

Vina-GPU 2.0：further accelerating AutoDock Vina

and its derivatives with GPUs

Ji Ding 1,2, Shidi Tang 1,2,Lingyue Wang 3, Qinqin Huang 3, Haifeng Hu 3, Ming

Ling4, Jiansheng Wu1,2,∗

(1.School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications,

Nanjing, 210023, China; 2.Smart Health Big Data Analysis and Location Services Engineering Research Center of

Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China; 3.National ASIC

System Engineering Technology Research Center, Southeast University, Ltd., Nanjing, 210096, China; 4.School of

Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications,

Nanjing,210023, China)

*Correspondence: jansen@njupt.edu.cn

Abstract: Modern drug discovery typically faces large virtual screens from huge compound databases where

multiple docking tools are involved for meeting various real scenes or improving the precision of virtual

screens. Among these tools, AutoDock Vina and its numerous derivatives are the most popular and have

become the standard pipeline for molecular docking in modern drug discovery. Our recent Vina-GPU method

realized 14-fold acceleration against AutoDock Vina on a piece of NVIDIA RTX 3090 GPU in one virtual

screening case. Further speedup of AutoDock Vina and its derivatives with GPUs is beneficial to

systematically push their popularization in large-scale virtual screens due to their high benefit-cost ratio and

easy operation for users. Thus, we proposed the Vina-GPU 2.0 method to further accelerate AutoDock Vina

and the most common derivatives with new docking algorithms (QuickVina 2 and QuickVina-W) with GPUs.

Caused by the discrepancy of their docking algorithms, our Vina-GPU 2.0 adopts different GPU acceleration

strategies. In virtual screening for two hot protein kinase targets RIPK1 and RIPK3 from the DrugBank

database, our Vina-GPU 2.0 reaches an average of 65.6-fold,1.4-fold and 3.6-fold docking acceleration against

the original AutoDock Vina, QuickVina 2 and QuickVina-W while ensuring their comparable docking

accuracy. In addition, we develop a friendly and installation-free graphical user interface (GUI) tool for their

convenient usage. The codes and tools of Vina-GPU 2.0 are freely available at

https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0, coupled with explicit instructions and examples.

Keywords: Virtual screening; AutoDock Vina; Vina-GPU 2.0; GPU

1. Introduction

Previous virtual screening schemes were typically executed on only a scale of 106 ∼ 107

compounds. Such scale of compound sizes would seriously affect the capability and improve the

failure risk ratio in modern drug discovery. As willing, the whole chemical space of small drug-

likeness molecules was expected to reach more than 1060 compounds[1]. The compound scale of

large virtual screens is of vital importance in modern drug discovery since the more compounds to

be screened, the lower the risk of false positives and the higher the quality of the lead compounds[2].

Recent experiments have also shown that ultra-large-scale virtual screening could improve the

success rate of true positives. In large virtual screens from huge compound databases, multiple

docking tools are typically involved for meeting various real demands（such as primary screening

and fine screening）or for improving the precision of virtual screens of hit candidates. Among these

tools, the AutoDock Vina suite[3], which involved the original AutoDock Vina and its numerous

derivatives, was the most popular and has become the gold standard for molecular docking in

modern drug discovery.

mailto:jansen@njupt.edu.cn

Previous studies demonstrated that, in large-scale virtual screening scenes, primitive AutoDock

Vina and its derivatives cannot meet the speed demand of the majority of users in modern drug

discovery. Therefore, their acceleration has become a central problem in current virtual screens of

drug hits from huge compound databases. Till now, there have been many attempts for the

acceleration of the AutoDock Vina suite on large virtual screens [6–8]. For instance, VirtualFlow is

an automated drug discovery platform that speeded up AutoDock Vina and its derivatives in virtual

screens of an ultra-large compound database with 1.4 billion molecules by running over 160,000

CPUs[6]. Recently, DP Technology proposed the Uni-Dock, a GPU-accelerated docking method on

AutoDock Vina 1.2, and implemented the ultra-large virtual screens from the Enamine Diverse

REAL drug-like set with 38.2 million compounds targeting the KRAS protein by leveraging a GPU

cluster which contains 100 NVIDIA V100 GPUs, and it reached more than 1000-fold speed-up when

compared with the single-CPU-core version[9].

As all we know, GPU is an ideal means of acceleration for common users due to its low barrier,

high cost-effectiveness, and ease of development. Our recently proposed Vina-GPU[10] method

realized the acceleration of AutoDock Vina with GPUs, which solved the difficulty of implementing

its parallel acceleration on GPUs caused by the seriality design of the AutoDock Vina algorithm.

