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Abstract 

The KREG and pKREG models were proven to enable accurate learning of multidimensional 

single-molecule surfaces of quantum chemical properties such as ground-state potential 

energies, excitation energies, and oscillator strengths. These models are based on kernel ridge 

regression (KRR) with the Gaussian kernel function and employ relative-to-equilibrium (RE) 

global molecular descriptor, while pKREG is designed to enforce invariance under atom 

permutations with a permutationally invariant kernel. Here we extend these two models to 

also explicitly include the derivative information from the training data into the model which 

greatly improves their accuracy. We demonstrate on the example of learning potential 

energies and energy gradients that KREG and pKREG models are better or on par with state-

of-the-art machine learning models. We also found that in challenging cases both energy and 

energy gradient labels should be learned to properly model potential energy surfaces and 

learning only energies or gradients is insufficient. The models’ open-source implementation 

is freely available in the MLatom package for general-purpose atomistic machine learning 

simulations which can be also performed on the MLatom@XACS cloud computing service. 
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Introduction 

Machine learning (ML) is among the most powerful tools that influence many aspects of 

our lives through its impressive capabilities, e.g., in data mining and pattern recognition. In 

the field of quantum chemistry, the development of ML methods helps to boost the prediction 

of many molecular properties1, 2 such as potential energy surfaces3-6 (PESs), excitation 

energies and other excited-state properties,7, 8 dipole moments,9-11 polarizabilities,11 and 

electron densities12, 13, which are of significance in further applications, e.g., in molecular 

dynamics and spectra simulations. 

These properties can be viewed as multi-dimensional functions of certain descriptor that 

encodes geometrical and other information of molecules and finding such function is where 

ML comes in. Kernel methods (KMs) are among the most widely used machine learning 

algorithms in this field, together with neural networks and linear models.1, 2, 7 KM-based 

regression models are so-called non-parametric methods, with the same number of regression 

coefficients as the number of the labeled reference data in the training set.14 The KM models 

can be conveniently viewed as a sum of similarities between a new chemical structure and 

each individual structure in the training set, with similarities multiplied by regression 

coefficients. The similarities are represented by kernel functions which can help to project the 

low-dimensional descriptors onto a much higher-dimensional (often, infinitely-dimensional) 

space, thus capable of fitting the complicated nonlinear functions.14 A few of the many KM 

models15 developed for quantum chemistry are GAP16-SOAP17, GDML18 and sGDML19, and 

FCHL20. 

We also introduced21, 22 in 2017 KM-based models KREG and pKREG for learning 

molecular properties with high accuracy. These models use a global relative-to-equilibrium 

(RE) descriptor as the representation of molecular geometries, kernel ridge regression (KRR) 

KM framework with the Gaussian kernel function to measure the similarity between input 

vectors. Permutationally invariant kernel is applied in pKREG to enforce invariance with 

atom permutations. Applications of KREG and pKREG include learning ground-state PESs21-

24, e.g., for rovibrational spectra simulations21, 24, as well as excitation energies and oscillator 

strengths for absorption spectra simulations22, 25. They were shown to be among the best 

performers in terms of accuracy and computational efficiency on an extended MD17 

benchmark of 10 molecular PESs.23 Both models are available in the open-source, free 

software package MLatom22, 26, 27. 



Y.-F. Hou, F. Ge, P. O. Dral KREG & pKREG 19.10.2022 

Page 3 of 34 
 

In quantum chemistry, molecular property derivatives are important to predict and learn. 

Most prominently, derivatives of potential energy (energy gradients or negative forces) are 

required for propagating molecular dynamics. Other derivative properties which became a 

target of ML are nonadiabatic couplings.28 As with other ML regression algorithms, 

analytical derivatives of KM regression functions can be derived when necessary, thus, after 

KM models are trained on molecular properties, their derivatives can be readily obtained. 

KREG and pKREG have an implementation of analytical derivatives as described 

previously.22 However, it is very well known that the accuracy of KMs can be substantially 

improved by explicitly including derivative information into the model from the training data 

when available.5, 23, 29-33 Explicit inclusion means that the KM regression function 

incorporates terms corresponding to the reference labels representing the derivative 

information, commonly, energy gradient components corresponding to each atom and 

coordinate. 

In this work, we develop and implement explicit learning of derivative information in 

KREG and pKREG, describe the mathematical details of these models, and benchmark them 

on an extended MD1718, 19 and a newly introduced WS2234 databases. MD17 was used in our 

previous23 assessment of a wide range of machine learning potentials which allows us to 

directly compare our models to these potentials. WS22 was chosen because it has a broader 

distribution of energies than MD17, includes molecules of increasing complexity, and their 

different conformers. Our benchmark shows the competitive accuracy of KREG and pKREG 

models compared to other state-of-the-art approaches. 

Methods 

In this section, we will first recap the theory behind the KREG and pKREG model and 

then describe our new implementation for explicit inclusion of the gradient information in 

these models. 

Kernel ridge regression 

For each input vector 𝐱!, the prediction of KRR is given as35, 36: 

𝑓(𝐱!) = 𝑦prior +(𝛼&𝑘+𝐱! , 𝐱&-
'tr

&()

, (1) 

where 𝑁tr is the number of training points, 𝛼& is the regression coefficient and 𝑘+𝐱! , 𝐱&- is the 

kernel function that will be discussed below, and 𝑦prior is, following related Gaussian process 
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regression terminology, a prior function. In the MLatom implementation, 𝑦prior is simply a 

constant which is by default set to zero or can be set to the mean of the reference values or 

any other user-defined value. The regression coefficients 𝛂 are determined by analytically 

solving the linear system of equations: 

1
𝑘(𝐱), 𝐱)) + 𝜆 ⋯ 𝑘+𝐱), 𝐱'tr-

⋮ ⋱ ⋮
𝑘+𝐱'tr , 𝐱)- ⋯ 𝑘+𝐱'tr , 𝐱'tr- + 𝜆

67
𝛼)
⋮
𝛼'tr

8 = 7
𝑦) − 𝑦prior

⋮
𝑦'tr − 𝑦prior

8 , (2) 

or in a simplified matrix form35: 

(𝐊 + 𝜆𝐈)𝛂 = 𝐲 − 𝑦prior𝟏, (3) 

where 𝐊 is the kernel matrix that contains covariances between all input vectors, 𝜆 is the 

regularization hyperparameter, 𝐈 is the identity matrix, 𝐲 is the vector of reference values, and 

𝟏 is the vector with all elements set to 1 of the same size as 𝐲 vector. 

