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Abstract: Modern drug discovery typically faces large virtual screens from huge compound databases where 

multiple docking tools are involved for meeting various real scenes or improving the precision of virtual 

screens. Among these tools, AutoDock Vina and its numerous derivatives are the most popular and have 

become the standard pipeline for molecular docking in modern drug discovery. Our recent Vina-GPU method 

realized 14-fold acceleration against AutoDock Vina on a piece of NVIDIA RTX 3090 GPU in one virtual 

screening case. Further speedup of AutoDock Vina and its derivatives with GPUs is beneficial to 

systematically push their popularization in large-scale virtual screens due to their high benefit-cost ratio and 

easy operation for users. Thus, we proposed the Vina-GPU 2.0 method to further accelerate AutoDock Vina 

and the most common derivatives with new docking algorithms (QuickVina 2 and QuickVina-W) with GPUs. 

Caused by the discrepancy of their docking algorithms, our Vina-GPU 2.0 adopts different GPU acceleration 

strategies. In virtual screening for two hot protein kinase targets RIPK1 and RIPK3 from the DrugBank 

database, our Vina-GPU 2.0 reaches an average of 65.6-fold,1.4-fold and 3.6-fold docking acceleration against 

the original AutoDock Vina, QuickVina 2 and QuickVina-W while ensuring their comparable docking 

accuracy. In addition, we develop a friendly and installation-free graphical user interface (GUI) tool for their 

convenient usage. The codes and tools of Vina-GPU 2.0 are freely available at 

https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0, coupled with explicit instructions and examples. 
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1. Introduction 

Previous virtual screening schemes were typically executed on only a scale of 106  ∼  107 

compounds. Such scale of compound sizes would seriously affect the capability and improve the 

failure risk ratio in modern drug discovery. As willing, the whole chemical space of small drug-

likeness molecules was expected to reach more than 1060 compounds[1]. The compound scale of 

large virtual screens is of vital importance in modern drug discovery since the more compounds to 

be screened, the lower the risk of false positives and the higher the quality of the lead compounds[2]. 

Recent experiments have also shown that ultra-large-scale virtual screening could improve the 

success rate of true positives. In large virtual screens from huge compound databases, multiple 

docking tools are typically involved for meeting various real demands（such as primary screening 

and fine screening）or for improving the precision of virtual screens of hit candidates. Among these 

tools, the AutoDock Vina suite[3], which involved the original AutoDock Vina and its numerous 

derivatives, was the most popular and has become the gold standard for molecular docking in 

modern drug discovery. 
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Previous studies demonstrated that, in large-scale virtual screening scenes, primitive AutoDock 

Vina and its derivatives cannot meet the speed demand of the majority of users in modern drug 

discovery. Therefore, their acceleration has become a central problem in current virtual screens of 

drug hits from huge compound databases. Till now, there have been many attempts for the 

acceleration of the AutoDock Vina suite on large virtual screens [6–8]. For instance, VirtualFlow is 

an automated drug discovery platform that speeded up AutoDock Vina and its derivatives in virtual 

screens of an ultra-large compound database with 1.4 billion molecules by running over 160,000 

CPUs[6]. Recently, DP Technology proposed the Uni-Dock, a GPU-accelerated docking method on 

AutoDock Vina 1.2, and implemented the ultra-large virtual screens from the Enamine Diverse 

REAL drug-like set with 38.2 million compounds targeting the KRAS protein by leveraging a GPU 

cluster which contains 100 NVIDIA V100 GPUs, and it reached more than 1000-fold speed-up when 

compared with the single-CPU-core version[9].  

As all we know, GPU is an ideal means of acceleration for common users due to its low barrier, 

high cost-effectiveness, and ease of development. Our recently proposed Vina-GPU[10] method 

realized the acceleration of AutoDock Vina with GPUs, which solved the difficulty of implementing 

its parallel acceleration on GPUs caused by the seriality design of the AutoDock Vina algorithm. 

Our Vina-GPU method realized the 14-fold acceleration in one typical virtual screening case, and it 

achieved an average of 21-fold and a maximum of 50-fold docking acceleration in a benchmark 

dataset with 140 complexes against the original AutoDock Vina while ensuring their comparable 

docking accuracy. Due to its value and excellent performance, our Vina-GPU method had rapidly 

gained a lot of attention, whose GitHub codes have earned 36 stars and 17 forks, and whose citations 

had received thousands of full-paper downloads. The derivatives of AutoDock Vina can be classified 

into two categories. The first category has the optimization of their docking algorithm, such as 

QuickVina[11], QuickVina 2, QuickVina-W, Vina-Carb[12], AutoDock VinaXB[13] and 

Vinardo[14], etc. The second category has no change in its docking algorithm but add some new 

functions, such as AutoDock Vina 1.2.0[15] and Smina[16], etc. For instance, AutoDock Vina 1.2.0 

supports the modeling of some specific features such as macrocycles or the explicit water molecules 

and involves the AutoDock4.2 scoring function, and also provides the simultaneous docking of 

multiple ligands or a batch docking of large size of ligands [15]. Smina is an enhancement of 

AutoDock Vina that especially supports more custom functions for virtual screening [16]. Our 

previous Vina-GPU method realized the improvements in the docking algorithm of AutoDock Vina 

which is suitable to run on the GPU. Thus, the same acceleration scheme can also work on the GPU 

speedup of the second category of AutoDock Vina derivatives. For example, DP Technology 

accelerated the AutoDock Vina 1.2 with 100 GPUs by using our Vina-GPU acceleration algorithm 

[9]. Therefore, we just focus on the first category of AutoDock Vina derivatives and optimize their 

docking algorithms to make them suitable for the efficient parallel acceleration on GPUs in this 

paper. Among these methods, QuickVina 2 and QuickVina-W are very popular because of their fast 

docking speed and their code framework similar to that of AutoDock Vina, so they are chosen as 

the representatives for implementing the GPUs acceleration in this paper. QuickVina 2 was to 

promote the docking speed by relying on the novel first-order-consistency-check heuristics which 

can move some unnecessary local searches and keep the precision of the original AutoDock Vina 

[4]. QuickVina-W could improve the accuracy and speed of molecular docking by adding inter-

process communication, and QuickVina-W supports blind docking which can eliminate the demand 

of running the docking tool several times. 



 

 

To systematically push the popularization of the AutoDock Vina suite in modern drug discovery, 

we propose a novel method Vina-GPU 2.0 to realize the acceleration of representative AutoDock 

Vina derivatives (QuickVina 2, QuickVina-W) and the further speedup of AutoDock Vina with 

GPUs. Caused by the discrepancy of their docking algorithms, our Vina-GPU 2.0 adopts different 

GPU acceleration strategies. For Vina-GPU+, it implemented the further acceleration of the grid 

cache of Vina-GPU, which is valuable to facilitate the molecular docking of a large number of 

ligands with a single protein receptor in real virtual screening scenarios. This implementation 

ensures that Vina-GPU+ can utilize thousands of compute cores on the GPU to compute the grid 

cache. For QuickVina 2-GPU, it speeds up the Monte-Carlo based simulated annealing as well as 

the BFGS process in QuickVina 2 [4]with GPUs. QuickVina 2-GPU applies large-scale parallelism 

on the Monte-Carlo based iterated docking threads and then significantly reduces the search depth 

in each thread. This implementation ensures that QuickVina 2-GPU can leverage thousands of 

computational cores on GPU and achieve large-scale parallelization and acceleration. For 

QuickVina-W-GPU, we accelerate the simulated annealing and BFGS process of QuickVina-W 

[5]with GPUs. QuickVina-W-GPU realizes large-scale docking threads for parallel running the 

Monte-Carlo based iterated process and significantly decreases the search depth in each thread. Also, 

a heterogeneous OpenCL implementation was efficiently executed on QuickVina-W-GPU by 

converting the octree structure into a global buffer whose history points are stored. These 

implementations can ensure that QuickVina-W-GPU leverages thousands of computational cores on 

GPU and achieve a large-scale parallelization and acceleration, and realizes the thread 

communication on GPUs core. 

Apoptosis and necroptosis are two kinds of different mechanisms of cell death. Apoptosis is 

mediated by caspases, whereas in the absence of apoptotic conditions, the RIPK1 (Receptor-

interacting protein kinase 1)[17] and its downstream RIPK3 (Receptor-interacting protein kinase 

3)[18] and MLKL[19] will activate the programmed necrosis pathway. Numerous studies have 

confirmed that RIPK1 and RIPK3 are key regulators of apoptosis, necrosis, and inflammatory 

pathways[20]. RIPK1 and RIPK3 have emerged as effective targets for the treatment of various 

diseases such as neurodegenerative diseases, autoimmune diseases, and inflammation. Currently, 

studying small molecule inhibitors targeting RIPK1 and RIPK3 has become a hot topic. 