Our Vina-GPU method realized the 14-fold acceleration in one typical virtual screening case, and it

achieved an average of 21-fold and a maximum of 50-fold docking acceleration in a benchmark

dataset with 140 complexes against the original AutoDock Vina while ensuring their comparable

docking accuracy. Due to its value and excellent performance, our Vina-GPU method had rapidly

gained a lot of attention, whose GitHub codes have earned 36 stars and 17 forks, and whose citations

had received thousands of full-paper downloads. The derivatives of AutoDock Vina can be classified

into two categories. The first category has the optimization of their docking algorithm, such as

QuickVina[11], QuickVina 2, QuickVina-W, Vina-Carb[12], AutoDock VinaXB[13] and

Vinardo[14], etc. The second category has no change in its docking algorithm but add some new

functions, such as AutoDock Vina 1.2.0[15] and Smina[16], etc. For instance, AutoDock Vina 1.2.0

supports the modeling of some specific features such as macrocycles or the explicit water molecules

and involves the AutoDock4.2 scoring function, and also provides the simultaneous docking of

multiple ligands or a batch docking of large size of ligands [15]. Smina is an enhancement of

AutoDock Vina that especially supports more custom functions for virtual screening [16]. Our

previous Vina-GPU method realized the improvements in the docking algorithm of AutoDock Vina

which is suitable to run on the GPU. Thus, the same acceleration scheme can also work on the GPU

speedup of the second category of AutoDock Vina derivatives. For example, DP Technology

accelerated the AutoDock Vina 1.2 with 100 GPUs by using our Vina-GPU acceleration algorithm

[9]. Therefore, we just focus on the first category of AutoDock Vina derivatives and optimize their

docking algorithms to make them suitable for the efficient parallel acceleration on GPUs in this

paper. Among these methods, QuickVina 2 and QuickVina-W are very popular because of their fast

docking speed and their code framework similar to that of AutoDock Vina, so they are chosen as

the representatives for implementing the GPUs acceleration in this paper. QuickVina 2 was to

promote the docking speed by relying on the novel first-order-consistency-check heuristics which

can move some unnecessary local searches and keep the precision of the original AutoDock Vina

[4]. QuickVina-W could improve the accuracy and speed of molecular docking by adding inter-

process communication, and QuickVina-W supports blind docking which can eliminate the demand

of running the docking tool several times.

To systematically push the popularization of the AutoDock Vina suite in modern drug discovery,

we propose a novel method Vina-GPU 2.0 to realize the acceleration of representative AutoDock

Vina derivatives (QuickVina 2, QuickVina-W) and the further speedup of AutoDock Vina with

GPUs. Caused by the discrepancy of their docking algorithms, our Vina-GPU 2.0 adopts different

GPU acceleration strategies. For Vina-GPU+, it implemented the further acceleration of the grid

cache of Vina-GPU, which is valuable to facilitate the molecular docking of a large number of

ligands with a single protein receptor in real virtual screening scenarios. This implementation

ensures that Vina-GPU+ can utilize thousands of compute cores on the GPU to compute the grid

cache. For QuickVina 2-GPU, it speeds up the Monte-Carlo based simulated annealing as well as

the BFGS process in QuickVina 2 [4]with GPUs. QuickVina 2-GPU applies large-scale parallelism

on the Monte-Carlo based iterated docking threads and then significantly reduces the search depth

in each thread. This implementation ensures that QuickVina 2-GPU can leverage thousands of

computational cores on GPU and achieve large-scale parallelization and acceleration. For

QuickVina-W-GPU, we accelerate the simulated annealing and BFGS process of QuickVina-W

[5]with GPUs. QuickVina-W-GPU realizes large-scale docking threads for parallel running the

Monte-Carlo based iterated process and significantly decreases the search depth in each thread. Also,

a heterogeneous OpenCL implementation was efficiently executed on QuickVina-W-GPU by

converting the octree structure into a global buffer whose history points are stored. These

implementations can ensure that QuickVina-W-GPU leverages thousands of computational cores on

GPU and achieve a large-scale parallelization and acceleration, and realizes the thread

communication on GPUs core.

Apoptosis and necroptosis are two kinds of different mechanisms of cell death. Apoptosis is

mediated by caspases, whereas in the absence of apoptotic conditions, the RIPK1 (Receptor-

interacting protein kinase 1)[17] and its downstream RIPK3 (Receptor-interacting protein kinase

3)[18] and MLKL[19] will activate the programmed necrosis pathway. Numerous studies have

confirmed that RIPK1 and RIPK3 are key regulators of apoptosis, necrosis, and inflammatory

pathways[20]. RIPK1 and RIPK3 have emerged as effective targets for the treatment of various

diseases such as neurodegenerative diseases, autoimmune diseases, and inflammation. Currently,

studying small molecule inhibitors targeting RIPK1 and RIPK3 has become a hot topic.

 In real virtual screening on RIPK1 from DrugBank, our Vina-GPU 2.0 reaches the 70.67-

fold,1.46-fold and 3.23-fold docking acceleration on one NVIDIA RTX 3090 GPU against the

original AutoDock Vina, QuickVina 2 and QuickVina-W while ensuring their comparable docking

accuracy. For RIPK3, Vina-GPU 2.0 improves the original AutoDock Vina, QuickVina 2 and

QuickVina-W by 60.54-fold,1.41-fold and 3.97-fold docking acceleration on one NVIDIA RTX

3090 GPU while maintaining their equivalent docking accuracy. For benchmark tests on 140

complexes, Vina-GPU 2.0 achieves an average docking acceleration of 37.90-fold,1.74-fold and

5.52-fold when compares to the original AutoDock Vina, QuickVina 2 and QuickVina-W based on

comparable docking accuracy. In addition, we develop a friendly and installation-free graphical user

interface (GUI) tool for their convenient usage. The codes and tools of Vina-GPU 2.0 are freely

available at https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0, coupled with explicit

instructions and examples.