Relative-to-equilibrium descriptor 

The relative-to-equilibrium (RE) descriptor is defined as a vector that contains all inverse 

internuclear distances 𝑟*+ normalized by 𝑟*+,-. of a reference structure21, 22: 

𝐱/ = A⋯
𝑟*,+1*ref

𝑟*,+1*
⋯B . (4) 

In practice, equilibrium geometry is chosen as the reference structure, i.e., 𝑟*+,-. = 𝑟*+
-4 as 

was done in the original publication21. To simplify input for a user, we also implement an 

automatic selection of the reference structure by choosing the structure with the smallest 

reference value (typically energy) from the training set. In this work, for benchmarks, we use 

the equilibrium geometry where available (the WS22 database) or structures with the lowest 

energy from the entire data set (the MD17 database). Although the internuclear distances 

ensure translational and rotational invariance, changes in atom order will swap the element 

order in the descriptor, thus leading to different predictions. Consequently, a permutationally 

invariant kernel is applied, which is discussed below. 

Gaussian kernel function and permutationally invariant kernel 

In the KREG model, the “G” stands for the Gaussian kernel function which is used to 

measure the similarity between two input vectors35: 
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𝑘+𝐱! , 𝐱&- = exp7−
H𝐱! − 𝐱&H

5

2𝜎5
8 , (5) 

where H𝐱! − 𝐱&H is Euclidean distance (L2 norm) between vectors 𝐱! and 𝐱& and 𝜎 defines the 

kernel width. 

As is mentioned above, RE descriptor is not permutationally invariant, which is 

physically incorrect and would require more training data to implicitly learn permutational 

invariance, i.e., via data augmentation by permuting atoms to artificially generate more 

training data37. Data augmentation, however, would substantially increase cost of training and 

thus, pKREG adopts a different strategy by enforcing permutational invariance on a kernel 

level via using the normalized permutationally invariant kernel30 (PIK, similar to a related 

sGDML model19 using non-normalized PIK): 

𝑘K L𝑥(𝐌!), 𝑥+𝐌&-O =
∑ 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O
'!"#$
67

S∑ 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌!-O
'!"#$
67 S∑ 𝑘 L𝑥+𝐌&-, 𝑥+𝑃R𝐌&-O

'!"#$
67

, (6) 

where 𝑁8-,9 is the number of permutations and operator 𝑃R permutes the order of atoms in a 

geometry represented by Cartesian coordinates 𝐌; 𝑥(𝐌!) highlights that the RE descriptor is 

a function of Cartesian coordinates. 

The computational cost grows quickly with an increasing number of atoms 𝑁:;<9= to 

permute as 𝑁8-,9 = 𝑁:;<9=!. It is worthwhile to sacrifice computational efficiency for the 

accuracy of ML model, but, in practice, the permutation numbers can be reduced by 

permuting atoms of the same type. In addition, not all permutations are useful and improve 

the accuracy of the model. For example, in ethanol, there are 6 hydrogen atoms and thus 6! =

720 permutations in total. If we only permute hydrogen atoms within the same chemical 

environment, i.e., hydrogen atoms in methyl, methylene and hydroxyl groups, the number of 

permutations will be reduced to 12, with 𝑁8-,9 = ∏ 𝑁:;<9=,>!
'%#&'!(
> , where 𝑁?,<@8= is the 

number of groups and 𝑁:;<9=,> is the number of atoms in group 𝑔.22, 26, 30, 38 The user can 

specify which atoms to permute or provide the list of permutations to MLatom. MLatom also 

supports the semi-automatic reduction of the number of permutations initially defined by the 

user. For each point in the training set, the dRMSD (distance root mean square deviation, also 

referred to as distance matrix error) values are calculated between the equilibrium geometry 

and each permuted geometry. Only the permutation with the lowest dRMSD for each training 
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point is recorded and added to the list of permutations to be retained, while all remaining 

permutations are removed. dRMSD is defined as:3977 

dRMSD = _ 2
𝑁AB=;:CD-=(𝑁AB=;:CD-= − 1)

( +𝑟*,+ − 𝑟*,+ref-
5

')*(+,-."(

+E*

, (7) 

where 𝑁AB=;:CD-= is the number of the internuclear distances. 

Learning only scalar values 

The previously released implementation of the KREG and pKREG models40 (using Eqs. 

1 and 2) only could learn the reference scalar values, e.g., energies. Derivatives such as 

energy gradients could be calculated analytically by taking the first derivatives of 𝑓+𝑥(𝐌!)- 

with respect to the 𝑡th coordinate of atom 𝑎  for the ith molecular geometry in Cartesian 

coordinates 𝐌!:22 

 

𝜕𝑓+𝑥(𝐌!)-
𝜕𝑀!,*F

=(𝛼&
𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑀!,*F

'tr

&

. (8) 

Next, we apply the chain rule to calculate the derivatives of the kernel functions shown 

in Eq. 8: 

𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O
𝜕𝑀!,*F

= (
𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑥!,G
𝜕𝑥!,G
𝜕𝑀!,*F

'/

G()

, (9) 

where 𝑥!,G is the 𝑑th element of input vector 𝐱! = 𝑥(𝐌!), 𝑁H is the dimensionality of 𝐱! and 

𝜕𝑥!,G ∕ 𝜕𝑀!,*F is the derivative of the descriptor element with respect to an atomic coordinate. 

