measure of relativistic effects. The absolute errors in the gaps as compared

to experimental data as well as previous high-level fully relativistic four-component (4c-) CASSCF

and 4c-CASPT2 calculations37 are presented in Fig. 2. The experimental 3P1 - 3P0 splittings are

16.4 cm−1 (C),38 77.1 cm−1 (Si),39 557.1 cm−1 (Ge),40 and 1691.8 cm−1 (Sn).41

The three different exchange-correlation (XC) functionals of PBE0, BH&HLYP and M06-2X

were adopted in combination with various basis sets. For all calculations, the Douglas-Kroll

(DK) second-order transformation was utilized for the scalar relativistic effect. In the case of

C, the error decreases with larger basis sets, showing the importance of basis set. On the other

hand, the XC functional dependencies are relatively smaller. Interestingly, the combination of

BH&HLYP/cc-pVTZ yields a value with near zero error. In the case of Si, while the errors of

both PBE0 and BH&HLYP functionals are generally small and insensitive to the basis sets, those

of M06-2X show quite strong basis set dependencies. As in the case of C, the BH&HLYP/cc-pVTZ

combination gives the smallest error. For the heavier element of Ge, BH&HLYP functional performs

well and gives errors similar to those of 4c-CASSCF and 4c-CASPT2. It is interesting to see that

the particular combination of BH&HLYP/cc-pVTZ consistently yielded a near-perfect prediction

even in Ge. The better performance of BH&HLYP than the other functionals can be attributed to

the formulation of MRSF. As was pointed out by Huix-Rotllant et al.,42 within the widely used

collinear (one-component) SF formalism, the configurations obtained by different SF transitions

couple through the exact exchange only. As the current implementation of MRSF utilizes the same

collinear formalism, it requires a larger fraction of the exact exchange, such as in the BHHLYP

functional.

In the case of the heaviest fifth-row element Sn, the accuracy of the M06-2X functional appears

to be much better than BH&HLYP. Due to its strong SOC, the adoption of x2x-TZVPall basis sets

has a high impact, yielding an excellent accuracy with ∼ 3% error. However, the good agreement

of Sn can be due to an error cancellation. A source of error in our SOC-MRSF scheme comes from

the perturbative SOC treatment, which is limited to the L-S coupling for all these atoms. While

such a coupling scheme works well for light-weighted elements, it fails to describe heavy elements
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with much stronger SOC. The alternative j-j coupling is more appropriate in those cases. For such

a situation, SOC needs to be included in the orbital optimization step, generating spinors that mix α

and β spin functions. This non-perturbative SOC scheme requires two-component atomic orbitals

as basis sets and is beyond our current SOC-MRSF scheme. Nonetheless, it is quite remarkable

that the overall accuracy with less than 10% error is achieved by our SOC-MRSF-TDDFT up to

the fifth row in the periodic table. And the SOC-MRSF splittings compare favorably with the

4c-CASSCF and 4c-CASPT2 results.

Table 1: The predicted 3P1 −3 P0 gaps (and prediction errors in %) of C, Si, Ge and Sn in
cm−1 by SOC-MRSF/PBE0 with the effective core potential of SBJKC. The effective nuclear
charges (ENC) are adopted.

C Si Ge Sn
SOC-MRSF/SBKJC/PBE0 16.5 (1%) 75.7 (-2%) 587.6 (5%) 2051.5 (21%)

ENC43 3.9 168 1312 5500

Relativistic quantum chemistry calculations for heavy element compounds often employ effective

core potentials (ECP). Without the core electrons and orbitals, the core-valence two-electron SOC

screening can be described using effective nuclear charges (ENC). The SBKJC ECP and its associated

ENCs were used with SOC-MRSF to calculate the 3P1-3P0 gaps of the Group 14 elements from

C to Sn, and the results are listed in Table 1, along with the ENC values. The PBE0 functional

was utilized in the calculations. Only one-electron contribution is included in the SOC calculations

and Pauli-Breit 1st order relativistic corrections were applied to it. This is because the ENCs were

devised based on this combination. Using the ENC developed by Koseki et al. 44,45 , excellent

agreements with experiments are seen from the results of C, Si and Ge atoms (less than 5% errors).