2. Methodology

We systematically analyzed the algorithms of AutoDock Vina, QuickVina 2 and QuickVina-W,

and rewrote their code to implement the heterogeneous OpenCL architecture with GPU cards. Vina-

https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0

GPU 2.0 employs different GPU acceleration strategies as a result of the differences in their docking

algorithms. Vina-GPU+ is an upgraded version of Vina-GPU that achieves further GPU acceleration

for AutoDock Vina, QuickVina 2-GPU is the method that implements GPU acceleration for

QuickVina 2, and QuickVina-W-GPU is the algorithm that provides GPU acceleration for

QuickVina-W.

2.1 Vina-GPU+

The heterogeneous OpenCL implementation of Vina-GPU+ is shown in Figure 1, which

consists of three blocks. The conformations preparation is the primary responsibility of block I,

which is implemented on the CPU. Block II is executed on kernel 1 of the GPU core and prepares

the grid cache for calculating the conformation energy. The interaction forces between probe atoms

and atoms in the docking box are obtained by running parallel calculations of GPU’s kernel 1. Block

III is in charge of molecular docking of a receptor with all ligands on GPU’s kernel 2.

Figure 1. Vina-GPU+ implementation by using the OpenCL architecture. It consists of three blocks. Block I is

mainly in charge of data preparation and OpenCL setup. The grid cache preparation for computing the energy of a

conformation is implemented in block II. Block III focuses on the molecular docking of a receptor and all ligands.

2.1.1 Data Preparation

Three operations that make up Data Preparation are the read files, the OpenCL setup and the

data preparation (Block I in Figure 1). These operations are implemented on the CPU core. In detail,

the ‘Read files’ operation reads ligand and protein files in .pdbqt format, the center of the docking

box (indicated by 𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑧) and the volume of the docking box (denoted

by 𝑠𝑖𝑧𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑦 , 𝑠𝑖𝑧𝑒𝑧). Configuring the OpenCL environment is done through the ‘OpenCL setup’

operation (platform, device, context, queue, program and kernels). Random maps are created for

producing probability random numbers in the ‘Data preparation’ operation. Afterward, all data is

rearranged to load in the GPU memory following the way of access (read-only or read-write). The

random maps are allotted in the constant memory.

2.1.2 Grid Cache Preparation

When facing the molecular docking of a receptor with many ligands in virtual screens, our

previous Vina-GPU needs to recalculate the grid cache for each ligand and computes as follows:

first, the docking box is divided into multiple grid boxes whose volume is represented by

𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒𝑥 , 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒𝑦, 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒𝑧 and whose quantized coordinates are obtained by calculating.

Then, Vina-GPU traverses these grid points to ascertain atomic types and calculates the interaction

forces between each grid point and the receptor, and finally stores the results in the grid cache.

However, we discovered that recalculating the grid cache for different ligands is time-consuming

behavior. Vina-GPU+ will accelerate docking by calculating the intermolecular energies of the 17

different atom types at the grid points in advance. Since it is an independent process to calculate the

interaction forces between each grid point and the receptor, Vina-GPU+ computes the grid cache in

parallel by using the kernel1 of the GPU platform. The number of threads in kernel1 is determined

by the size of grid points. For instance, black points are the grid points in figure 1, each grid point

is assigned to a work item of kernel 1, and each work item calculates the intermolecular energy of

the grid point which currently has 17 types. The grid caches are stored in the global memory and

are shared by all GPU threads. Vina-GPU+ speeds up molecular docking and reduces the

communication times of CPU and GPU by performing batch docking and only needs to calculate

the grid cache once.

2.1.3 molecular docking

Block III is implemented on both CPU and GPU which focuses on the molecular docking of a

receptor and ligands (highlighted in purple). The CPU is the main responsibility for the preparation

and post-refinement of conformations (highlighted in pink). The allocated constant memory

(highlighted in yellow) is used for the initialization and computation throughout the reduced-step

Monte-Carlo iterated local search processes in the GPU kernel1 (highlighted in orange), and global

memory stores the final best conformations (highlighted in green). The ligand preparation which is

above the generation of random initial conformations is performed on the CPU. These initial

conformations were then rearranged and stored into the constant memory. The kernel 2 of GPU is

capable of running thousands of reduced-steps iterated local search processes simultaneously.