 In real virtual screening on RIPK1 from DrugBank, our Vina-GPU 2.0 reaches the 70.67-

fold,1.46-fold and 3.23-fold docking acceleration on one NVIDIA RTX 3090 GPU against the 

original AutoDock Vina, QuickVina 2 and QuickVina-W while ensuring their comparable docking 

accuracy. For RIPK3, Vina-GPU 2.0 improves the original AutoDock Vina, QuickVina 2 and 

QuickVina-W by 60.54-fold,1.41-fold and 3.97-fold docking acceleration on one NVIDIA RTX 

3090 GPU while maintaining their equivalent docking accuracy. For benchmark tests on 140 

complexes, Vina-GPU 2.0 achieves an average docking acceleration of 37.90-fold,1.74-fold and 

5.52-fold when compares to the original AutoDock Vina, QuickVina 2 and QuickVina-W based on 

comparable docking accuracy. In addition, we develop a friendly and installation-free graphical user 

interface (GUI) tool for their convenient usage. The codes and tools of Vina-GPU 2.0 are freely 

available at https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0, coupled with explicit 

instructions and examples. 

2. Methodology 

We systematically analyzed the algorithms of AutoDock Vina, QuickVina 2 and QuickVina-W, 

and rewrote their code to implement the heterogeneous OpenCL architecture with GPU cards. Vina-
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GPU 2.0 employs different GPU acceleration strategies as a result of the differences in their docking 

algorithms. Vina-GPU+ is an upgraded version of Vina-GPU that achieves further GPU acceleration 

for AutoDock Vina, QuickVina 2-GPU is the method that implements GPU acceleration for 

QuickVina 2, and QuickVina-W-GPU is the algorithm that provides GPU acceleration for 

QuickVina-W. 

2.1 Vina-GPU+ 

The heterogeneous OpenCL implementation of Vina-GPU+ is shown in Figure 1, which 

consists of three blocks. The conformations preparation is the primary responsibility of block I, 

which is implemented on the CPU. Block II is executed on kernel 1 of the GPU core and prepares 

the grid cache for calculating the conformation energy. The interaction forces between probe atoms 

and atoms in the docking box are obtained by running parallel calculations of GPU’s kernel 1. Block 

III is in charge of molecular docking of a receptor with all ligands on GPU’s kernel 2.  

 

Figure 1. Vina-GPU+ implementation by using the OpenCL architecture. It consists of three blocks. Block I is 

mainly in charge of data preparation and OpenCL setup. The grid cache preparation for computing the energy of a 

conformation is implemented in block II. Block III focuses on the molecular docking of a receptor and all ligands. 

2.1.1 Data Preparation 

Three operations that make up Data Preparation are the read files, the OpenCL setup and the 

data preparation (Block I in Figure 1). These operations are implemented on the CPU core. In detail, 

the ‘Read files’ operation reads ligand and protein files in .pdbqt format, the center of the docking 

box (indicated by 𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑧 ) and the volume of the docking box (denoted 



 

 

by 𝑠𝑖𝑧𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑦 , 𝑠𝑖𝑧𝑒𝑧). Configuring the OpenCL environment is done through the ‘OpenCL setup’ 

operation (platform, device, context, queue, program and kernels). Random maps are created for 

producing probability random numbers in the ‘Data preparation’ operation. Afterward, all data is 

rearranged to load in the GPU memory following the way of access (read-only or read-write). The 

random maps are allotted in the constant memory. 

2.1.2 Grid Cache Preparation 

When facing the molecular docking of a receptor with many ligands in virtual screens, our 

previous Vina-GPU needs to recalculate the grid cache for each ligand and computes as follows: 

first, the docking box is divided into multiple grid boxes whose volume is represented by 

𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒𝑥 , 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒𝑦, 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒𝑧  and whose quantized coordinates are obtained by calculating. 

Then, Vina-GPU traverses these grid points to ascertain atomic types and calculates the interaction 

forces between each grid point and the receptor, and finally stores the results in the grid cache. 

However, we discovered that recalculating the grid cache for different ligands is time-consuming 

behavior. Vina-GPU+ will accelerate docking by calculating the intermolecular energies of the 17 

different atom types at the grid points in advance. Since it is an independent process to calculate the 

interaction forces between each grid point and the receptor, Vina-GPU+ computes the grid cache in 

parallel by using the kernel1 of the GPU platform. The number of threads in kernel1 is determined 

by the size of grid points. For instance, black points are the grid points in figure 1, each grid point 

is assigned to a work item of kernel 1, and each work item calculates the intermolecular energy of 

the grid point which currently has 17 types. The grid caches are stored in the global memory and 

are shared by all GPU threads. Vina-GPU+ speeds up molecular docking and reduces the 

communication times of CPU and GPU by performing batch docking and only needs to calculate 

the grid cache once. 

2.1.3 molecular docking 

Block III is implemented on both CPU and GPU which focuses on the molecular docking of a 

receptor and ligands (highlighted in purple). The CPU is the main responsibility for the preparation 

and post-refinement of conformations (highlighted in pink). The allocated constant memory 

(highlighted in yellow) is used for the initialization and computation throughout the reduced-step 

Monte-Carlo iterated local search processes in the GPU kernel1 (highlighted in orange), and global 

memory stores the final best conformations (highlighted in green). The ligand preparation which is 

above the generation of random initial conformations is performed on the CPU. These initial 

conformations were then rearranged and stored into the constant memory. The kernel 2 of GPU is 

capable of running thousands of reduced-steps iterated local search processes simultaneously.  

Each process is represented by a docking thread. For each thread, an OpenCL work item is 

offered a randomly initialized conformation 𝑪, which is described by its position, orientation and 

torsion (POT): 

 𝑪 =  {𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐, 𝑑, 𝜓1, 𝜓2, . . . , 𝜓𝑁𝑟𝑜𝑡 
} (1) 

where 𝑥, 𝑦, 𝑧  indicate the conformation position in a pre-determined searching space; 

𝑎, 𝑏, 𝑐, 𝑑  represent the orientation as a rigid body in the form of a quaternion; 𝜓1, 𝜓2, . . . , 𝜓𝑁𝑟𝑜𝑡 

stand for the torsions of 𝑁𝑟𝑜𝑡 rotatable bonds. Moreover, a new conformation 𝑪′ is generated by 

randomly mutating one POT element of conformation 𝑪 with the uniform distribution: 

 𝑪′ = 𝑅(𝑪)  (2) 

where 𝑅(∙)  is a random jitter function to perturb the conformation. The scoring function 

which quantifies the potential energy of the binding pose continually assesses the conformation. 



 

 

Usually, the potential energy 𝑒 is computed by adding intermolecular energy and intramolecular 

energy: 

 𝑒 = 𝑒𝑖𝑛𝑡𝑟𝑎 + 𝑒𝑖𝑛𝑡𝑒𝑟 (3) 

The interaction energy of the paired atoms inside the ligand is defined by the 𝑒𝑖𝑛𝑡𝑟𝑎, while the 

interaction energy between the ligand and the receptor is denoted by the 𝑒𝑖𝑛𝑡𝑒𝑟 . Trilinear 

interpolation is used to calculate the 𝑒𝑖𝑛𝑡𝑒𝑟 by looking up the grid cache. 

Since both 𝑒𝑖𝑛𝑡𝑒𝑟  and 𝑒𝑖𝑛𝑡𝑟𝑎  are connected to the binding pose, the scoring function  𝑆𝐹 

could be expressed in terms of POT variables: 

 𝑺𝑭 = 𝑓 (𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐, 𝑑, 𝜓1, 𝜓2, . . . , 𝜓𝑁𝑟𝑜𝑡 
)  (4) 

Following the energy evaluation, the ligand conformation is updated by minimizing the scoring 

function SF utilizing a Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization. First, initialize the 

hessian matrix 𝑩0 ∈ ℝ(7+𝑁𝑟𝑜𝑡)×(7+𝑁𝑟𝑜𝑡) . 𝑩0  is initiated with identity matrix 𝑬 , Initial random 

conformation 𝒙𝑖 = 𝑪𝑖
′, the (𝑘 +  1)𝑡ℎ iteration of the BFGS is calculated as follows： 

Calculating direction 𝒅𝑘: 

 𝒅𝑘 = −𝑩𝑘
−1𝛻𝑺𝑭(𝒙𝑘) (5) 

Where 𝑩𝑘
−1 is the inverse matrix of the Hessian matrix generated by the 𝑘𝑡ℎ iteration process. 

Calculating the step size in the direction 𝒅𝑘 by using the Armijo criterion： 

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝐹(𝒙𝑘 + α𝒅𝑘) (6) 

Updating the conformation 𝒙𝑘+1: 

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘  

Updating the hessian matrix 𝑩𝑘+1: 

 𝑩𝑘+1 = 𝑩𝑘 +
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

−
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘
𝑇

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

 (7) 

Where 𝒚𝑘 = 𝛻𝑺𝑭(𝒙𝑘+1) − 𝛻𝑺𝑭(𝒙𝑘) , 𝒔𝑘 = 𝛼𝑘𝒅𝑘 . The BFGS iteration process ends if the 

following conditions are met: 

 ‖𝛻𝑺𝑭(𝒙𝑘+1)‖ ≤ 𝜀 𝑜𝑟 𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ (8) 

Where 0 < 𝜀 ≤ 1  , the step size along the decreasing direction 𝒅𝑘  of the 𝑆𝐹  values, is 

denoted by α(𝛼𝑘). The conformation of the BFGS output is 𝒙𝑘+1.  