Derivation of all derivatives will be given in a separate sub-section. 

The loss for hyperparameter optimization (see the corresponding section below) is 

defined as root-mean-squared error (RMSE) in values for the validation set. 

Learning only derivative information  

Derivative information can be explicitly learned by kernel methods41 and, e.g., GDML,18 

sGDML,19 and related42 models only explicitly learn energy gradients and not energies. In 

this case, the kernel matrix is Hessian, which contains all the second derivatives of kernel 

functions and the system of linear equations to solve is: 
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⎝

⎜
⎜
⎜
⎛
𝜕2𝑘+𝑥(𝐌)), 𝑥(𝐌))-

𝜕𝑀),))𝜕𝑀),))
+ 𝜆 ⋯

𝜕2𝑘 L𝑥(𝐌)), 𝑥+𝐌'+#-O
𝜕𝑀),))𝜕𝑀'tr,'atI

⋮ ⋱ ⋮
𝜕2𝑘 L𝑥+𝐌'+#-, 𝑥(𝐌))O

𝜕𝑀'tr,'atI𝜕𝑀),))
⋯

𝜕2𝑘 L𝑥+𝐌'+#-, 𝑥+𝐌'+#-O
𝜕𝑀'tr,'atI𝜕𝑀'tr,'atI

+ 𝜆
⎠

⎟
⎟
⎟
⎞
7
𝛼),))
⋮

𝛼'tr,'at3
8 =

⎝

⎜⎜
⎛

𝜕𝑦)
𝜕𝑀),))
⋮

𝜕𝑦'tr
𝜕𝑀'tr,'at3⎠

⎟⎟
⎞
. (10) 

By using the chain rule, we can find the second derivatives analytically (see derivation 

and expressions for the derivatives in a separate sub-section): 

𝜕2𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O
𝜕𝑀!,*F𝜕𝑀&,+J

= ((
𝜕2𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑥!,G𝜕𝑥&,K
𝜕𝑥!,G
𝜕𝑀!,*F

𝜕𝑥&,K
𝜕𝑀&,+J

'/

K()

'/

G()

. (11) 

After solving the equations and obtaining the regression coefficients, the predictions of 

derivatives with the trained model are obtained via 

𝜕𝑓+𝑥(𝐌!)-
𝜕𝑀!,*F

=(((𝛼&,+J
𝜕2𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑀!,*F𝜕𝑀&,+J

I

J()

'at

+()

'tr

&()

, (12) 

The trained model can also be used to recover the function values through integration: 

𝑓+𝑥(𝐌!)- = const +(((𝛼&,+J
𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑀&,+J

I

J(1

'at

+(1

'tr

&()

, (13) 

where const  is the integration constant which is found in MLatom by averaging the 

remainder of the reference function values after subtracting the second term in Eq. 13 for the 

training set, as is done in sGDML. 

The loss for hyperparameter optimization (see the corresponding section below) is 

defined as root-mean-squared error (RMSE) in derivative properties for the validation set. 

Learning both values and derivative information 

In the above sections, models trained only on values or derivative information are 

presented. We can, however, explicitly learn both as is done in a number of studies.30-33, 43-45 

For more flexibility, our implementation allows to include gradients only from a subset of 

structures in the entire dataset; we call this approach sparse gradients and it is analogous to 

sparsification strategies suggested in literature5, 30. Sparse gradients are useful to reduce the 

cost of training on a large dataset as we will see later. The regression functions for values 
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should contain kernel functions and first derivative terms, while the regression function for 

property derivatives should contain the first and second derivative terms: 

𝑓 L𝑥+𝐌&-O = 𝑦prior +(𝛼&𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O
'tr

&()

+(((𝛼&,+J
𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑀&,+J

I

J()

'at

+()

'tr,g

&()

, (14) 

𝜕𝑓+𝑥(𝐌!)-
𝜕𝑀!,*F

=(𝛼&
𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑀!,*F

'tr

&()

+(((𝛼&,+J
𝜕2𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O

𝜕𝑀!,*F𝜕𝑀&,+J

I

J()

'at

+()

'tr,g

&()

, (15) 

where 𝑁tr represents the total number of structures in the dataset (the same as the number of 

reference values) while 𝑁tr,g≤𝑁tr represents the number of structures with reference gradients 

(subset of the entire dataset). 

The kernel matrix now needs to include covariances between values, values and 

derivatives, and between derivatives. The system of equations to solve for models with full 

gradients is: 

⎝

⎜
⎜
⎜
⎛𝑘+𝑥(𝐌)), 𝑥(𝐌))- + 𝜆v ⋯

𝜕𝑘 L𝑥(𝐌)), 𝑥+𝐌'+#-O
𝜕𝑀'tr,g,𝑁at3

⋮ ⋱ ⋮
𝜕𝑘 t𝑥 L𝐌'tr,gO , 𝑥(𝐌))u

𝜕𝑀3'tr,g,𝑁at3
⋯

𝜕2𝑘 t𝑥 L𝐌'tr,gO , 𝑥 L𝐌'tr,gOu

𝜕𝑀'tr,g,𝑁at3𝜕𝑀'tr,g,𝑁at3
+ 𝜆gxyz

⎠

⎟
⎟
⎟
⎞

7
𝛼)
⋮

𝛼'tr,g,𝑁at3
8

=

⎝

⎛

𝑦) − 𝑦prior
⋮

𝜕𝑦'tr,g
𝜕𝑀'tr,g,𝑁at3⎠

⎞ (16)

 

where 𝜆v  and 𝜆gxyz  are the regularization hyperparameters for values and derivatives, 

respectively. The use of different regularization hyperparameters adds additional flexibility to 

the model training.30, 32 Number of labelled data is then 𝑁tr + 3𝑁tr,g𝑁at instead of 𝑁tr(3𝑁at +

1) and the kernel matrix size is (𝑁tr + 3𝑁tr,g𝑁at) × (𝑁tr + 3𝑁tr,g𝑁at) instead of 𝑁tr(3𝑁at +
1) × 𝑁tr(3𝑁at + 1). This allows us to balance the cost of model training and accuracy by 

choosing appropriate 𝑁tr,g. 