Each process is represented by a docking thread. For each thread, an OpenCL work item is

offered a randomly initialized conformation 𝑪, which is described by its position, orientation and

torsion (POT):

 𝑪 = {𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐, 𝑑, 𝜓1, 𝜓2, . . . , 𝜓𝑁𝑟𝑜𝑡
} (1)

where 𝑥, 𝑦, 𝑧 indicate the conformation position in a pre-determined searching space;

𝑎, 𝑏, 𝑐, 𝑑 represent the orientation as a rigid body in the form of a quaternion; 𝜓1, 𝜓2, . . . , 𝜓𝑁𝑟𝑜𝑡

stand for the torsions of 𝑁𝑟𝑜𝑡 rotatable bonds. Moreover, a new conformation 𝑪′ is generated by

randomly mutating one POT element of conformation 𝑪 with the uniform distribution:

 𝑪′ = 𝑅(𝑪) (2)

where 𝑅(∙) is a random jitter function to perturb the conformation. The scoring function

which quantifies the potential energy of the binding pose continually assesses the conformation.

Usually, the potential energy 𝑒 is computed by adding intermolecular energy and intramolecular

energy:

 𝑒 = 𝑒𝑖𝑛𝑡𝑟𝑎 + 𝑒𝑖𝑛𝑡𝑒𝑟 (3)

The interaction energy of the paired atoms inside the ligand is defined by the 𝑒𝑖𝑛𝑡𝑟𝑎, while the

interaction energy between the ligand and the receptor is denoted by the 𝑒𝑖𝑛𝑡𝑒𝑟 . Trilinear

interpolation is used to calculate the 𝑒𝑖𝑛𝑡𝑒𝑟 by looking up the grid cache.

Since both 𝑒𝑖𝑛𝑡𝑒𝑟 and 𝑒𝑖𝑛𝑡𝑟𝑎 are connected to the binding pose, the scoring function 𝑆𝐹

could be expressed in terms of POT variables:

 𝑺𝑭 = 𝑓 (𝑥, 𝑦, 𝑧, 𝑎, 𝑏, 𝑐, 𝑑, 𝜓1, 𝜓2, . . . , 𝜓𝑁𝑟𝑜𝑡
) (4)

Following the energy evaluation, the ligand conformation is updated by minimizing the scoring

function SF utilizing a Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization. First, initialize the

hessian matrix 𝑩0 ∈ ℝ(7+𝑁𝑟𝑜𝑡)×(7+𝑁𝑟𝑜𝑡) . 𝑩0 is initiated with identity matrix 𝑬 , Initial random

conformation 𝒙𝑖 = 𝑪𝑖
′, the (𝑘 + 1)𝑡ℎ iteration of the BFGS is calculated as follows：

Calculating direction 𝒅𝑘:

 𝒅𝑘 = −𝑩𝑘
−1𝛻𝑺𝑭(𝒙𝑘) (5)

Where 𝑩𝑘
−1 is the inverse matrix of the Hessian matrix generated by the 𝑘𝑡ℎ iteration process.

Calculating the step size in the direction 𝒅𝑘 by using the Armijo criterion：

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝐹(𝒙𝑘 + α𝒅𝑘) (6)

Updating the conformation 𝒙𝑘+1:

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘

Updating the hessian matrix 𝑩𝑘+1:

 𝑩𝑘+1 = 𝑩𝑘 +
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

−
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘
𝑇

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

 (7)

Where 𝒚𝑘 = 𝛻𝑺𝑭(𝒙𝑘+1) − 𝛻𝑺𝑭(𝒙𝑘) , 𝒔𝑘 = 𝛼𝑘𝒅𝑘 . The BFGS iteration process ends if the

following conditions are met:

 ‖𝛻𝑺𝑭(𝒙𝑘+1)‖ ≤ 𝜀 𝑜𝑟 𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ (8)

Where 0 < 𝜀 ≤ 1 , the step size along the decreasing direction 𝒅𝑘 of the 𝑆𝐹 values, is

denoted by α(𝛼𝑘). The conformation of the BFGS output is 𝒙𝑘+1.

The energy 𝑒0 before the mutation and the energy 𝑒𝑜𝑝𝑡 after the optimization are compared

using a metropolis acceptance criterion[21] to determine whether to accept or reject the optimized

conformation. The accept probability P is shown as:

 𝑃 = {
1 𝑒0 > 𝑒𝑜𝑝𝑡

exp (𝑒0−𝑒𝑜𝑝𝑡)

1.2
 𝑒0 ≤ 𝑒𝑜𝑝𝑡

 (9)

It suggests that the energy of the acceptable conformation is more probably to be lower. After

being approved, BFGS will further evaluate and optimize the conformation. As convergence

approaches, the following iteration keeps updating the earlier optimized conformations. Finally, the

CPU receives all of the best conformations that work items have discovered. All the best

conformations are clustered and sorted into the container according to docking scores. The top 𝑘

conformations will be concretely refined, rescore, sort, and if two of these conformations have

RMSDs less than 1Å, only the conformation with the lower score is retained before the final ligand

file is generated.

The pseudocode of our Vina-GPU+ is proposed by Algorithm 1. In Algorithm 1, Grid_cache(.)

means calculating the grid cache. random_conformation(.) represents the generation of random

initial conformations. Mutate(.) indicates a random POT mutation of a ligand conformation; BFGS(.)

denotes the BFGS optimization method, as defined in Equations (5)–(8); Scoring(.) signifies the

potential energy of a binding pose given in Equations (3) and (4); Metropolis(.) is the metropolis

acceptance criterion mentioned in Equation (9); and

Clustering&Sorting&refinment&RMSD_filtering(.) is the aggregation, filtering (based on the

RMSD) and reordering (based on the docking score) of all ligand conformations within all threads.