The energy 𝑒0 before the mutation and the energy 𝑒𝑜𝑝𝑡 after the optimization are compared 

using a metropolis acceptance criterion[21] to determine whether to accept or reject the optimized 

conformation. The accept probability P is shown as: 

 𝑃 = {
1                           𝑒0 > 𝑒𝑜𝑝𝑡   

exp (𝑒0−𝑒𝑜𝑝𝑡)

1.2
      𝑒0 ≤ 𝑒𝑜𝑝𝑡

 (9) 

It suggests that the energy of the acceptable conformation is more probably to be lower. After 

being approved, BFGS will further evaluate and optimize the conformation. As convergence 

approaches, the following iteration keeps updating the earlier optimized conformations. Finally, the 

CPU receives all of the best conformations that work items have discovered. All the best 

conformations are clustered and sorted into the container according to docking scores. The top 𝑘 

conformations will be concretely refined, rescore, sort, and if two of these conformations have 

RMSDs less than 1Å, only the conformation with the lower score is retained before the final ligand 

file is generated. 

The pseudocode of our Vina-GPU+ is proposed by Algorithm 1. In Algorithm 1, Grid_cache(.) 

means calculating the grid cache. random_conformation(.) represents the generation of random 



 

 

initial conformations. Mutate(.) indicates a random POT mutation of a ligand conformation; BFGS(.) 

denotes the BFGS optimization method, as defined in Equations (5)–(8); Scoring(.) signifies the 

potential energy of a binding pose given in Equations (3) and (4); Metropolis(.) is the metropolis 

acceptance criterion mentioned in Equation (9); and 

Clustering&Sorting&refinment&RMSD_filtering(.) is the aggregation, filtering (based on the 

RMSD) and reordering (based on the docking score) of all ligand conformations within all threads. 

Algorithm 1 Vina-GPU+ 

Input:  ligands:{𝑳0, 𝑳1, ⋯ , 𝑳𝑀}, protein:𝑷 

Output:  top 𝑘 ligand conformations： 

 {𝑪00
∗ , 𝑪01

∗ , ⋯ , 𝑪0𝑘
∗ , 𝑪10

∗ , 𝑪11
∗ , ⋯ , 𝑪1𝑘

∗ , ⋯ , 𝑪𝑀0
∗ , 𝑪𝑀1

∗ , ⋯ , 𝑪𝑀𝑘
∗ } 

1: 𝑮𝑡 = 𝐺𝑟𝑖𝑑_𝑐𝑎𝑐ℎ𝑒(𝑷)(𝑡 = 0,1, ⋯ 16) 

2: for 𝑳𝑖(𝑖 = 0,1, ⋯ 𝑀) do 

3:  for 𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛 do 

4:    𝑪𝑡ℎ𝑟𝑒𝑎𝑑 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑳𝑖) 

5:  end for 

6:  for all 𝑪𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛) 𝐜𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝒅𝒐 

7:    for all 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 0,1,2, ⋯ , 𝑠 do 

8:      𝑀𝑢𝑡𝑎𝑡𝑒(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

9:      𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

10:      if 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ == 0 ||𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠(𝑪𝑡ℎ𝑟𝑒𝑎𝑑 , 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then 

11:            𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
= 𝑪𝑡ℎ𝑟𝑒𝑎𝑑 

12:            𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) 

13:      end if 

14:    end for 

15:  end for 

16:  𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔&𝑆𝑜𝑟𝑡𝑖𝑛𝑔&𝑟𝑒𝑓𝑖𝑛𝑚𝑒𝑛𝑡&𝑅𝑀𝑆𝐷_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑪0𝑏𝑒𝑠𝑡
, 𝑪1𝑏𝑒𝑠𝑡

, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡
) 

17:  return {𝑪𝑖0
∗ , 𝑪𝑖1

∗ , ⋯ 𝑪𝑖𝑘
∗ } ∈ {𝑪0𝑏𝑒𝑠𝑡

, 𝑪1𝑏𝑒𝑠𝑡
, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡

} 

18: end for    

19: return {𝑪00
∗ , 𝑪01

∗ , ⋯ , 𝑪0𝑘
∗ , 𝑪10

∗ , 𝑪11
∗ , ⋯ , 𝑪1𝑘

∗ , ⋯ , 𝑪𝑀0
∗ , 𝑪𝑀1

∗ , ⋯ , 𝑪𝑀𝑘
∗ } 

2.2 QuickVina 2-GPU 

Figure 2 shows the heterogeneous OpenCL architecture of QuickVina 2-GPU, which is made 

of a host section (on CPU) and a device section (on GPU). The preparation and post-refinement of 

the conformations are mostly the responsibility of the host section. The device section concentrates 

on reducing unnecessary local search by implementing the first-order-consistency-check heuristics 

and decreasing the number of iterations by scaling up parallelism, to speeding up the most time-

consuming Monte-Carlo iterated local search method. 

2.2.1 Host section 

There are two portions in the host section. The first portion contains four operations that are 

performed for input of device section and which include the read files, the OpenCL setup, the data 

preparation and the device memory allocation. In particular, the read files operation is to read the 

ligand and protein files in .pdbqt format, the box center(indicated by 𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑧) 

and the recommended volume of the docking box (indicated by 𝑠𝑖𝑧𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑦 , 𝑠𝑖𝑧𝑒𝑧).The OpenCL 

setup operation is to setup the OpenCL environment (platform, device, context, queue, program and 

kernels). Furthermore, the host part prepares all the required data, the ‘data preparation’ operation, 



 

 

including grid cache for calculating the energy of a conformation, random maps for generating 

probability random numbers and random initial conformations for the Monte-Carlo based method 

to start from. all data is rearranged to load in the GPU memory following the way of access (read-

only or read-write). To improve read-write speed on the GPU through efficient memory 

management, store read-only data, such as grid caches, random maps, and random initial 

conformations, in the constant device memory; and store data that needs to be read and written, like 

the best conformation to be returned by the device part, in global device memory. The second portion 

includes multiple operations after the device section. Finally, all the best conformations found by 

work items are returned to the CPU. All the best conformations are clustered and sorted in the 

container by their docking scores. The best 20 conformations will be concretely refined, rescore, 

sort, and if two of these conformations have RMSDs less than 1Å, only the conformation with the 

lower score is retained before the final ligand file is generated. 

 

Figure 2. The OpenCL architecture for implementing QuickVina 2-GPU, which consists of a host (CPU) and a 

device (GPU) section of the execution. The device section implements thousands of docking threads, each of which 

is assigned with an OpenCL work item to perform a Monte-Carlo based local search method that contains heuristic 

formulas to reduce unnecessary local searches and the number of search iterations is greatly reduced. 

2.2.2 Device part 

On the device part, the allocated constant memory (highlighted in yellow) (Figure 2) is 

assigned for the initialization and the calculation during the reduced-step Monte-Carlo iterated local 

search processes (highlighted in orange) and the final best conformations are stored in global 

memory (highlighted in green). 

QuickVina 2-GPU enables thousands of reduced-steps iterated local search processes running 

concurrently within the GPU computational cores. We denote each reduced-step iterated local 

search process as a docking thread. Within 𝑡ℎ𝑟𝑒𝑎𝑑 = 𝑖, an OpenCL work item is assigned to a 

randomly initialized conformation 𝑪𝑖 , which can be represented by its position, orientation and 

torsion (POT): 



 

 

 𝑪𝑖  =  {𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖 , 𝑎𝑖 , 𝑏𝑖,  𝑐𝑖 ,  𝑑𝑖 , 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡
𝑖

 
} (10) 

where 𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖correspond to the conformation position in a pre-determined searching space; 

𝑎𝑖 , 𝑏𝑖 ,  𝑐𝑖 ,  𝑑𝑖  denote its orientation as a rigid body in the quaternion form; 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡

𝑖  

represent the torsions of 𝑁𝑟𝑜𝑡 rotatable bonds. Then, 𝐶𝑖
′ can be randomly mutated on one POT 

element with the uniform distribution as a new conformation 𝑪𝑖
′: 

 𝑪𝑖
′ = 𝑅(𝑪𝑖) (11) 

where 𝑅(∙)  is a random jitter function to perturb the conformation. The scoring function 

which quantifies the potential energy of the binding pose continually assesses the conformation. 