When we train on both values and derivatives, we should also choose the appropriate 

loss in the validation set for hyperparameter optimization. In this paper, we use the default 
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loss 𝐿  in MLatom which is defined as geometric mean between RMSEs in values and 

derivatives:22 

𝐿 = S𝐿S:T𝐿?. (17) 

MLatom also allows to define a different loss function, e.g., by using a sum of losses and 

setting different weights for derivatives as is often done, but this would introduce one more 

parameter to adjust.22 

Derivation of derivatives 

Derivatives of Gaussian kernel function 

The first and second derivatives of the Gaussian kernel functions are26: 

𝜕𝑘+𝐱! , 𝐱&-
𝜕𝑥!,G

=
1
𝜎2
+𝑥&,G − 𝑥!,G-𝑘+𝐱! , 𝐱&-, (18) 

𝜕5𝑘+𝐱! , 𝐱&-
𝜕𝑥!,G𝜕𝑥&,K

=
1
𝜎5
x𝛿GK +

1
𝜎5
+𝑥&,G − 𝑥!,G-+𝑥!,K − 𝑥&,K-z 𝑘+𝐱! , 𝐱&-, (19) 

where 𝛿GK is the Kronecker delta, which yields 1 when 𝑑 equals 𝑒 and 0 when not. 

 

Derivatives of RE descriptor 

Let us denote 𝑥G as the element in the RE descriptor. It is obvious that the derivative is 

non-zero only if 𝑥G is the function of the coordinate 𝑡 (x, y, or z) of atom 𝑎, in which case, 𝑥G 

can be denoted as 𝑥G(𝑀*F): 

𝜕𝑥G(𝑀*F)
𝜕𝑀*F

=
𝜕
𝑟*,+1*ref

𝑟*,+1*
𝜕𝑀*F

= 𝑥G
1

𝑟*,+1*5 (𝑀+F −𝑀*F). (20) 

Derivatives of normalized permutationally invariant kernel 

The first derivative of normalized permutationally invariant kernel is:26 
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𝜕𝑘K L𝑥(𝐌!), 𝑥+𝐌&-O
𝜕𝑀!,*F

=
𝜕

𝜕𝑀!,*F

∑ 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O
'!"#$
67

S∑ 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌!-O
'!"#$
67 S∑ 𝑘 L𝑥+𝐌&-, 𝑥+𝑃R𝐌&-O

'!"#$
67

=
∑

𝜕𝑘+𝐱! , 𝑃R𝐱&-
𝜕𝑀!,*F

'!"#$
67

S∑ 𝑘+𝐱! , 𝑃R𝐱!-
'!"#$
67

S∑ 𝑘+𝐱& , 𝑃R𝐱&-
'!"#$
67

−
1
2

∑ 𝜕𝑘+𝐱! , 𝑃R𝐱!-
𝜕𝑀!,*F

'!"#$
67 ∑ 𝑘+𝐱! , 𝑃R𝐱&-

'!"#$
67

|∑ 𝑘+𝐱! , 𝑃R𝐱!-
'!"#$
67 }

I
5S∑ 𝑘+𝐱& , 𝑃R𝐱&-

'!"#$
67

,

(21)

 

where	𝑥+𝑃R𝐌&- is equivalent to 𝑃R𝐱&. 

The second derivatives can be obtained in the same manner: 

𝜕5𝑘K L𝑥(𝐌!), 𝑥+𝐌&-O
𝜕𝑀!,*F𝜕𝑀&,+J

= x( 𝑘+𝐱! , 𝑃R𝐱!-
'!"#$

67
( 𝑘+𝐱& , 𝑃R𝐱&-

'!"#$

67
z
U)5
�(

𝜕5𝑘+𝐱! , 𝑃R𝐱&-
𝜕𝑀!,*F𝜕𝑀&,+J

'!"#$

67

−
1
2

1

∑ 𝑘+𝐱! , 𝑃R𝐱!-
'!"#$
67

(
𝜕𝑘+𝐱! , 𝑃R𝐱&-
𝜕𝑀&,+J

'!"#$

67
(

𝜕𝑘+𝐱! , 𝑃R𝐱!-
𝜕𝑀!,*F

'!"#$

67

−
1
2

1

∑ 𝑘+𝐱& , 𝑃R𝐱&-
'!"#$
67

(
𝜕𝑘+𝐱! , 𝑃R𝐱&-
𝜕𝑀!,*F

'!"#$

67
(

𝜕𝑘+𝐱& , 𝑃R𝐱&-
𝜕𝑀&,+J

'!"#$

67

+
1
4(

𝜕𝑘+𝐱! , 𝑃R𝐱!-
𝜕𝑀!,*F

'!"#$

67
(

𝜕𝑘+𝐱& , 𝑃R𝐱&-
𝜕𝑀&,+J

'!"#$

67

∑ 𝑘+𝐱! , 𝑃R𝐱&-
'!"#$
67

∑ 𝑘+𝐱! , 𝑃R𝐱!-
'!"#$
67 ∑ 𝑘+𝐱& , 𝑃R𝐱&-

'!"#$
67

� . (22) 

Up to now, both first and second derivatives of normalized permutationally invariant 

kernel can be viewed as the combination of Gaussian kernel functions and their derivatives. 

Nevertheless, the permutation should also change the expression of kernel function 

derivatives. 