Algorithm 1 Vina-GPU+

Input: ligands:{𝑳0, 𝑳1, ⋯ , 𝑳𝑀}, protein:𝑷

Output: top 𝑘 ligand conformations：

 {𝑪00
∗ , 𝑪01

∗ , ⋯ , 𝑪0𝑘
∗ , 𝑪10

∗ , 𝑪11
∗ , ⋯ , 𝑪1𝑘

∗ , ⋯ , 𝑪𝑀0
∗ , 𝑪𝑀1

∗ , ⋯ , 𝑪𝑀𝑘
∗ }

1: 𝑮𝑡 = 𝐺𝑟𝑖𝑑_𝑐𝑎𝑐ℎ𝑒(𝑷)(𝑡 = 0,1, ⋯ 16)

2: for 𝑳𝑖(𝑖 = 0,1, ⋯ 𝑀) do

3: for 𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛 do

4: 𝑪𝑡ℎ𝑟𝑒𝑎𝑑 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑳𝑖)

5: end for

6: for all 𝑪𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛) 𝐜𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝒅𝒐

7: for all 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 0,1,2, ⋯ , 𝑠 do

8: 𝑀𝑢𝑡𝑎𝑡𝑒(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

9: 𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

10: if 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ == 0 ||𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠(𝑪𝑡ℎ𝑟𝑒𝑎𝑑 , 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then

11: 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
= 𝑪𝑡ℎ𝑟𝑒𝑎𝑑

12: 𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
)

13: end if

14: end for

15: end for

16: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔&𝑆𝑜𝑟𝑡𝑖𝑛𝑔&𝑟𝑒𝑓𝑖𝑛𝑚𝑒𝑛𝑡&𝑅𝑀𝑆𝐷_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑪0𝑏𝑒𝑠𝑡
, 𝑪1𝑏𝑒𝑠𝑡

, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡
)

17: return {𝑪𝑖0
∗ , 𝑪𝑖1

∗ , ⋯ 𝑪𝑖𝑘
∗ } ∈ {𝑪0𝑏𝑒𝑠𝑡

, 𝑪1𝑏𝑒𝑠𝑡
, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡

}

18: end for

19: return {𝑪00
∗ , 𝑪01

∗ , ⋯ , 𝑪0𝑘
∗ , 𝑪10

∗ , 𝑪11
∗ , ⋯ , 𝑪1𝑘

∗ , ⋯ , 𝑪𝑀0
∗ , 𝑪𝑀1

∗ , ⋯ , 𝑪𝑀𝑘
∗ }

2.2 QuickVina 2-GPU

Figure 2 shows the heterogeneous OpenCL architecture of QuickVina 2-GPU, which is made

of a host section (on CPU) and a device section (on GPU). The preparation and post-refinement of

the conformations are mostly the responsibility of the host section. The device section concentrates

on reducing unnecessary local search by implementing the first-order-consistency-check heuristics

and decreasing the number of iterations by scaling up parallelism, to speeding up the most time-

consuming Monte-Carlo iterated local search method.

2.2.1 Host section

There are two portions in the host section. The first portion contains four operations that are

performed for input of device section and which include the read files, the OpenCL setup, the data

preparation and the device memory allocation. In particular, the read files operation is to read the

ligand and protein files in .pdbqt format, the box center(indicated by 𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑧)

and the recommended volume of the docking box (indicated by 𝑠𝑖𝑧𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑦 , 𝑠𝑖𝑧𝑒𝑧).The OpenCL

setup operation is to setup the OpenCL environment (platform, device, context, queue, program and

kernels). Furthermore, the host part prepares all the required data, the ‘data preparation’ operation,

including grid cache for calculating the energy of a conformation, random maps for generating

probability random numbers and random initial conformations for the Monte-Carlo based method

to start from. all data is rearranged to load in the GPU memory following the way of access (read-

only or read-write). To improve read-write speed on the GPU through efficient memory

management, store read-only data, such as grid caches, random maps, and random initial

conformations, in the constant device memory; and store data that needs to be read and written, like

the best conformation to be returned by the device part, in global device memory. The second portion

includes multiple operations after the device section. Finally, all the best conformations found by

work items are returned to the CPU. All the best conformations are clustered and sorted in the

container by their docking scores. The best 20 conformations will be concretely refined, rescore,

sort, and if two of these conformations have RMSDs less than 1Å, only the conformation with the

lower score is retained before the final ligand file is generated.

Figure 2. The OpenCL architecture for implementing QuickVina 2-GPU, which consists of a host (CPU) and a

device (GPU) section of the execution. The device section implements thousands of docking threads, each of which

is assigned with an OpenCL work item to perform a Monte-Carlo based local search method that contains heuristic

formulas to reduce unnecessary local searches and the number of search iterations is greatly reduced.