Usually, the potential energy 𝑒 is computed by adding intermolecular energy and intramolecular 

energy: 

 𝑒 = 𝑒𝑖𝑛𝑡𝑒𝑟 + 𝑒𝑖𝑛𝑡𝑟𝑎 (12) 

The interaction energy of the paired atoms inside the ligand is defined by the 𝑒𝑖𝑛𝑡𝑟𝑎, while the 

interaction energy between the ligand and the receptor is denoted by the 𝑒𝑖𝑛𝑡𝑒𝑟 . Trilinear 

interpolation is used to calculate the 𝑒𝑖𝑛𝑡𝑒𝑟 by looking up the grid cache. The scoring function SF 

can be calculated by the energy calculation function 𝑓(∙): 

 𝑺𝑭
𝑪𝑖

′ = 𝑓(𝑪𝑖
′)  (13) 

QuickVina 2-GPU restricts the application of local search to those docked conformation 

candidates deemed to be significant by the first-order-necessary-conditon heuristics and  

𝑖𝑡ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 uses the conformation of other threads 𝑪𝑗(𝑗 = 1,2, ⋯ , 𝑁, 𝑖 ≠ 𝑗). The conformation 𝑪𝑖
′ 

is deemed as significant for local search if there exists a conformation 𝑪𝑗 among its 2𝑁 nearest 

neighbors such that with respect to each design variable, 

 𝑠𝑖𝑔𝑛 {
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑪𝑖

′} ∙ 𝑠𝑖𝑔𝑛 {
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑪𝑗

} ≤ 0 (14) 

Where 
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑚  is the partial derivative of the scoring function 𝑺𝑭  with respect to the 

design variable 𝑪𝑖  at point 𝑚 . ( )sign   is sign function. If 𝑪𝑖
′  fails (14) with respect to the 

design variable 𝑪𝑖, 𝑪𝑖
′ is still significant for local search if it passes the following test. 

 𝑠𝑖𝑔𝑛 {
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑪𝑖

′} ∙ 𝑠𝑖𝑔𝑛 {[𝑺𝑭
𝑪𝑖

′ − 𝑺𝑭𝑪𝑗
] [(𝑪𝑖

′)𝑖−(𝑪𝑗)𝑖]} ≤ 0 (15) 

If 𝑪𝑖
′ ’s derivative with respect to 𝑪𝑖  is positive and 𝑺𝑭𝑪𝑗

  is higher (or lower) than 𝑺𝑭𝑪𝑖
′ 

while (𝑪𝑗)𝑖 is to the left(or right) of (𝑪𝑖
′)𝑖, then there must be a stationary point between (𝑪𝑗)𝑖 

and (𝑪𝑖
′)𝑖. Reversed relation between the score 𝑺𝑭𝑪𝑖

′ and 𝑺𝑭𝑪𝑗
 applies when 𝑪𝑖

′’s derivative with 

respect to 𝑪𝑖 is negative. A Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization is applied to 

update the ligand conformation by minimizing of the scoring function SF.  

First initialize the hessian matrix𝑩0 ∈ ℝ(7+𝑁𝑟𝑜𝑡)×(7+𝑁𝑟𝑜𝑡). 𝑩0 is initiated with identity matrix 

𝑬, Initial random conformation 𝒙𝑖 = 𝑪𝑖
′ , the (𝑘 +  1)𝑡ℎ iteration of the BFGS is calculated as 

follows： 

Calculating direction 𝒅𝑘: 

 𝒅𝑘 = −𝑩𝑘
−1𝛻𝑺𝑭(𝒙𝑘) (16) 

Where 𝑩𝑘
−1 is the inverse matrix of the Hessian matrix generated by the  𝑘𝑡ℎ iteration 



 

 

process. Calculating the step size in the direction 𝒅𝑘 by using the Armijo criterion： 

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝐹(𝒙𝑘 + α𝒅𝑘) (17) 

Updating the conformation 𝒙𝑘+1: 

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘  

Updating the conformation 𝑩𝑘+1: 

 𝑩𝑘+1 = 𝑩𝑘 +
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

−
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘
𝑇

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

 (18) 

Where 𝒚𝑘 = 𝛻𝑺𝑭(𝒙𝑘+1) − 𝛻𝑺𝑭(𝒙𝑘) , 𝒔𝑘 = 𝛼𝑘𝒅𝑘 . The BFGS iteration process ends if the 

following conditions are met: 

 ‖𝛻𝑺𝑭(𝒙𝑘+1)‖ ≤ 𝜀 𝑜𝑟 𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ (19) 

Where 0 < 𝜀 ≤ 1 , α(𝛼𝑘) means the step size in the direction 𝒅𝑘, along the decrease of the 

𝑆𝐹 value, the conformation of the BFGS output is 𝒙𝑘+1. Next, a metropolis acceptance criterion is 

adopted to decide whether to accept the optimized conformation or not, by comparing the energy 

𝑒0 before the mutation and the energy 𝑒𝑜𝑝𝑡 after the optimization. Here, the accept probability P 

is represented by: 

 𝑃 = {
1                           𝑒0 > 𝑒𝑜𝑝𝑡   

exp (𝑒0−𝑒𝑜𝑝𝑡)

1.2
      𝑒0 ≤ 𝑒𝑜𝑝𝑡

 (20) 

It indicates that the accepted conformation is more likely to have a lower energy. Once accepted, 

the conformation will be further evaluated and optimized by BFGS. Then, the next iteration 

continues to update the previous optimized conformations until convergence. Finally, all the best 

conformations found by work items are returned to the host part.  

Algorithm 2 proposed the pseudocode of our QuickVina 2-GPU. In Algorithm 2, Mutute(.) 

means a random mutation of the POT in a ligand conformation; 𝐼_𝐶ℎ𝑒𝑐𝑘(. ) determines whether 

the current conformation requires further local search which is described in Equations (14) and 

(15);BFGS(.) represents the BFGS optimization method which is described in Equations (16)–(19); 

Scoring(.) is the potential energy of a binding pose described in Equations (10) and (13); 

Metropolis(.) is the metropolis acceptance criterion described in Equation (20); and 

Clustering&Sorting&refinment&RMSD_filtering (.) is the aggregation, filtering (based on the 

RMSD) and reordering (based on the docking score) of all ligand conformations among all threads. 

Algorithm 2 QuickVina 2-GPU 

Input: random ligand conformations: {𝑪0, 𝑪1, ⋯ , 𝑪𝑀} 

Output: top 𝑘 ligand conformations: {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ } 

1: for all 𝑪𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛) 𝐜𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝒅𝒐 

2:   for all 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 0,1,2, ⋯ , 𝑠 do 

3:      𝑀𝑢𝑡𝑎𝑡𝑒(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

4:      if 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) then 

5:        𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

6:        if 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠(𝑪𝑡ℎ𝑟𝑒𝑎𝑑 , 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then 

7:           𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
= 𝑪𝑡ℎ𝑟𝑒𝑎𝑑 

8:           if 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then 

9:             𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) 

10:          end if 

11:        end if 



 

 

12:      end if 

13:   end for 

14: end for 

15: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔&𝑆𝑜𝑟𝑡𝑖𝑛𝑔&𝑟𝑒𝑓𝑖𝑛𝑚𝑒𝑛𝑡&𝑅𝑀𝑆𝐷_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑪0𝑏𝑒𝑠𝑡
, 𝑪1𝑏𝑒𝑠𝑡

, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡
) 

16: return {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ } ∈ {𝑪0𝑏𝑒𝑠𝑡

, 𝑪1𝑏𝑒𝑠𝑡
, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡

} 

2.3 QuickVina-W-GPU 

The heterogeneous OpenCL implementation of QuickVina-W is depicted in Figure 3, which 

consists of a host part (on CPU) and a device part (on GPU). The host part is mainly in charge of 

the preparation and post-refinement of the conformations. The device part focuses on the 

acceleration of the most time-consuming Monte-Carlo iterated local search method by enlarging the 

scale of parallelism as well as reducing the number of iterations. 

2.3.1 Host part 

The host part consists of two sections (see Figure 3). The first section includes four operations, 

which are the read files, the OpenCL setup, the data preparation and the device memory allocation, 

and all operations are implemented for the input to the device part. Specifically, the read files 

operation is to read the ligand and protein files in .pdbqt format, the box center(indicated by 

𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑧 ) and the recommended volume of the docking box (indicated 

by 𝑠𝑖𝑧𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑦 , 𝑠𝑖𝑧𝑒𝑧). The OpenCL setup operation is to setup the OpenCL environment (platform, 

device, context, queue, program and kernels). Furthermore, the host part prepares all the required 

data, including grid cache (for calculating the energy of a conformation), random maps (for 

generating probability random numbers) and random initial conformations (for Monte-Carlo based 

method to start from). The data is then re-organized to load in the device memory according to how 

it is accessed (read-only or read-write). The read-only grid cache, random maps and random 

conformations are allocated in the constant device memory while the read-write of best 

conformations returned by the device part is allocated in the global device memory. Such kind of 

memory management could efficiently boost the speed of reading and writing on GPU. The second 

section includes multiple operations after the device part. Finally, all the best conformations found 

by work items are returned to the CPU. All the best conformations are clustered and sorted in the 

container by their docking scores. The best 20 conformations will be concretely refined, rescore, 

sort, and if two of these conformations have RMSDs less than 1Å, only the conformation with the 

lower score is retained before the final ligand file is generated. 