In the case of the heavier element Sn, the error is increased to 21%.

Table 2: The predicted 3P1−3 P0 gap (its errors in %) of Sn in cm−1 with various all-electron
scalar relativity treatments.

DK IOTC RESC
1st 2nd 3rd

M06-2X/x2c-TZVPall 1757 (4%) 1750 (3%) 1750 (3%) 1750 (3%) 1861 (10%)

14
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Figure 3: The calculated spin-orbit coupling constants in cm−1 between lowest singlet and lowest
triplet states of (a) C, (b) Si, (c) Ge and (d) Sn. The PBE0 (red), BH&HLYP (blue) and M06-2X
(green) functionals were adopted for SOC-MRSF. In the case of Sn, various speicalized basis sets
are utilized.
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The effect of different scalar relativistic schemes on the SOC-MRSF results was investigated on

the fifth-row element Sn and the results are presented in Table 2. Since the scalar relativistic effects

are included during the orbital optimization process, in principle it can have a profound effect on

the final relativistic energies. Although it is mostly due to error cancellations, the prediction by

M06-2X functional in combination with the x2c-TZVPall basis set is quite accurate for Sn in

Fig. 2(d). Therefore, SOC-MRSF calculations were performed with M06-2X/x2c-TZVPall for the

investigations. Although the higher order Douglas-Kroll (DK) transformation generally improves

the accuracy, the order has little effect on the Sn 3P0-3P1 gap. While the IOTC (infinite-order

two-component method)46 shows a similar small 3% error, the RESC (relativistic elimination of

small component)47 transformation somewhat deteriorates the agreement. Since the aforementioned

error cancellation is still valid, it would be a good practice to check the particular combination of

functional, basis sets, and scalar relativistic transformation against available experimental atomic

spectra, especially for the heavy atoms, before applying SOC-MRSF. Ovrall, the SOC-MRSF with

BH&HLYP/cc-pVTZ appears to be a magic choice upto fourth-row elements, while M06-2X/x2c-TZVPall

can produce good results for fifth-row ones.

The SOC constants between the lowest triplet (3P ) and lowest singlet states (1D) of C, Si, Ge

and Sn obtained by SOC-MRSF are presented in Fig. 3. The corresponding experimental SOC

couplings of C and Si are 13.98 and 73.70 cm−1.48,49 The calculated SOC constants are generally

insensitive to the choice of XC functionals, while it is gradually affected by the size of basis sets.

In terms of absolute values, the SOC constants of C and Si are calculated with < 15% errors.

Spin-Orbit Couplings of 4-Thiothymine

As a representative third-row system, 4-thiothymine is adopted for SOC-MRSF to validate its SOC

predictions.50–56 The lowest singlet excited state (S1) has a 1nπ∗ character with the sulfur lone pair

orbitals, which is nearly degenerate with the two lowest triplet 3nπ∗ and 3ππ∗ states at the S1

minimum geometry. Depending on the exchange-correlation functionals for TDDFT and CASPT2

methods, it was reported that the 1nπ∗ can be either S1 or S2. Although they are nearly degenerate,
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the 3ππ∗ and 3nπ∗ are T1 and T2, respectively, showing that the corresponding states are sensitive

to the choice of theories.57

To explore functional dependencies, the B3LYP, PBE0, BH&HLYP and M06-2X functionals

were utilized in the current SOC-MRSF calculations. Furthermore, in order to study the geometric

effects, the S1 minimum geometry was first individually optimized with the respective exchange-correlation

functionals by MRSF-TDDFT/6-31G*. SOC-MRSF/cc-pVTZ calculations were then performed

at the optimized geometries.