2.2.2 Device part

On the device part, the allocated constant memory (highlighted in yellow) (Figure 2) is

assigned for the initialization and the calculation during the reduced-step Monte-Carlo iterated local

search processes (highlighted in orange) and the final best conformations are stored in global

memory (highlighted in green).

QuickVina 2-GPU enables thousands of reduced-steps iterated local search processes running

concurrently within the GPU computational cores. We denote each reduced-step iterated local

search process as a docking thread. Within 𝑡ℎ𝑟𝑒𝑎𝑑 = 𝑖, an OpenCL work item is assigned to a

randomly initialized conformation 𝑪𝑖 , which can be represented by its position, orientation and

torsion (POT):

 𝑪𝑖 = {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 , 𝑑𝑖 , 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡
𝑖

} (10)

where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖correspond to the conformation position in a pre-determined searching space;

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 denote its orientation as a rigid body in the quaternion form; 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡

𝑖

represent the torsions of 𝑁𝑟𝑜𝑡 rotatable bonds. Then, 𝐶𝑖
′ can be randomly mutated on one POT

element with the uniform distribution as a new conformation 𝑪𝑖
′:

 𝑪𝑖
′ = 𝑅(𝑪𝑖) (11)

where 𝑅(∙) is a random jitter function to perturb the conformation. The scoring function

which quantifies the potential energy of the binding pose continually assesses the conformation.

Usually, the potential energy 𝑒 is computed by adding intermolecular energy and intramolecular

energy:

 𝑒 = 𝑒𝑖𝑛𝑡𝑒𝑟 + 𝑒𝑖𝑛𝑡𝑟𝑎 (12)

The interaction energy of the paired atoms inside the ligand is defined by the 𝑒𝑖𝑛𝑡𝑟𝑎, while the

interaction energy between the ligand and the receptor is denoted by the 𝑒𝑖𝑛𝑡𝑒𝑟 . Trilinear

interpolation is used to calculate the 𝑒𝑖𝑛𝑡𝑒𝑟 by looking up the grid cache. The scoring function SF

can be calculated by the energy calculation function 𝑓(∙):

 𝑺𝑭
𝑪𝑖

′ = 𝑓(𝑪𝑖
′) (13)

QuickVina 2-GPU restricts the application of local search to those docked conformation

candidates deemed to be significant by the first-order-necessary-conditon heuristics and

𝑖𝑡ℎ 𝑡ℎ𝑟𝑒𝑎𝑑 uses the conformation of other threads 𝑪𝑗(𝑗 = 1,2, ⋯ , 𝑁, 𝑖 ≠ 𝑗). The conformation 𝑪𝑖
′

is deemed as significant for local search if there exists a conformation 𝑪𝑗 among its 2𝑁 nearest

neighbors such that with respect to each design variable,

 𝑠𝑖𝑔𝑛 {
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑪𝑖

′} ∙ 𝑠𝑖𝑔𝑛 {
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑪𝑗

} ≤ 0 (14)

Where
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑚 is the partial derivative of the scoring function 𝑺𝑭 with respect to the

design variable 𝑪𝑖 at point 𝑚 . ()sign is sign function. If 𝑪𝑖
′ fails (14) with respect to the

design variable 𝑪𝑖, 𝑪𝑖
′ is still significant for local search if it passes the following test.

 𝑠𝑖𝑔𝑛 {
𝛼𝑺𝑭𝑪

𝜕𝑪𝑖
|𝒄=𝑪𝑖

′} ∙ 𝑠𝑖𝑔𝑛 {[𝑺𝑭
𝑪𝑖

′ − 𝑺𝑭𝑪𝑗
] [(𝑪𝑖

′)𝑖−(𝑪𝑗)𝑖]} ≤ 0 (15)

If 𝑪𝑖
′ ’s derivative with respect to 𝑪𝑖 is positive and 𝑺𝑭𝑪𝑗

 is higher (or lower) than 𝑺𝑭𝑪𝑖
′

while (𝑪𝑗)𝑖 is to the left(or right) of (𝑪𝑖
′)𝑖, then there must be a stationary point between (𝑪𝑗)𝑖

and (𝑪𝑖
′)𝑖. Reversed relation between the score 𝑺𝑭𝑪𝑖

′ and 𝑺𝑭𝑪𝑗
 applies when 𝑪𝑖

′’s derivative with

respect to 𝑪𝑖 is negative. A Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization is applied to

update the ligand conformation by minimizing of the scoring function SF.