 

 

 

Figure 3. The OpenCL architecture for implementing QuickVina-W-GPU, which consists of a host (CPU) and a 

device (GPU) part of execution. The device part implements thousands of docking threads, each of which is assigned 

with an OpenCL work item to perform a Monte-Carlo based local search method that contains I Check and G Check 

to reduce unnecessary local searches and the number of search iterations is greatly reduced. 

2.3.2 Device part 

On the device part, the allocated constant memory (highlighted in yellow)(Figure 3) is assigned 

for the initialization and the calculation during the reduced-step Monte-Carlo iterated local search 

processes (highlighted in orange), the final best conformations are stored in global memory 

(highlighted in green), an OpenCL work item add a global buffer and individual buffer for every 

thread. The best conformation output in all threads is stored in the global buffer according to their 

three-dimensional position, the global buffer is implemented as an octree (octal tree) of history 

points. The octree root is a cell that spans over the whole search space; and the history points are 

distributed in the octree according to their spatial distribution in the three dimensions. Having 

history from other threads allows us to make use of other threads experience and make decisions in 

already explored energy landscape areas, while having history from an individual same thread 

allows us to make decisions in virgin areas. The application of the octree in a multithreaded 

collaborative Monte Carlo algorithm is to find its surrounding neighborhood conformations faster. 

Octrees are implemented recursively whereas the OpenCL standard cannot support any recursion in 

kernels because the allocation of stack space for thousands of threads is too expensive. Besides, the 

memory space for an octree is dynamically allocated while the memory size must first be fixed in 

the GPU, so the structure of an octree is not suitable for the OpenCL implementation. Therefore, we 

construct the structure of global memory in the GPU, where global memory is accessible by every 

thread.  

The GPU is first allocated memory based on the number of threads and the size of the search 

step. Then we determine a binary code for each conformation according to three-dimensional 

position of the molecular conformation, and finally store it in the corresponding global memory 

according to the binary code. The molecular conformation in the Global Buffer corresponding to 



 

 

the binary code is then the nearest neighbors.  

First determine the number of bits encoded (3𝑛 − 3) and the memory size based on the number 

of threads(𝑡ℎ𝑟𝑒𝑎𝑑) and the number of search steps(𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ), the bits encoded need to satisfy 

the following conditions: 

 23𝑛−1 < (𝑡ℎ𝑟𝑒𝑎𝑑 ∗  𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑡𝑒𝑝𝑠)  <  23𝑛 (21) 

Then coded by comparing the position of the conformation (𝑥, 𝑦, 𝑧) with the central of the docking 

box (𝑐𝑒𝑛𝑡𝑒𝑟_𝑥, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑦, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑧 ) based on Figure 4(d), if 𝑥 > 𝑐𝑒𝑛𝑡𝑒𝑟_𝑥 , it is coded as “1” 

otherwise it is encoded as “0”, after compiling the 3bit, you can determine which small box the 

conformation is in. Continue dividing the current box and calculate the centroid of box (𝑐𝑒𝑛𝑡𝑒𝑟_𝑥 ±

𝑠𝑖𝑧𝑒_𝑥

4𝑎 , 𝑐𝑒𝑛𝑡𝑒𝑟_𝑦 ±
𝑠𝑖𝑧𝑒_𝑦

4𝑎 , 𝑐𝑒𝑛𝑡𝑒𝑟_𝑧 ±
𝑠𝑖𝑧𝑒_𝑧

4𝑎 ), where 𝑎 ∈ [1, 𝑛 − 1], 𝑎 means that the box needs to be 

divided (𝑛 − 2) times more. Finally, the 3-bit codes of this (n-1) group are combined into a (3n-3)-

bit code and the conformation is stored in the corresponding encoding location of the global buffer. 

For example, if thread and search_depth of QuickVina-W-GPU were set to 100 and 5, respectively. 

The maximum number of points to be stored in the Global Buffer is 5 ∗ 100, resulting in 𝑛 = 3. 

Each conformation is given a Binary ID based on the three-dimensional location. In Figure 4(a), the 

large purple square indicates a docking box, dividing the box into eight red boxes like Figure 4(d), 

coded it as “111” based on the results of comparing the position of the conformation (𝑥, 𝑦, 𝑧) with 

the central of the docking box (𝑐𝑒𝑛𝑡𝑒𝑟_𝑥, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑦, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑧), due to (𝑛 − 2) = 1 , the red box 

needs to divided one time more, coded it as “100” based on the position of black point. The result 

of combining 3bit codes of two group is “111100”. The conformation will be placed in the memory 

space of “data0” at index “111100”. 



 

 

 

Figure 4. Transformation of the original octree structure into the global buffer format. For example, the black 

dot in the green box in Figure(b) will be encoded as "11100" as shown in Figure (d), and then placed in the 

corresponding position in the global buffer according to the encoding result. 

QuickVina-W-GPU enables thousands of reduced-steps iterated local search processes running 

concurrently within the GPU computational cores. We denote each reduced-step iterated local 

search process as a docking thread. Within thread = i , an OpenCL work item is assigned to a 

randomly initialized co initialized conformation 𝑪𝑖  , which can be represented by its position, 

orientation and torsion (POT): 

 𝑪𝑖  =  {𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖 , 𝑎𝑖 , 𝑏𝑖,  𝑐𝑖 ,  𝑑𝑖 , 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡
𝑖

 
} (22) 

where 𝑥𝑖 ,  𝑦𝑖 ,  𝑧𝑖correspond to the position of the conformation in a pre-determined searching 

space; 𝑎𝑖 , 𝑏𝑖 ,  𝑐𝑖 ,  𝑑𝑖 denote its orientation as a rigid body in the quaternion form; 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡

𝑖  

represent torsions of 𝑁𝑟𝑜𝑡  rotatable bonds. Then, 𝑪𝑖
′  is the randomly mutated that each 

conformation 𝑪𝑖 is to be in one of its POT with the uniform distribution.  

 𝑪𝑖
′ = 𝑅(𝑪𝑖) (23) 

where 𝑅(∙) is a random jitter function to perturb the conformation. G-check and I-check check 

whether 𝑪𝑖
′ is significant or not for the thread. G-check is first performed to calculate the spatial 

distance between the perturbed molecular conformation and the conformation in the global memory, 

which stores the final conformation after all threads have been optimized twice by the BFGS, is 

calculated. The conformations with spatial distances less than the cut-off radius 𝑅 are then filtered 

out, and then the Euclidean distance in 𝑁 dimensions between the conformation to be detected and 



 

 

the conformation within the cut-off radius 𝑅  is calculated, and the first 𝑁  nearest-neighbour 

conformations are found in order of Euclidean distance from closest to farthest, and if one of the N 

neighbour conformations satisfies the heuristic condition, otherwise I Check is performed. Search 

the molecular conformations in the thread's local cache, which stores all the conformations obtained 

during the thread's BFGS optimization. The N-dimensional Euclidean distance between the 

perturbed molecular conformation and the conformation in the local cache is calculated, and the top 

3N nearest-neighbour conformations are found by sorting the N-dimensional Euclidean distances 

from closest to farthest. If one of the 3N neighbour point conformations satisfies the heuristic 

condition described in Equation (14) and (15), proceed to BFGS. If not, exit that search and start 

again at mutating. 

The conformation will be continuously evaluated with a scoring function that quantifies the 

potential energy of the binding pose. Generally, the potential energy e is calculated with the sum of 

intermolecular energy and intramolecular energy: 

 𝑒 = 𝑒𝑖𝑛𝑡𝑒𝑟 + 𝑒𝑖𝑛𝑡𝑟𝑎  (24) 

where 𝑒𝑖𝑛𝑡𝑒𝑟 represents the interaction energy between the ligand and the receptor, and it is 

calculated using trilinear interpolation that approximates the energy of each atom pair by looking 

up the grid cache; and 𝑒𝑖𝑛𝑡𝑟𝑎  indicates the interaction energy of the pairwise atoms within the 

ligand. Considering that both 𝑒𝑖𝑛𝑡𝑒𝑟  and 𝑒𝑖𝑛𝑡𝑟𝑎  are related to the binding pose, the scoring 

function SF can be denoted as a function of POT variables: 

 𝑺𝑭𝑪𝑖
′ = 𝑓(𝑪𝑖

′)  (25) 

A Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization is applied to update the ligand 

conformation by minimizing of the scoring function SF. First initialize the hessian matrix 𝑩0 ∈

ℝ(7+𝑁𝑟𝑜𝑡)×(7+𝑁𝑟𝑜𝑡). 𝑩0 is initiated with identity matrix 𝑬, Initial random conformation 𝒙𝑖 = 𝑪𝑖
′ , 

the (𝑘 +  1)𝑡ℎ iteration of the BFGS is calculated as follows： 

Calculating direction 𝒅𝑘: 

 𝒅𝑘 = −𝑩𝑘
−1𝛻𝑺𝑭(𝒙𝑘) (26) 