<BH&HLYP> <PBE0>

π*

π

nS

π′

S0 π2 (0.90) π2 (0.98)

S1 nSπ* (0.96) nSπ* (0.98)

T1 nSπ* (0.96) nSπ* (0.98)

T2 π′π* (0.98) π′π* (0.94)

-2.57

-6.52

-8.46

-8.38

-2.69

-6.26

-7.07

-7.42

Figure 4: ROHF molecular orbitals and their energies in eV of 4-Thiothymine at S1 min geometry by
MRSF/cc-pVTZ with BH&HLYP and PBE0 functionals. The geometries of each functionals are
taken from Fig. S1. The character of S0, S1, T1, and T3 states with squared transition coefficients
are given in bottom.
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As reference values, the single point SOC calculations by the SO-GMC-QDPT258/cc-pVTZ

level were also performed at the S1 minimum geometry optimized by the MRSF/6-31G* with four

different functionals. The optimized S1 geometries of 4-thiothymine by B3LYP, PBE0, BH&HLYP

and M06-2X functionals are shown in Figure S1. While the optimized geometries of B3LYP, PBE0

and BH&HLYP agree within ∼ 0.03 Å with each other, the bond lengths of the M06-2X-optimized

structure are generally longer by ∼ 0.1 Å. Using these, the vertical excitation energies (VEEs) of

both non-SOC and SOC (italic) states as calculated by various theories and the results are presented

in Table S1. The GMC-QDPT2 results indicate that regardless of reference geometry, the relative

state order is 3nπ∗ < 3ππ∗ < 1nπ∗. Except for M06-2X, the 3nπ∗ by MRSF is slightly lower than

3ππ∗. However, unlike GMC-QDPT2, the relative state order of 1nπ∗ is in between the two triplet

states according to B3LYP, BH&HLYP and PBE0. In general, as seen in previous studies,57 the

three states are nearly degenerate with each other and their relative orders are sensitive to the choice

of theories.

Using the same methodologies, the spin-orbit coupling (SOC) values of 4-thiothymine were

calculated by SOC-MRSF-TDDFT as well as GMC-QDPT2 and the results are shown in Table

3. The SOC values of S0(GS)/3nπ∗, S0(GS)/3ππ∗, 1nπ∗/3nπ∗, and 1nπ∗/3ππ∗ were investigated.

It is noted that the one- and two-electron contributions to the overall SOCs are separately listed.

As expected by the El-Sayed’s rule, the SOCs of GS/3nπ∗ and 1nπ∗/3ππ∗ have sizable values

of 98/13 and 113/14 cm−1 in the case of GMC-QDPT2 at PBE0 geometry, indicating that the

SOC of S/T(Ms = ±1) (the former value of /) are much bigger than that of S/T(Ms = 0) (the

latter value of /). This is because we chose a coordinate frame such that the ∆MS = ±1 SOC

arises from the electron rotation of an in-plane orbital (e.g., the n orbital) to an out-of-plane

orbital (e.g., the π and π∗ orbitals). As anticipated, the 1e contribution is much bigger than 2e.

The SOC values of GMC-QDPT2/cc-pVTZ are relatively insensitive to the geometric effects.

Regardless of exchange-correlation functionals, SOC-MRSF values are in excellent agreement

with the SO-GMC-QDPT2 references. The SOC values of GS/3ππ∗ and 1nπ∗/3nπ∗ are negligibly

small as it should be. The reference ROHF orbitals by BH&HLYP and PBE0 functionals are shown
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Table 3: Spin-orbit couplings of 4-thiothymine (in cm−1) computed by SOC-MRSF-TDDFT
and GMC-QDPT2 with cc-pVTZ basis set at S1min geometries optimized by MRSF/6-31G*
with respective functional. The double slash (//) is utilized to emphasize the correspondingly
optimized geometries. The values with Ms = ±1 and Ms = 0 triplets are separated by slash
symbol. The 1e and 2e components as well as the combined values are separately shown.