Direct derivation of most of these derivatives is not necessary because they are 

analogous to the derivatives described above, e.g., the expression of 𝜕𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O ∕

𝜕𝑥!,G  resembles that of 𝜕𝑘 L𝑥(𝐌!), 𝑥+𝐌&-O ∕ 𝜕𝑥!,G  by replacing 𝑥+𝐌&-  with 𝑥+𝑃R𝐌&- . 

However, in 𝜕𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌!-O ∕ 𝜕𝑥!,G  permutation alters the order of elements in the 

descriptor, so this derivative is zero unless the permutation changes the position of 𝑥!,G: 

𝜕𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌!-O
𝜕𝑥!,G

=
1
𝜎5 |L

+𝑃R𝑥-
!,G
− 𝑥!,GO + +𝑥!,67G − 𝑥!,G-} 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌!-O , (23) 
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where 𝑃R𝑑 shows the new position of 𝑥!,G after permutation. With the above derivation, the 

expressions of 𝜕𝑘 L𝑥+𝐌&-, 𝑥+𝑃R𝐌&-O ∕ 𝜕𝑥&,K and 𝜕𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O /𝜕𝑥&,K are: 

𝜕𝑘 L𝑥+𝐌&-, 𝑥+𝑃R𝐌&-O
𝜕𝑥&,K

=
1
𝜎5 |L

+𝑃R𝑥-
&,K
− 𝑥&,KO + +𝑥&,67K − 𝑥&,K-} 𝑘 L𝑥+𝐌&-, 𝑥+𝑃R𝐌&-O (24) 

𝜕𝐾 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O
𝜕𝑥&,K

=
+𝑥!,67K − 𝑥&,K-

𝜎5 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O . (25) 

Second derivatives are similar to that of the Gaussian kernel function: 

𝜕5𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O
𝜕𝑥!,G𝜕𝑥&,K

=

1
𝜎2
x𝛿67G,K +

1
𝜎2 L

+𝑃R𝑥-
&,G
− 𝑥!,GO +𝑥!,67K − 𝑥&,K-z 𝑘 L𝑥(𝐌!), 𝑥+𝑃R𝐌&-O , (26)

 

where 𝛿67G,K is again the Kronecker delta and equals 1 when 𝑃R𝑑 = 𝑒. 

 Hyperparameter optimization and model evaluation 

For model evaluation, we randomly split each data set into two non-overlapping sets: the 

training set and the test set. In the both cases of the MD17 and WS22, we simply use 20000 

randomly sampled points as the test set following our previous work23. For learning curves 

(plots showing dependence of the test error with respect to the number of training points) 

generation, we averaged RMSEs and calculated their standard deviations by performing 

random samplings of the training points multiple times; up to 30 for small training sets; for 

the largest training sets, only one repeat was used and thus no standard deviation was 

calculated (usually it becomes very small for large training sets). For MD17, we reused some 

of our previous benchmark23 results with KREG for energy-only models and sGDML results 

for gradients-only models. The number of repeats and further details are given as described in 

the Data availability section. 

For optimization of hyperparameters 𝜎 and 𝜆 (or 𝜆v with 𝜆gxyz instead of a single 𝜆), we 

randomly split the training data set into two non-overlapping subsets: the sub-training and 

validation sets. The sub-training set is used to find regression coefficients 𝛼 for a given set of 

the hyperparameters, and we search for such hyperparameters which yield the model with the 

lowest loss in the validation set (the losses are defined for each type of the model in previous 

sections). The search is done on a nested logarithmic grid of two hyperparameters 𝜎 and 𝜆 as 
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described in detail elsewhere.26 If three hyperparameters 𝜎, 𝜆v and 𝜆gxyz are optimized, we 

use the Bayesian method with Tree-structured Parzen Estimator (TPE)46 via MLatom’s 

interface22 to the hyperopt47 package; 300 iterations in hyperopt search are used. 

Results and Discussion 

Here we evaluate the performance of our implementations on potential energies and 

energy gradients of single molecule PESs. From our previous investigation,23 (p)KREG was 

among the best models for learning energies, while sGDML was clearly among the best 

choices for learning energy gradients (in absence of comparison to (p)KREG), thus, here we 

focus on the comparison between both (p)KREG and sGDML. Part of molecular PESs is 

taken from the popular, extended MD17 database18, 19 with potential energy surfaces of ten 

molecules (Figure 1) for which extensive benchmarks of ML models are already available.23 

Nevertheless, MD17 contains geometries with little distortions from equilibrium structure 

and has a rather narrow spread of energies because data was sampled from molecular 

dynamics simulations at 500 K which is insufficient for some types of simulations (such as 

diffusion Monte Carlo).48 Thus, here we also test our models on ten single-molecule PESs of 

a recently introduced WS22 database34 containing a different set of molecules of increasing 

complexity (Figure 1). Molecular PESs in WS22 were built via Wigner sampling leading to a 

much broader spread of energies and geometries with stronger distortions than in MD17 

(compare the different distribution of energies for toluene data sets present in both databases, 

Figure 1). Distribution of energies in WS22 is typical for simulations of absorption spectra, 

where KREG was already successfully used,22, 25 and nonadiabatic excited-state dynamics – a 

focus of our ongoing research,7, 49, 50 where (p)KREG can be potentially used as was 

preliminary investigated51, 52 (in these studies25, 51, 52 KREG models were only trained on 

values, but not on derivatives). In addition, WS22 PESs include different conformers which 

leads to a clearly visible bimodal energy distributions for urea, nitrophenol, and DMABN. 