Where 𝑩𝑘
−1  is the inverse matrix of the Hessian matrix generated by the  𝑘𝑡ℎ  iteration 

process. Calculating the step size in the direction 𝒅𝑘 by using the Armijo criterion： 

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝐹(𝒙𝑘 + α𝒅𝑘) (27) 

Updating the conformation 𝒙𝑘+1: 

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘  

Updating the conformation 𝑩𝑘+1: 

 𝑩𝑘+1 = 𝑩𝑘 +
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

−
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘
𝑇

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

 (28) 

Where 𝒚𝑘 = 𝛻𝑺𝑭(𝒙𝑘+1) − 𝛻𝑺𝑭(𝒙𝑘) , 𝒔𝑘 = 𝛼𝑘𝒅𝑘 . The BFGS iteration process ends if the 

following conditions are met: 

 ‖𝛻𝑺𝑭(𝒙𝑘+1)‖ ≤ 𝜀 𝑜𝑟 𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ (29) 

Where 0 < 𝜀 ≤ 1 , α(𝛼𝑘) means the step size in the direction 𝒅𝑘, along the decrease of the 

𝑆𝐹 value, the conformation of the BFGS output is 𝒙𝑘+1. Next, a metropolis acceptance criterion is 

adopted to decide whether to accept the optimized conformation or not, by comparing the energy 

𝑒0 before the mutation and the energy 𝑒𝑜𝑝𝑡 after the optimization. Here, the accept probability P 

is represented by: 

 𝑃 = {
1                           𝑒0 > 𝑒𝑜𝑝𝑡   

exp (𝑒0−𝑒𝑜𝑝𝑡)

1.2
      𝑒0 ≤ 𝑒𝑜𝑝𝑡

 (30) 



 

 

It indicates that the accepted conformation is more likely to have a lower energy. Once accepted, 

the conformation will be further evaluated and optimized by BFGS. Then, the next iteration 

continues to update the previous optimized conformations until convergence. Finally, all the best 

conformations found by work items are returned to the host part.  

Algorithm 3 proposed the pseudocode of our QuickVina-W-GPU. In Algorithm 2, Mutute(.) 

means a random mutation of the POT in a ligand conformation; 𝐼_𝐶ℎ𝑒𝑐𝑘(. )  and 𝐺_𝐶ℎ𝑒𝑐𝑘(. ) 

determines whether the current conformation requires further local search which is described in 

Equations (14) and (15);BFGS(.) represents the BFGS optimization method which is described in 

Equations (26)–(29); Scoring(.) is the potential energy of a binding pose described in Equations (24) 

and (25); Metropolis(.) is the metropolis acceptance criterion described in Equation (30); and 

Clustering&Sorting&refinment&RMSD_filtering (.) is the aggregation, filtering (based on the 

RMSD) and reordering (based on the docking score) of all ligand conformations among all threads. 

Algorithm 3 QuickVina-W-GPU 

Input: random ligand conformations: {𝑪0, 𝑪1, ⋯ , 𝑪𝑀} 

Output: top 𝒌 ligand conformations: {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ } 

1: for all 𝑪𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛) 𝐜𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝒅𝒐 

2:   for all 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 0,1,2, ⋯ , 𝑠 do 

3:      𝑀𝑢𝑡𝑎𝑡𝑒(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

4:      if 𝐺_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)|| 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) then 

5:        𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

6:        𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑏𝑢𝑓𝑓𝑒𝑟. 𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) 

7:        if 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠(𝑪𝑡ℎ𝑟𝑒𝑎𝑑 , 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then 

8:           𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
= 𝑪𝑡ℎ𝑟𝑒𝑎𝑑 

9:           if 𝐺_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
)|| 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡

) then 

10:             𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) 

11:             𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑢𝑓𝑓𝑒𝑟. 𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) 

12:          end if 

13:        end if 

14:      end if 

15:   end for 

16: end for 

17: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔&𝑆𝑜𝑟𝑡𝑖𝑛𝑔&𝑟𝑒𝑓𝑖𝑛𝑚𝑒𝑛𝑡&𝑅𝑀𝑆𝐷_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑪0𝑏𝑒𝑠𝑡
, 𝑪1𝑏𝑒𝑠𝑡

, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡
) 

18: return {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ } ∈ {𝑪0𝑏𝑒𝑠𝑡

, 𝑪1𝑏𝑒𝑠𝑡
, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡

} 

3. Results and Discussion 

3.1 Experimental Settings 

All experiments were executed on the same computer with Intel (R) Core (TM) i9-10900K 

CPU @ 3.7 GHz using Windows 10 Operating System with 64 GB RAM and OpenCL v.3.0 with 

Nvidia Geforce RTX 3090 GPU under single-precision floating-point format (FP32). The center 

and volume of the docking box, the number of random seeds (cpu or thread) and the runtime options 

(exhaustiveness or 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ) were used to configure these experiments. We created a config.txt 

file for complexes, which contains the parameters and their definitions as shown in Table I. Our 

experimental parameters such as cpu, thread, exhaustiveness, and 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ are set as shown in 

Table 2. For instance, the argument exhaustiveness and cpu were set to 128 and 20 in the AutoDock 

Vina, while the argument 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ was set by the heuristic formula and thread were set to 8000 



 

 

in the Vina-GPU. 

Table 1. Parameters are included in the config.txt file 

Argument Description 

receptor the recrptor file (in .pdbqt format) 

ligand/ ligand_directory the ligand file (in .pdbqt format)/ 

this path contains all the ligand files 

center_x/y/z the center of searching box in the receptor 

size_x/y/z the volume of the searching box 

cpu/thread the number of random seeds 

exhaustiveness/search_depth the size of searching iterations 

Table 2. Experimental parameters setting 

Docking method 
the number of  

random seeds 
the runtime options 

AutoDock Vina 𝑐𝑝𝑢 = 20 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =128 

Vina-GPU 𝑡ℎ𝑟𝑒𝑎𝑑 =8000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ was set by the heuristic formula 

QuickVina 2 𝑐𝑝𝑢 = 8 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 8 

QuickVina-W 𝑐𝑝𝑢 = 16 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =16 

Vina-GPU+ 𝑡ℎ𝑟𝑒𝑎𝑑 =8000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ 𝑤𝑎𝑠 𝑠𝑒𝑡 𝑏𝑦 𝑡ℎ𝑒 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎 

QuickVina 2-GPU  𝑡ℎ𝑟𝑒𝑎𝑑 = 5000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ =1 

QuickVina-W-GPU 𝑡ℎ𝑟𝑒𝑎𝑑 = 8000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ =5 

 For Vina-GPU and Vina-GPU+, the size of searching iterations in each thread (𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ) 

was set by the heuristic formula. The heuristic formula is given as follows, 

 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 𝑚𝑎𝑥 (1, 𝑓𝑙𝑜𝑜𝑟(0.24 ∗ 𝑁𝑎𝑡𝑜𝑚 + 0.29 ∗ 𝑁𝑟𝑜𝑡 − 3.41)) (31) 

where 𝑁𝑎𝑡𝑜𝑚 is the number of atoms and 𝑁𝑟𝑜𝑡 is the number of rotatable bonds in a ligand. 

The function 𝑓𝑙𝑜𝑜𝑟(𝑛) is the function that gives as output the greatest integer less than or equal to 

𝑛 when takes as input a real number 𝑛. 

The docking accuracy is determined by their docking score and RMSD. The runtime 

acceleration (Acc) of our proposed method against the baseline method is defined by  

 𝐴𝑐𝑐 =
𝑡baseline

𝑡our
 (32) 

We evaluated the similarity of top 𝑖 compounds with the lowest docking scores on the baseline 

methods or our Vina-GPU 2.0 by Jaccard index[22] as defined by 

 𝐽𝑖 =
|𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖 ∩𝑇𝑜𝑢𝑟
𝑖 |

|𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪𝑇𝑜𝑢𝑟

𝑖 |
 (33) 

where 𝑖 = 15, 50, 100, 200, 300, and 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

 and 𝑇𝑜𝑢𝑟
𝑖

 represent subset of top 𝑖 compounds of 

the baseline methods and Vina-GPU 2.0, respectively. 

 

3.2 Virtual Screening on RIPK1 

To show the acceleration effect of our Vina-GPU 2.0 in implementing real virtual screens, a 

case was detailed on the receptor RIPK1 with the docking of DrugBank. The receptor RIPK1 is a 

key regulator of apoptosis and necrosis as well as inflammatory pathways, and it has emerged as 

one of the effective targets for the treatment of various diseases such as neurodegenerative diseases, 



 

 

autoimmune diseases and inflammation. DrugBank[23] is one of the most popular drug databases 

that contains detailed information on drugs and drug targets. A total of 9125 molecules were 

downloaded from the DrugBank database at https://go.drugbank.com/releases/latest#structures.  