1e 2e 1e+2e
Real Imag Real Imag Real Imag Abs.

MRSF/PBE0

GS/3ππ* 0/0 0/-1 0/0 0/1 0/0 0/0 0/0
GS/3nπ* 15/0 -102/11 -4/0 21/-2 11/0 -81/9 82/9

1nπ*/3ππ* 14/0 -135/16 -3/0 27/-3 11/0 -108/13 109/13
1nπ*/3nπ* 0/0 0/0 0/0 0/0 0/0 0/0 0/0

GMC-QDPT2//PBE0

GS/3ππ* 0/0 1/-1 0/0 0/0 0/0 1/-1 1/1
GS/3nπ* -14/0 123/16 3/0 -26/-3 -11/0 97/13 98/13

1nπ*/3ππ* -14/0 -140/17 3/0 28/-3 -11/0 -112/14 113/14
1nπ*/3nπ* 0/0 1/0 0/0 0/0 0/0 1/0 1/0

MRSF/B3LYP

GS/3ππ* 0/0 -1/-1 0/0 0/1 0/0 -1/0 1/0
GS/3nπ* -15/0 100/-10 4/0 -20/2 -11/0 80/-8 81/8

1nπ*/3ππ* 12/0 -137/16 -3/0 27/-3 9/0 -110/13 110/13
1nπ*/3nπ* 0/0 0/0 0/0 0/0 0/0 0/0 0/0

GMC-QDPT2//B3LYP

GS/3ππ* 0/0 -1/-1 0/0 0/0 0/0 -1/-1 1/1
GS/3nπ* -16/0 133/16 3/0 -26/-3 -13/0 107/13 108/13

1nπ*/3ππ* 16/0 140/17 -3/0 -28/-3 13/0 112/14 113/14
1nπ*/3nπ* 0/0 1/0 0/0 0/0 0/0 1/0 1/0

MRSF/BH&HLYP

GS/3ππ* 0/0 0/0 0/0 0/0 0/0 0/0 0/0
GS/3nπ* 20/0 -120/12 -5/0 24/-2 16/0 -96/10 97/10

1nπ*/3ππ* 21/0 -143/16 -4/0 28/-3 17/0 -115/13 116/13
1nπ*/3nπ* 0/0 1/0 0/0 0/0 0/0 1/0 1/0

GMC-QDPT2//BH&HLYP

GS/3ππ* 0/0 2/-1 0/0 -1/0 0/0 1/-1 1/1
GS/3nπ* -18/0 133/15 4/0 -26/-3 -14/0 107/12 108/12

1nπ*/3ππ* 18/0 143/-16 -4/0 -28/3 14/0 115/-13 116/13
1nπ*/3nπ* 0/0 -2/0 0/0 0/0 0/0 -2/0 2/0

MRSF/M06-2X

GS/3ππ* 5/0 3/-3 0/0 -1/1 5/0 2/-2 5/2
GS/3nπ∗ -18/0 124/-12 4/0 -25/2 -14/0 99/-10 100/10

1nπ*/3ππ* -16/0 133/-6 3/0 -26/1 13/0 107/-5 108/5
1nπ*/3nπ* 0/0 2/0 0/0 0/0 0/0 2/0 2/0

GMC-QDPT2//M06-2X

GS/3ππ* 4/0 -3/-2 0/0 1/1 4/0 -2/-1 4/1
GS/3nπ* -19/0 142/19 4/0 -28/-4 -15/0 114/15 115/15

1nπ*/3ππ* 17/0 147/-13 -3/0 -29/3 14/0 118/-10 119/10
1nπ*/3nπ* 0/0 3/0 0/0 -1/0 0/0 2/0 2/0
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in Fig. 4 along with the major configurations of GS, S1, T1 and 22 states. It is seen that the nS and

π orbitals are mainly composed of S nonbonding and π orbitals, which is the main source of large

SOC values.