We will see that indeed learning some PESs in the WS22 database is a bigger challenge than 

learning MD17 PESs, and that the (p)KREG models often have an advantage over sGDML in 

such challenging cases and for the WS22 database in general. 
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Figure 1. Chemical structures, number of atoms in each molecule, and distributions of 
energies in the MD17 and WS22 databases. Toluene is highlighted because it is present in 
both databases. Note that relative energies range for MD17 is up to 50 kcal/mol and for 
WS22 is up to 200 kcal/mol. 
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Effect of including derivatives on accuracy 

Explicitly including derivative information (energy gradients) alongside values greatly 

improves the accuracy of KREG models compared to models only trained on values (energies) 

as is clearly seen from the corresponding learning curves for twenty single-molecule PESs of 

combined MD17 and WS22 databases (Figure 2). It is not surprising that including gradient 

information into the training set is crucial in order to significantly improve the performance 

of machine learning models as is well-known from literature.5, 23, 29-32 Interestingly, energies-

only models do not show significant improvement with an increasing number of the training 

points for small training sets (often, up to 1k for big molecules), which indicates a complete 

failure of models to learn only on a small number of energy labels as they are far from 

enough to even roughly represent a PES. The errors of energies-only models finally drop 

when the training sets are large enough (Figure S1 in the Supporting Information, SI). 

The (p)KREG theoretical framework is very flexible and allows to tune many knobs for 

optimizing its performance and here we highlight the most important knobs and give 

recommendations on their use. Importantly, one can use varying number of values or 

derivative labels, e.g., (p)KREG can be trained only on energies, only on derivatives, on both 

energies and derivatives, and on energies and a reduced set of derivatives (sparse gradients). 

Such flexibility is, e.g., missing in sGDML which cannot be trained on energies, and thus, we 

cannot compare (p)KREG and sGDML for this training task. If both energies and gradients 

are available, we do recommend training on both rather than only on gradients, because the 

additional cost of including energies is not high and, although accuracy is rather similar, 

including energies improves the robustness of the model (Figure 2). For example, for some 

challenging cases such as urocanic acid in the WS22 database, if no energies are included, the 

resulting gradients-only KREG model fails to find reasonable energies; as we will see later, 

sGDML also fails in such cases. In short, including energies is not making models worse, but 

it is essential in some cases. 
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Figure 2. Learning curves of the KREG models on single-molecule PESs of the MD17 and 

WS22 databases. Plots of root-mean-squared errors in energies (eRMSEs) and gradients 

(negative forces, fRMSEs) in the test set using the KREG models trained on energies only (en, 

blue), gradients only (grad, orange) and energies plus gradients (engrad, green). The shaded 

error bands show the standard deviations of the RMSEs. 
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Another knob to tune is hyperparameters, and in KREG we can choose different 

regularization hyperparameters for energies and gradients (𝜆v and 𝜆gxyz, Eq. 16). Our tests on 

several PESs (aspirin, azobenzene and ethanol) show that using two instead of a single 

regularization hyperparameter (i.e., simply setting 𝜆 = 𝜆v = 𝜆gxyz ) does not improve the 

accuracy much beyond very few (100) training points (Figure S2Figure S4). Thus, following 

Occam’s razor, we recommend using a single regularization hyperparameter which also 

makes hyperparameter optimization faster and only uses different regularization parameters 

in special cases such as very small training sets or sparse gradients with different number of 

points with energy labels and gradient labels. In case of sparse gradients which are also 

possible with our implementation, a quick test on one of the PES (ethanol) showed that fixing 

the number of training points with gradients and increasing the number of points with 

energies does improve accuracy for energies but not that much for gradients (Figure S5). 

Additionally, one could choose different weights for energies and gradients in the loss 

function, but we do not investigate this option further here. 

Yet another knob is the choice of the prior function. While more flexible and 

sophisticated functions are possible, here we only compare the simplest choices which is 

setting 𝑦prior in Eq. 1 (for models learned on energies only) or in Eq. 14 (for models trained 

on both energies and gradients) to a constant – either zero or mean of the reference energies. 

We found that using mean prior generally gives an improvement over default zero prior at 

least for very small training sets (100 points) of the WS22 database (Figure S6). Thus, all our 

results for the WS22 database are shown with the mean prior while for the MD17 database 

we use zero prior for two reasons: 1) our previous tests did not reveal any impact of prior for 

some of the PESs of MD17 and 2) to be consistent with our previous benchmark on MD17. 

In the future, we do recommend selecting appropriate prior according to the task in hand with 

the mean prior being a safer choice and zero prior useful when we are interested in the model 

regressing to zero for new predictions which are too far from the training set. 

The final knob is that pKREG also allows to choose user-defined permutations to enforce 

required symmetry and the effect of including symmetries will be investigated in the next 

section dedicated to a comparative benchmark of several ML models. 

 

Comparative benchmark 

To put the performance of the (p)KREG in perspective to other popular methods, we 

compare their accuracy to that of sGDML which is among the state-of-the-art approaches for 
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learning single-molecule PESs given gradient (and energy) information. We plot the learning 

curves for all twenty PESs in the combined MD17 and WS22 databases and analyze errors of 

(p)KREG and sGDML in energies and gradients (Figure 3). We only show errors of other 

popular machine learning potentials on MD17 from our previous evaluation for reference23 

but will not analyze them farther. (p)KREG models are trained on both energies and gradients 

using a single regularization parameter, while sGDML only on gradients for reasons 

discussed above. In the case of pKREG, we manually choose atoms to permute in each 

molecule (the list of permutations is given in the Supporting Information, Table S1; no 

permutations that improve accuracy were found for salicylic acid, uracil, azobenzene, SMA, 

urocanic acid, o-HBDI, acrolein, and nitrophenol). Obviously, if no permutations are found, 

pKREG is equivalent to KREG. 

The plots show that (p)KREG has competitive accuracy across all PESs, although, as 

usual with ML models, one model type cannot be always the best53 (e.g., sGDML was not 

always the best for PESs in the MD17 database23). It is more important to identify trends to 

help to judge when using (p)KREG can be advantageous and what are the weaknesses of 

these methods. One clear trend is that for PESs with relatively simple molecules and less 

distorted geometries such as many PESs in the MD17 database, KREG underperforms for 

small training sets. pKREG has higher accuracy than KREG which makes pKREG 

competitive even for the above cases compared to sGDML. However, for small training sets, 

all models have relatively large errors, potentially too large for a final production simulation 

with such models. 