Table 3. Comparison of docking runtime on RIPK1 

Baseline method 
Time 

(hours) 
Vina-GPU 2.0 

Time 

(hours) 
Acc 

AutoDock Vina 176.66 Vina-GPU+ 2.50 70.67X 

Vina-GPU 8.18 Vina-GPU+ 2.50 3.27X 

QuickVina 2 8.62 QuickVina 2-GPU 5.91 1.46X 

QuickVina-W 26.37 QuickVina-W-GPU 8.16 3.23X 

Acc: the runtime acceleration of Vina-GPU 2.0 against the baseline method.  

Vina-GPU+ took only 2.50 hours to complete the whole docking process while AutoDock Vina 

took 176.66 hours and Vina-GPU took 8.18 hours, demonstrating that our Vina-GPU+ achieved 

acceleration of 70.67X and 3.27X. In addition, our QuickVina 2-GPU and QuickVina-W-GPU 

obtained acceleration of 1.46X and 3.23X, respectively.Among all the methods, the least time-

consuming methods are Vina-GPU+ (2.5h), QuickVina 2-GPU (5.91h), QuickVina-W-GPU (8.16h) 

and Vina-GPU (8.18h) respectively (Table 3). Figure 5 shows the comparison of docking scores 

between our Vina-GPU 2.0 and the baseline methods. The color bar represents the number of atoms 

in a ligand. Based on the docking scores of the complexes, most complexes are distributed near the 

diagonal and fall into a lavender margin of 0.5 kcal/mol difference. Their Pearson correlation 

coefficients are 0.912, 0.953, 0.802 and 0.915 for AutoDock Vina VS Vina-GPU+, Vina-GPU VS 

Vina-GPU+, QuickVina 2 VS QuickVina 2-GPU, and QuickVina-W VS QuickVina-W-GPU, 

respectively. Except for QuickVina 2-GPU, our Vina-GPU 2.0 achieves close docking scores with 

the baseline methods. QuickVina 2 lost its docking accuracy to obtain docking conformations 

quickly, and the docking results returned each time were not stable, thus resulting in the docking 

structures derived from QuickVina 2 and QuickVina 2-GPU are not very similar. In addition, the 

docking scores of all 9125 molecules for our Vina-GPU 2.0 and baseline methods were shown in 

Supplementary Data S1. For example, the average docking score of AutoDock Vina and Vina-GPU+ 

are -6.16 and -5.98, respectively. For AutoDock Vina, the top three docking scores are -10, -9.4, -

9.3 and their corresponding binding poses were DB12983, DB09187, and DB15997, shown by 

DrugBank accession number. For Vina-GPU+, they are DB12983, DB09187, DB13136 with the 

best docking scores (-10, -9.5, -9.3). Table 4 shows that all the Jacard indexes of the docking results 

of our Vina-GPU 2.0 and the baseline methods on RIPK1. 



 

 

 

Figure 5. Comparable docking scores on RIPK1 between Vina-GPU 2.0 and the baseline methods on all 9125 

compounds from the DrugBank dataset. The color bar encodes the number of atoms in one ligand. A margin of 0.5 

kcal/mol difference on the docking score between Vina-GPU 2.0 and the baseline methods is highlighted with 

lavender. The Pearson correlation coefficient of their docking scores is 0.912,0.953,0.802 and 0.915, respectively 

(indicated by “pearson”). 

Table 4. The Jacard indexes 𝐽𝑖 on the top 𝑖 subsets of Baseline method and Vina-GPU 2.0 on RIPK1 

(a) AutoDock Vina VS Vina-GPU+ 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−𝐺𝑃𝑈 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−𝐺𝑃𝑈 2.0

𝑖  Jacard Index 

15 9 21 0.429 

50 33 67 0.493 

100 69 131 0.526 

200 129 271 0.476 

300 205 395 0.519 

(b) Vina-GPU VS Vina-GPU+ 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖  Jacard Index 

15 13 17 0.765 

50 44 56 0.786 



 

 

100 91 109 0.834 

200 175 225 0.778 

300 266 334 0.796 

(c) QuickVina 2 VS QuickVina 2-GPU 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖  Jacard Index 

15 7 23 0.304 

50 29 71 0.408 

100 60 140 0.429 

200 128 272 0.471 

300 190 410 0.463 

(d) QuickVina-W VS QuickVina-W-GPU 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖  Jacard Index 

15 11 19 0.579 

50 41 59 0.695 

100 84 116 0.724 

200 166 234 0.709 

300 233 367 0.635 

3.3 Virtual Screening on RIPK3 

The receptor RIPK3 is also a key regulator of apoptosis and necrosis as well as inflammatory 

pathways, and it has become one of the effective targets for the treatment of various diseases such 

as neurodegenerative diseases, autoimmune diseases and inflammation. Therefore, in this paper, 

another case was detailed on the receptor RIPK3 (PDBid) with the docking of DrugBank. Table 2 

shows a detailed comparison of the docking times of our Vina-GPU 2.0 and the baseline methods. 

Only 2.55 hours were taken to execute the whole docking process by Vina-GPU+ while 154.38 

hours by AutoDock Vina and 8.87 hours by Vina-GPU, indicating that the acceleration of 60.54X 

and 3.48X are achieved by our Vina-GPU+ (Table 5). Also, the acceleration of 1.41X and 3.97X 

was obtained by our QuickVina 2-GPU and QuickVina-W-GPU, respectively. Among all the 

methods, the least time-consuming methods are Vina-GPU+ (2.55h), QuickVina 2-GPU (6.60h), 

QuickVina-W-GPU (8.81h) and Vina-GPU (8.87h) respectively (Table 3). 

Figure 6 shows the comparison of docking scores between our Vina-GPU2.0 and the baseline 

methods, where most compounds lie around the diagonal line and within the margin (in lavender) 

of 0.5 kcal/mol difference on the docking score. The color bar encodes the number of atoms in one 

ligand. Their Pearson correlation coefficients are 0.976, 0.991, 0.921 and 0.975 for AutoDock Vina 

VS Vina-GPU+, Vina-GPU VS Vina-GPU+, QuickVina 2 VS QuickVina 2-GPU, and QuickVina-

W VS QuickVina-W -GPU, respectively. It shows that our Vina-GPU2.0 achieves the very close 

docking scores with the baseline methods. the docking scores of all 9125 molecules for our Vina-

GPU 2.0 and baseline methods were shown in Supplementary Data S2. For example, the average 

docking score of AutoDock Vina and Vina-GPU+ are -7.54 and -7.47, respectively. For AutoDock 

Vina, the top 3 binding poses with the lowest docking scores (-13.3, -13, -13) are DB14773, 

DB06896, DB11977 (DrugBank accession number). For Vina-GPU+, they are DB14773, DB06896, 

DB05454 with the best docking scores (-13.7, -13.4, -12.5). Table 6 shows that all the Jacard indexes 

of the docking results of our Vina-GPU 2.0 and the baseline methods on RIPK3. 

Table 5. Comparison of docking runtime on RIPK3 



 

 

Baseline method Time(hours) Vina-GPU 2.0 Time(hours) Acc 

AutoDock Vina 154.38 Vina-GPU+ 2.55 60.54X 

Vina-GPU 8.87 Vina-GPU+ 2.55 3.48X 

QuickVina 2 9.31 QuickVina 2-GPU 6.60 1.41X 

QuickVina-W 34.94 QuickVina-W-GPU 8.81 3.97X 

Acc: the runtime acceleration of Vina-GPU 2.0 against the baseline method.  

 

Figure 6. Comparable docking scores on RIPK3 between Vina-GPU 2.0 and the baseline methods on all 9125 

compounds from the DrugBank dataset. The color bar encodes the number of atoms in one ligand. A margin of 0.5 

kcal/mol difference on the docking score between Vina-GPU 2.0 and the baseline methods is highlighted with 

lavender. The Pearson correlation coefficient of their docking scores is 0.976,0.991,0.921 and 0.975, respectively 

(indicated by “pearson”). 