Intersystem Crossing of Thymine

The controversy over the relaxation mechanism of photoexcited thymine such as S1-trapping,

S2-trapping, and S1&S2-trapping has been recently resolved by our NAMD study using MRSF-TDDFT.22

Our study supports the S1-trapping mechanism with two lifetimes, τ1=30±1 fs and τ2=6.1±0.035

ps, quantitatively consistent with the recent time-resolved experiments.2 Accordingly, upon photo-excitation

to the S2 (ππ∗) state, thymine undergoes an ultrafast (ca. 30 fs) S2 → S1 internal conversion

through (IC) a conical intersection (CI21,BLA) and resides around the minimum on the S1min

(nOπ
∗) surface, slowly decaying to the ground state (ca. 6.1 ps). Therefore, it is clear that the

S1min is the most frequently sampled structure during the overall lifetime of thymine. Apart

from the singlet state models, some computations61,62 suggested a possibility of the 1nπ∗ → 3ππ∗

(S1 → T2) intersystem crossing (ISC). For example, the CASSCF NAMD simulations of Mai

et al. 62 predicted a 0.9±0.1 ps time scale for the S1 → T2 intersystem crossing (ISC) followed

by an ultrafast relaxation to T1. As discussed in the introduction, Wolf et al. 2 have obtained

circumstantial experimental evidence of the population transfer to triplet states on the timescale of

3.5±0.3 ps.

In addition to the bright S2 (ππ∗) and dark S1 (nπ∗), the energies of T3 (ππ∗), T2 (nπ∗)

and T1 (ππ∗) are calculated along the bond-length alternation (BLA) coordinate of the molecular

backbone, which connects the FC (Franck-Condon) geometry with S1min via IC, and the results are

shown in the Figure 5a. It is clearly seen that the T2 is nearly parallel with S1 from FC to S1min,

with a negligibly small T2-S1 energy gap. This is because the n and π∗ orbitals in the two nπ∗

states point along different directions (in-plane vs. out-of-plane) and hence give a small exchange

integral, which determines the gap between the singlet and triplet states of the nπ∗ configuration.

According to El-Sayed’s rule, the same-configuration-intersystem crossing from S1 (nπ∗) to T2
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Figure 5: (a) Minimum energy paths (MEPs) using the NEB method59,60 connecting the FC region,
the CI21,BLA, and the S1min geometries obtained by MRSF/BH&HLYP/6-31G* from Ref. 22. The
BLA coordinate is defined here as the difference between the average increments of the lengths
of the double bonds and the decrease of the single bond, BLA = 1

2
(∆RC4=O8 + ∆RC5=C6) −

∆RC4−C5 , where ∆R’s are displacements with respect to the S0 equilibrium geometry. (b) The
SOC values between Ms = 0 singlet and Ms = ±1 triplet states.

(nπ∗) is inefficient, even though their energies are nearly identical in the entire region of PES.

Remarkably, however, the more stable T1 (ππ∗ the thick black curve) crosses with S1 and T2
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near S1min, providing a plausible route of IC or ISC. Thus, the most probable initial intersystem

crossing (IRC) would be S1 → T1 or S1 → T3 pathways. While T1 has a crossing with S1 at S1min

structure, the T3 is ∼ 1 eV higher than S1 along the entire PES. Therefore, the former ISC is more

likely to occur. The corresponding SOC values are presented in Fig. 5b. In terms of S1/T1 SOC

magnitude, the initial values at FC (10.4 cm−1) is increased to 19 cm−1 at BLA=0.19. It is quite

significantly decreased afterward to 3 cm−1. The same trend can be seen from the SOC values of

S1/T3 (Ms = ±1) curve.