Our analysis beyond relatively small training sets (up to 1000 training points), shows that 

generally, for larger training sets, the gap in accuracy between KREG and pKREG is 

narrowed with the increasing number of training points, which is caused by the underlying 

symmetry information in larger training sets. Thus, for simplicity, KREG can be used for 

larger data sets while pKREG is recommended for relatively small data sets. 

For more distorted structures as in the WS22 database and for larger training sets in both 

MD17 and WS22 databases, both KREG and pKREG start to have advantage over sGDML. 

This is particularly evident for the data sets of toluene – a molecule present in both MD17 

and WS22 databases (Figure 1). Although sGDML has somewhat better performance for 

small training sets of the MD17-toluene PESs, all three models have very similar 

performance for the WS22-toluene PESs with pKREG being somewhat better than others. 

Also, for larger training sets, all three models are very close in accuracy for both MD17 and 

WS22 toluene PESs. 
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We attribute this behavior to the RE descriptor which in the case of KREG and pKREG 

has more evenly spread values of elements than inversed internuclear distances (ID) 

descriptor in sGDML. Hence, the RE descriptor better captures relations between more 

distant parts of a molecule which has an advantage for more distorted geometries and larger 

data sets which better represent minute nuances of PESs. This is partially validated by our 

previous test22 comparing performance of both descriptors for a single molecule. The 

development of the RE descriptor was originally motivated by the need to describe different 

bond types on equal footing for near-equilibrium and highly distorted structures in the global 

PES of CH3Cl.21 

Finally, as mentioned above, for some challenging cases like urocanic acid and o-HBDI, 

explicit inclusion of energies is necessary to properly learn energies, and, e.g., sGDML which 

does not learn energies explicitly, fails to learn energies for urocanic acid for all training sets 

even up to 1k points, and fails for small training sets with up to 500 points of o-HBDI. Here, 

KREG model is obviously advantageous. 
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Figure 3. Learning curves of the KREG (blue), pKREG (orange), and sGDML (green) 
models on single-molecule PESs of the MD17 and WS22 databases. Plots of root-mean-
squared errors in energies (eRMSEs) and gradients (negative forces, fRMSEs) in the test set. 
The shaded error bands show the standard deviations of the RMSEs. Other popular machine 
learning methods evaluated on MD17 data set are shown for reference. Part of the learning 
curve results for models other than (p)KREG are taken from our previous benchmark on 
MD17.23 All models trained on energies and gradients except for gradients-only sGDML. 
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Conclusions and Outlook 

Here we presented the theory and implementation of explicitly learning derivative 

information with our KREG and pKREG models. The evaluation of both models on learning 

potential energy surfaces given a data set with energies and energy gradients showed 

competitive accuracy of KREG and pKREG compared to other state-of-the-art models. We 

updated our curated online database with benchmarks of different machine learning models 

for learning PESs with our new results (see Data availability section). 

(p)KREG models are based on a global relative-to-equilibrium (RE) descriptor which 

represent molecules with a vector of all unique inverse internuclear distances weighted by 

distances as found in an equilibrium (or other reference) geometry, which we showed to be 

advantageous for treating challenging cases of datasets with stronger distorted geometries and 

broader distribution of energies. pKREG is an extension of KREG for including 

permutational symmetries when needed on a kernel level. 

Our implementation is flexible allowing to learning energies only, gradients only, or both 

energies and all or sparse gradients. As an interesting unintended by-product of our 

benchmark, we found that in some challenging cases, it is impossible to learn PES with 

energies-only or gradients-only models and learning both energies and gradients is essential 

for achieving reasonable performance. 

Both KREG and pKREG models are available in an open-source package MLatom 

accompanied with online tutorials showing how to perform typical simulations with these 

models including evaluations presented in this work which is also useful for reproducibility. 

In addition, we further lower the hurdle of using these models by providing a cloud 

computing service so that KREG and pKREG calculations can be performed without 

installation of any program simply via a web browser on our MLatom@XACS platform 

(XACS is Xiamen Atomistic Computing Suite, http://xacs.xmu.edu.cn, for quantum chemical 

and artificial intelligence calculations such as ML, valence bond theory, and energy 

decomposition analysis). Given a flexibility and availability of our models, KREG and 

pKREG provide good additional tools in the computational chemistry toolbox. 
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Supporting Information 

Additional figures and a table (PDF) 

Data availability 

Our newly generated data includes learning curves for KREG, pKREG, and sGDML models 

benchmarked on the MD17 and WS22 databases. We updated our existing curated database 

with benchmarks of many machine learning models with the new results, the database is 

openly available at http://mlatom.com/mlpbenchmark1/. 

Code availability 

All implementations reported in this work are available in the open-source package MLatom 

for atomistic machine learning simulations which can be obtained as described at 

http://mlatom.com. This website also contains tutorials, i.e., a tutorial for this work is at 

http://mlatom.com/kreg. The oldest version which is capable of performing types of 

calculations reported here can be also installed using the command  

pip install MLatom==2.3.2. In addition, calculations can be performed online using 

our MLatom@XACS cloud computing service (http://xacs.xmu.edu.cn). 
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Supporting Information 

 

 

 