Table 6. The Jacard indexes 𝐽𝑖 on the top 𝑖 subsets of Baseline method and Vina-GPU 2.0 on RIPK3 

(a) AutoDock Vina VS Vina-GPU+ 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−𝐺𝑃𝑈 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−𝐺𝑃𝑈 2.0

𝑖  Jacard Index 

15 9 21 0.429 

50 28 72 0.389 

100 66 134 0.493 

200 147 253 0.581 



 

 

300 218 382 0.571 

(b) Vina-GPU VS Vina-GPU+ 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖  Jacard Index 

15 14 16 0.875 

50 41 59 0.695 

100 87 113 0.770 

200 173 227 0.762 

300 269 331 0.813 

(c) QuickVina 2 VS QuickVina 2-GPU 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖  Jacard Index 

15 6 24 0.25 

50 24 76 0.316 

100 51 148 0.351 

200 111 289 0.384 

300 172 428 0.402 

(d) QuickVina-W VS QuickVina-W-GPU 

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖  𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖  Jacard Index 

15 12 18 0.667 

50 36 64 0.563 

100 77 123 0.626 

200 155 245 0.633 

300 238 362 0.657 

 

3.4 Docking acceleration on the AutoDock-GPU dataset 

The benchmark dataset from the AutoDock-GPU[24] study is comprised of 85 complexes from 

the Astex Diversity Set[25], 35 complexes from CASF-2013[26], and 20 complexes from the 

Protein Data Bank[27]. They cover a wide range of ligand complexities and targets properties. Table 

5 shows the total docking runtime of our Vina-GPU 2.0 and the baseline methods on all 140 

complexes of the AutoDock-GPU dataset. Only 0.25 hours were taken to execute the whole docking 

process by Vina-GPU+ while 9.15 hours by AutoDock Vina and 0.29 hours by Vina-GPU, indicating 

that the acceleration of 36.60X and 1.16X are achieved by our Vina-GPU+ (Table 3). Since the 

molecular docking on the AutoDock-GPU dataset is not a single receptor docking with multiple 

ligands, Vina-GPU+ generates the same number of grid cache as Vina-GPU, and the 1.17X speedup 

is due to the fact that the grid cache of Vina-GPU+ is computed in parallel in the GPU. Also, the 

acceleration of 1.75X and 4.20X was obtained by our QuickVina 2-GPU and QuickVina-W-GPU, 

respectively. Among all the methods, the least time-consuming methods are QuickVina 2-GPU 

(0.08h) and QuickVina 2 (0.14h), respectively (Table 7). QuickVina-W-GPU requires inter-thread 

communication. Compared to AutoDock Vina, Vina-GPU and Vina-GPU+, QuickVina 2-GPU 

contains heuristics that reduce unnecessary local searches, and therefore, QuickVina 2-GPU docking 

is the fastest. 

Table 7. The total docking runtime on the AutoDock-GPU dataset 

Baseline method 
Time 

(hours) 
Vina-GPU 2.0 

Time 

(hours) 
Acc 



 

 

AutoDock Vina 9.15 Vina-GPU+ 0.25 36.60 X 

Vina-GPU 0.29 Vina-GPU+ 0.25 1.16X 

QuickVina 2 0.14 QuickVina 2-GPU 0.08 1.75X 

QuickVina-W 0.63 QuickVina-W-GPU 0.15 4.20X 

Acc: the runtime acceleration of Vina-GPU 2.0 against the baseline method. 

Figure 7 shows the runtime acceleration (Acc) on each complex by our Vina-GPU 2.0 against 

the baseline methods. The average acceleration is highlighted by a white dot in the center, and the 

shape of the violin shows the distribution of Acc values. Compared to AutoDock Vina, Vina-GPU+ 

achieves the maximal acceleration of 58.26X, as well as the average of 31.90X (Figure 8). 

Compared to Vina-GPU, Vina-GPU+ achieves the maximal and average acceleration of 2.53X and 

1.61X, respectively. Compared with QuickVina 2, QuickVina 2-GPU reaches the maximal 

acceleration of 5.14X and the average of 1.74X. Compared with QuickVina-W, QuickVina-W-GPU 

obtains the maximal acceleration of 28.46X and the average of 5.52X. 

 

Figure 7. Acceleration of docking time (Acc) of our Vina-GPU 2.0 against the baseline methods (Vina-GPU, 

QuickVina 2, QuickVina-W) on 140 complexes from the AutoDock-GPU dataset. The average Acc is highlighted 

with a white dot in the center. (a) Vina-GPU+ VS AutoDock Vina; (b) Vina-GPU+ VS Vina-GPU; (c) QuickVina2-

GPU VS QuickVina2; (d) QuickVina-W-GPU VS QuickVina-W. 



 

 

3.5 Docking accuracy on the AutoDock-GPU dataset 

We compare the overall docking accuracy of our Vina-GPU 2.0 with the baseline methods in 

terms of the docking score and RMSD performances on all 140 complexes. The color bar encodes 

the number of atoms in a ligand. For AutoDock Vina VS Vina-GPU+, docking scores of most 

complexes distribute around the diagonal line and fall into the lavender margin of 0.5 kcal/mol 

difference and their Pearson correlation coefficient of the scores is 0.971 (Figure 8a), which denotes 

a significant positive correlation. The average docking score of AutoDock Vina and Vina-GPU+ are 

-8.92 and -8.65, respectively. These results show that our Vina-GPU+ achieves the very close 

docking scores with AutoDock Vina. Similar phenomena and conclusions were found in the docking 

scores of other comparison methods (Figure 8a). 

A docking conformation is typically acceptable when its RMSD difference with the ground 

truth structure is smaller than 2Å , and the red dashed line distinguishes whether a docking 

conformation is acceptable or not from the RMSD aspect (Figure 8b). Results demonstrates that 

most complexes fall into the lower left region where both our Vina-GPU 2.0 and the baseline 

methods succeed to obtain the acceptable docking except for the QuickVina-W VS QuickVina-W-

GPU. For instance, for Vina-GPU+, 102 out of 140 RMSD results are within 2 Å, while 111 out of 

140 for AutoDock Vina. The average RMSD of AutoDock Vina and Vina-GPU+ are 1.54 and 1.67, 

respectively. Due to the RMSD results of QuickVina-W is large, and QuickVina-W-GPU uses the 

GPU to accelerate QuickVina-W while ensuring that the accuracy of both is comparable, the red 

dashed line is very close to the x and y axes in Figure 8(b). These results show that our Vina-GPU 

2.0 achieves the similar comparable docking RMSD with the baseline methods. Thus, these findings 

indicate that Vina-GPU 2.0 exhibits the comparable docking accuracy with respect to the baseline 

methods on both docking score and RMSD. 

 

Figure 8. Comparable docking accuracy between Vina-GPU 2.0 and the baseline methods on all 140 compounds. 

The color bar encodes the number of atoms in one ligand. (a) A margin of 0.5 kcal/mol difference on the docking 

score between Vina-GPU 2.0 and the baseline methods is highlighted with lavender in Figure 8a. The Pearson 

correlation coefficient of their docking scores is 0.971,0.967,0.910 and 0.976 respectively (indicated by “pearson”). 

(b) The RMSD value that indicates an acceptable binding pose (< 2 Å) are separated by a red dashed line in Figure 

8b. 

3.6 GUI 

We developed a user-friendly and installation-free graphic user interface (GUI) for its 



 

 

convenient operation on Windows 10 Operating System (Figure 9). The GUI contains three docking 

methods, Vina-GPU+, QuickVina 2-GPU and QuickVina-W-GPU. The users can select docking 

methods in interest for molecular docking and enter their parameters involving Receptor file path 

(Receptor), Ligand file path (Ligand), Output Files path (Output File path), 3D coordinates of the 

center of the docking box (Box center), the size of the docking box (Box size), thread, and search 

depth. All input parameters required for molecular docking are provided in the GUI, and all input 

parameters can be customized by users or by default values determined by heuristic formulas. Once 

all input parameters have been entered, please click on the Start button to start docking. The progress 

bar will show current docking progress. To facilitate the processing of output conformations, the 

GUI can generate a table of all output conformations. The table contains the names of all output 

conformations and their docking scores which are sorted from the lowest to the highest docking 

score. This allows the user to quickly obtain the best output conformation. The codes, tools and 

datasets of VINAs-GPU 2.0 are freely available at https://github.com/DeltaGroupNJUPT/VINAs-

GPU 2.0, coupling with explicit instructions and examples. 

 

Figure 9. Graphic user interface (GUI) of Vina-GPU 2.0.  

Conclusion 

The further speedup of AutoDock Vina and its derivatives with GPUs is beneficial for 

systematically pushing their popularization in large-scale virtual screens due to their high benefit-

cost ratio and easy operation for users. Thus, we proposed the Vina-GPU 2.0 method, to further 

accelerate AutoDock Vina and the most common derivatives with new docking algorithm 

(QuickVina 2 and QuickVina-W) with GPUs. Caused by the discrepancy of their docking algorithms, 

our Vina-GPU 2.0 adopts different GPU acceleration strategies. In real virtual screening for two hot 

protein kinase targets RIPK1 and RIPK3 from the DrugBank database, our Vina-GPU 2.0 reaches 

an average of 65.6-fold, 1.4-fold and 3.6-fold docking acceleration against the original AutoDock 

Vina, QuickVina 2 and QuickVina-W while ensuring their comparable docking accuracy. In addition, 

we develop a friendly and installation-free graphical user interface (GUI) tool for their convenient 

https://github.com/DeltaGroupNJUPT/VINAs-GPU
https://github.com/DeltaGroupNJUPT/VINAs-GPU


 

 

usage. The codes and tools of Vina-GPU 2.0 are freely available at 

https://github.com/DeltaGroupNJUPT/ Vina-GPU 2.0, coupling with explicit instructions and 

examples. In future studies, the following aspects would be taken into consideration for pushing the 

popularization of AutoDock Vina and its numerous derivatives in large virtual screens. (1) We will 

implement GPU acceleration for more derivatives, such as Vina-Carb, AutoDock VinaXB, Vinardo 

and Smina。 
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