First initialize the hessian matrix𝑩0 ∈ ℝ(7+𝑁𝑟𝑜𝑡)×(7+𝑁𝑟𝑜𝑡). 𝑩0 is initiated with identity matrix

𝑬, Initial random conformation 𝒙𝑖 = 𝑪𝑖
′ , the (𝑘 + 1)𝑡ℎ iteration of the BFGS is calculated as

follows：

Calculating direction 𝒅𝑘:

 𝒅𝑘 = −𝑩𝑘
−1𝛻𝑺𝑭(𝒙𝑘) (16)

Where 𝑩𝑘
−1 is the inverse matrix of the Hessian matrix generated by the 𝑘𝑡ℎ iteration

process. Calculating the step size in the direction 𝒅𝑘 by using the Armijo criterion：

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝐹(𝒙𝑘 + α𝒅𝑘) (17)

Updating the conformation 𝒙𝑘+1:

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘

Updating the conformation 𝑩𝑘+1:

 𝑩𝑘+1 = 𝑩𝑘 +
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

−
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘
𝑇

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

 (18)

Where 𝒚𝑘 = 𝛻𝑺𝑭(𝒙𝑘+1) − 𝛻𝑺𝑭(𝒙𝑘) , 𝒔𝑘 = 𝛼𝑘𝒅𝑘 . The BFGS iteration process ends if the

following conditions are met:

 ‖𝛻𝑺𝑭(𝒙𝑘+1)‖ ≤ 𝜀 𝑜𝑟 𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ (19)

Where 0 < 𝜀 ≤ 1 , α(𝛼𝑘) means the step size in the direction 𝒅𝑘, along the decrease of the

𝑆𝐹 value, the conformation of the BFGS output is 𝒙𝑘+1. Next, a metropolis acceptance criterion is

adopted to decide whether to accept the optimized conformation or not, by comparing the energy

𝑒0 before the mutation and the energy 𝑒𝑜𝑝𝑡 after the optimization. Here, the accept probability P

is represented by:

 𝑃 = {
1 𝑒0 > 𝑒𝑜𝑝𝑡

exp (𝑒0−𝑒𝑜𝑝𝑡)

1.2
 𝑒0 ≤ 𝑒𝑜𝑝𝑡

 (20)

It indicates that the accepted conformation is more likely to have a lower energy. Once accepted,

the conformation will be further evaluated and optimized by BFGS. Then, the next iteration

continues to update the previous optimized conformations until convergence. Finally, all the best

conformations found by work items are returned to the host part.

Algorithm 2 proposed the pseudocode of our QuickVina 2-GPU. In Algorithm 2, Mutute(.)

means a random mutation of the POT in a ligand conformation; 𝐼_𝐶ℎ𝑒𝑐𝑘(.) determines whether

the current conformation requires further local search which is described in Equations (14) and

(15);BFGS(.) represents the BFGS optimization method which is described in Equations (16)–(19);

Scoring(.) is the potential energy of a binding pose described in Equations (10) and (13);

Metropolis(.) is the metropolis acceptance criterion described in Equation (20); and

Clustering&Sorting&refinment&RMSD_filtering (.) is the aggregation, filtering (based on the

RMSD) and reordering (based on the docking score) of all ligand conformations among all threads.

Algorithm 2 QuickVina 2-GPU

Input: random ligand conformations: {𝑪0, 𝑪1, ⋯ , 𝑪𝑀}

Output: top 𝑘 ligand conformations: {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ }

1: for all 𝑪𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛) 𝐜𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝒅𝒐

2: for all 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 0,1,2, ⋯ , 𝑠 do

3: 𝑀𝑢𝑡𝑎𝑡𝑒(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

4: if 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) then

5: 𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

6: if 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠(𝑪𝑡ℎ𝑟𝑒𝑎𝑑 , 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then

7: 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
= 𝑪𝑡ℎ𝑟𝑒𝑎𝑑

8: if 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then

9: 𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
)

10: end if

11: end if

12: end if

13: end for

14: end for

15: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔&𝑆𝑜𝑟𝑡𝑖𝑛𝑔&𝑟𝑒𝑓𝑖𝑛𝑚𝑒𝑛𝑡&𝑅𝑀𝑆𝐷_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑪0𝑏𝑒𝑠𝑡
, 𝑪1𝑏𝑒𝑠𝑡

, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡
)

16: return {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ } ∈ {𝑪0𝑏𝑒𝑠𝑡

, 𝑪1𝑏𝑒𝑠𝑡
, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡

}

2.3 QuickVina-W-GPU

The heterogeneous OpenCL implementation of QuickVina-W is depicted in Figure 3, which

consists of a host part (on CPU) and a device part (on GPU). The host part is mainly in charge of

the preparation and post-refinement of the conformations. The device part focuses on the

acceleration of the most time-consuming Monte-Carlo iterated local search method by enlarging the

scale of parallelism as well as reducing the number of iterations.

2.3.1 Host part

The host part consists of two sections (see Figure 3). The first section includes four operations,

which are the read files, the OpenCL setup, the data preparation and the device memory allocation,

and all operations are implemented for the input to the device part. Specifically, the read files

operation is to read the ligand and protein files in .pdbqt format, the box center(indicated by