Figure S1. Learning curves of energies-only KREG models on the MD17 molecular PESs. 
Plots of root-mean-squared error of energies (up) and forces (bottom) of the test set using 
KREG models trained on energies only. 
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Figure S2. Learning curves of energies-plus-gradients KREG models using the same (blue) 
or different regularization parameters 𝜆 (orange) on ethanol. Plots of eRMSEs (up) and 
fRMSEs (bottom) in the test set versus the number of training points. 
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Figure S3. Learning curves of energies-plus-gradients KREG models using the same (blue) 
or different regularization parameters 𝜆 (orange) on azobenzene. Plots of eRMSEs (up) and 
fRMSEs (bottom) in the test set versus the number of training points. 
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Figure S4. Learning curves of energies-plus-gradients KREG models using the same (blue) 
or different regularization parameters 𝜆 (orange) on aspirin. Plots of eRMSEs (up) and 
fRMSEs (bottom) in the test set versus the number of training points. 
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Figure S5. Learning curves of the KREG models on ethanol single-molecule PES of the 
MD17 database. Plots of root-mean-squared errors in energies (eRMSEs) and gradients 
(negative forces, fRMSEs) in the test set using the KREG models trained on energies only (en, 
blue), energies and full gradients (engrad, orange) and sparse gradients (sparse1k, green). 
Sparse gradients were trained using 1000 points with gradients and Ntrain energies; we 
optimized three hyperparameters 𝜎, 𝜆v and 𝜆gxyz simultaneously using the hyperopt package. 
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Table S1. Permutations chosen for training pKREG models. 

Geometry Permutations 
Aspirin 

 

19 20 21 
19 21 20 
20 19 21 
20 21 19 
21 19 20 
21 20 19 

(rotation of the CH3 group) 

Benzene 

 

1 2 3 4 5 6 7 8 9 10 11 12 
6 1 2 3 4 5 12 7 8 9 10 11 
5 6 1 2 3 4 11 12 7 8 9 10 
4 5 6 1 2 3 10 11 12 7 8 9 
3 4 5 6 1 2 9 10 11 12 7 8 
2 3 4 5 6 1 8 9 10 11 12 7 
1 6 5 4 3 2 7 12 11 10 9 8 
6 5 4 3 2 1 12 11 10 9 8 7 
5 4 3 2 1 6 11 10 9 8 7 12 
4 3 2 1 6 5 10 9 8 7 12 11 
3 2 1 6 5 4 9 8 7 12 11 10 
2 1 6 5 4 3 8 7 12 11 10 9 

Ethanol 

 

4 5 6 7 8 
4 5 7 8 6 
4 5 8 6 7 
5 4 6 8 7 
5 4 7 6 8 
5 4 8 7 6 

(rotation of the CH3 and CH2 groups) 

Malonaldehyde 

 

1 2 3 4 5 6 7 8 9 
1 2 3 4 5 6 8 7 8 
3 2 1 5 4 9 7 8 6 
3 2 1 5 4 9 8 7 6 



Y.-F. Hou, F. Ge, P. O. Dral KREG & pKREG 19.10.2022 

Page 32 of 34 
 

Naphthalene 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
9 8 7 6 5 4 3 2 1 10 18 17 16 15 14 13 12 11 
4 3 2 1 10 9 8 7 6 5 14 13 12 11 18 17 16 15 
6 7 8 9 10 1 2 3 4 5 15 16 17 18 11 12 13 14 

Paracetamol 

 

6 7 10 11 12 13 14 16 17 19 20 
6 7 10 11 12 14 13 16 17 19 20 
6 7 10 11 13 12 14 16 17 19 20 
6 7 10 11 13 14 12 16 17 19 20 
6 7 10 11 14 12 13 16 17 19 20 
6 7 10 11 14 13 12 16 17 19 20 
11 10 7 6 12 13 14 20 19 17 16 
11 10 7 6 12 14 13 20 19 17 16 
11 10 7 6 13 12 14 20 19 17 16 
11 10 7 6 13 14 12 20 19 17 16 
11 10 7 6 14 12 13 20 19 17 16 
11 10 7 6 14 13 12 20 19 17 16 

Toluene 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 2 3 4 5 6 7 8 10 9 11 12 13 14 15 
1 2 3 4 5 6 7 9 8 10 11 12 13 14 15 
1 2 3 4 5 6 7 9 10 8 11 12 13 14 15 
1 2 3 4 5 6 7 10 8 9 11 12 13 14 15 
1 2 3 4 5 6 7 10 9 8 11 12 13 14 15 
1 2 7 6 5 4 3 8 9 10 15 14 13 12 11 
1 2 7 6 5 4 3 8 10 9 15 14 13 12 11 
1 2 7 6 5 4 3 9 8 10 15 14 13 12 11 
1 2 7 6 5 4 3 9 10 8 15 14 13 12 11 
1 2 7 6 5 4 3 10 8 9 15 14 13 12 11 
1 2 7 6 5 4 3 10 9 8 15 14 13 12 11 

Alanine 

 

9 10 11 
9 11 10 
10 9 11 
10 11 9 
11 9 10 
11 10 9 

(rotation of the CH3 group) 
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DMABN 

 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
19 20 21] 

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 16 18 
19 20 21] 

[1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 16 17 18 
19 20 21] 

[1 2 3 4 5 6 7 8 9 10 11 12 14 13 15 17 16 18 
19 20 21] 

[3 2 1 4 6 5 8 7 9 10 11 15 16 17 12 13 14 19 
18 21 20] 

[3 2 1 4 6 5 8 7 9 10 11 15 16 17 12 14 13 19 
18 21 20] 

[3 2 1 4 6 5 8 7 9 10 11 15 17 16 12 13 14 19 
18 21 20] 

[3 2 1 4 6 5 8 7 9 10 11 15 17 16 12 14 13 19 
18 21 20] 

Thymine 

 

12 13 14 
12 14 13 
13 12 14 
13 14 12 
14 12 13 
14 13 12 

(rotation of the CH3 group) 

Urea 

 

1 2 3 4 5 6 7 8 
4 2 3 1 8 7 6 5 
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Figure S6. Root-mean-squared errors for energies (eRMSE) and gradients (fRMSE)for 
molecules in the WS22 database for mean and zero priors. Models are trained with 100 
randomly selected points using KREG model with both energies and energy gradients. The 
reported RMSEs are on the test sets of 20000 points, with standard deviations from 10 repeats 
shown in error bars. 