To further analyze the ISC, the reference RO-DFT orbitals at the three different geometries of

FC, CI21,BLA and S1min are presented in Fig. 6 along with the contributions of each transitions

in the parenthesis. It turned out that not only n, π and π∗ MOs but also n
′ , π′ and π

′∗ MOs are

involved in the major transitions of S1, T1 and T3 states. At the FC structure, the characters of S1,

S2, T1, T2 and T3 states may be denoted as nπ∗, ππ∗, ππ∗, nπ∗ and ππ∗, respectively. The orbital

energy of n at FC is reduced from -9.10 to -9.25 (CI21,BLA) and -10.40 eV (S1min), which explains

well the stability of S1 and T2. Although the T1 has an entirely ππ∗ character, however, the π

orbital at FC and CI21 is mostly composed of C=C π bonding, while that at S1,min is located on

oxygen. The character of T3 is the combination of π′
π∗ and ππ

′∗, utilizing the two different oxygen

π orbitals. As the BLA increases such as S1,min structure, the contribution of the former character

increases. The lowest singlet excited state S1 is mostly composed of nπ∗ with a minor n′
π∗ at

FC. However, the latter character dominates at S1,min. Therefore, the significantly decreased SOC

values of both S1/T1 and S1/T3 at S1,min can be attributed to character changes. For example, the

SOC between n
′(S1) and π

′ (T3) can be small due to the small overlap between the corresponding

orbitals.

If the S1 −→ T1 ISC takes place, the T1 population would eventually reside at a structure near

BLA=0.12 , since it corresponds to the T1 minimum. As the majority of excited state populations

stay at the vicinity of S1min
22 and the S1-T1 crossing is at the proximity of the S1 minimum, even

if the SOC between T1 and S1 near S1min is small ∼ 3 cm−1, there is a chance for the S1 to T1 ISC

due to frequent sampling of the S1-T1 crossing region during excited state dynamics.
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Figure 6: RO-DFT/BH&HLYP/6-31G* molecular orbitals of thymine and their energies in eV. The
character of S1, T1, and T3 states with squared transition coefficients are given in bottom.
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Conclusions

A relativistic MRSF-TDDFT (SOC-MRSF for brevity) protocol has been developed, where the

spin-dependent Hamiltonian contains the explicit spin-orbit coupling (SOC) operator in a perturbative

manner. The relativistic spin-orbit coupled (SOC) states are represented as a linear combination of

non-SOC states. The matrix elements of SOC Hamiltonian consist of both one- and two-electron

contributions. The latter is treated by a mean-field screening approximation.

The resulting SOC-MRSF reproduces the experimental values with very high accuracy, which

are comparable to the fully relativistic four-component (4c) CASSCF and 4c-CASPT2 in the

calculations of the 3P0 −3 P1 gaps of the C, Si and Ge atoms. The particular combination of

BH&HLYP/cc-pVTZ produces near-perfect agreements with experimental values. Even in the

case of fifth-row element Sn with its strong SOC, a remarkable accuracy (∼ 3 % error) was

achieved. The SOC couplings of C and Si have also been predicted within ∼ 10 % error. In the

SOC calculation of 4-thiothymine, the values by SOC-MRSF are in excellent agreement with the

reference values by GMC-QDPT2, regardless of exchange-correlation functionals. The possibility

of ISC in thymine was also investigated. It was found that the T1 (ππ∗) crosses with S1 and T2 near

S1min, providing a good chance of IC or ISC. In the case of S1/T1, non-zero SOC magnitude at

the crossing position can allow S1 (nπ∗) −→ T1 (ππ∗) ISC. It can be expected that if the majority

of excited state populations are staying near S1min, the chance of ISC may increase due to the

proximity between the S1/T1 crossing and S1min.

In short, current results established that SOC-MRSF is not only accurate but also practical as

compared to highly correlated but computation-intensive theories. Accordingly, SOC-MRSF can

be a promising protocol for SOC-involved nonadiabatic molecular dynamics (NAMD), especially

for large molecules.
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