𝑐𝑒𝑛𝑡𝑒𝑟𝑥 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑧) and the recommended volume of the docking box (indicated

by 𝑠𝑖𝑧𝑒𝑥 , 𝑠𝑖𝑧𝑒𝑦 , 𝑠𝑖𝑧𝑒𝑧). The OpenCL setup operation is to setup the OpenCL environment (platform,

device, context, queue, program and kernels). Furthermore, the host part prepares all the required

data, including grid cache (for calculating the energy of a conformation), random maps (for

generating probability random numbers) and random initial conformations (for Monte-Carlo based

method to start from). The data is then re-organized to load in the device memory according to how

it is accessed (read-only or read-write). The read-only grid cache, random maps and random

conformations are allocated in the constant device memory while the read-write of best

conformations returned by the device part is allocated in the global device memory. Such kind of

memory management could efficiently boost the speed of reading and writing on GPU. The second

section includes multiple operations after the device part. Finally, all the best conformations found

by work items are returned to the CPU. All the best conformations are clustered and sorted in the

container by their docking scores. The best 20 conformations will be concretely refined, rescore,

sort, and if two of these conformations have RMSDs less than 1Å, only the conformation with the

lower score is retained before the final ligand file is generated.

Figure 3. The OpenCL architecture for implementing QuickVina-W-GPU, which consists of a host (CPU) and a

device (GPU) part of execution. The device part implements thousands of docking threads, each of which is assigned

with an OpenCL work item to perform a Monte-Carlo based local search method that contains I Check and G Check

to reduce unnecessary local searches and the number of search iterations is greatly reduced.

2.3.2 Device part

On the device part, the allocated constant memory (highlighted in yellow)(Figure 3) is assigned

for the initialization and the calculation during the reduced-step Monte-Carlo iterated local search

processes (highlighted in orange), the final best conformations are stored in global memory

(highlighted in green), an OpenCL work item add a global buffer and individual buffer for every

thread. The best conformation output in all threads is stored in the global buffer according to their

three-dimensional position, the global buffer is implemented as an octree (octal tree) of history

points. The octree root is a cell that spans over the whole search space; and the history points are

distributed in the octree according to their spatial distribution in the three dimensions. Having

history from other threads allows us to make use of other threads experience and make decisions in

already explored energy landscape areas, while having history from an individual same thread

allows us to make decisions in virgin areas. The application of the octree in a multithreaded

collaborative Monte Carlo algorithm is to find its surrounding neighborhood conformations faster.

Octrees are implemented recursively whereas the OpenCL standard cannot support any recursion in

kernels because the allocation of stack space for thousands of threads is too expensive. Besides, the

memory space for an octree is dynamically allocated while the memory size must first be fixed in

the GPU, so the structure of an octree is not suitable for the OpenCL implementation. Therefore, we

construct the structure of global memory in the GPU, where global memory is accessible by every

thread.

The GPU is first allocated memory based on the number of threads and the size of the search

step. Then we determine a binary code for each conformation according to three-dimensional

position of the molecular conformation, and finally store it in the corresponding global memory

according to the binary code. The molecular conformation in the Global Buffer corresponding to

the binary code is then the nearest neighbors.

First determine the number of bits encoded (3𝑛 − 3) and the memory size based on the number

of threads(𝑡ℎ𝑟𝑒𝑎𝑑) and the number of search steps(𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ), the bits encoded need to satisfy

the following conditions:

 23𝑛−1 < (𝑡ℎ𝑟𝑒𝑎𝑑 ∗ 𝑠𝑒𝑎𝑟𝑐ℎ_𝑠𝑡𝑒𝑝𝑠) < 23𝑛 (21)

Then coded by comparing the position of the conformation (𝑥, 𝑦, 𝑧) with the central of the docking

box (𝑐𝑒𝑛𝑡𝑒𝑟_𝑥, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑦, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑧) based on Figure 4(d), if 𝑥 > 𝑐𝑒𝑛𝑡𝑒𝑟_𝑥 , it is coded as “1”

otherwise it is encoded as “0”, after compiling the 3bit, you can determine which small box the

conformation is in. Continue dividing the current box and calculate the centroid of box (𝑐𝑒𝑛𝑡𝑒𝑟_𝑥 ±

𝑠𝑖𝑧𝑒_𝑥

4𝑎 , 𝑐𝑒𝑛𝑡𝑒𝑟_𝑦 ±
𝑠𝑖𝑧𝑒_𝑦

4𝑎 , 𝑐𝑒𝑛𝑡𝑒𝑟_𝑧 ±
𝑠𝑖𝑧𝑒_𝑧

4𝑎), where 𝑎 ∈ [1, 𝑛 − 1], 𝑎 means that the box needs to be

divided (𝑛 − 2) times more. Finally, the 3-bit codes of this (n-1) group are combined into a (3n-3)-

bit code and the conformation is stored in the corresponding encoding location of the global buffer.

For example, if thread and search_depth of QuickVina-W-GPU were set to 100 and 5, respectively.

The maximum number of points to be stored in the Global Buffer is 5 ∗ 100, resulting in 𝑛 = 3.

Each conformation is given a Binary ID based on the three-dimensional location. In Figure 4(a), the

large purple square indicates a docking box, dividing the box into eight red boxes like Figure 4(d),

coded it as “111” based on the results of comparing the position of the conformation (𝑥, 𝑦, 𝑧) with

the central of the docking box (𝑐𝑒𝑛𝑡𝑒𝑟_𝑥, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑦, 𝑐𝑒𝑛𝑡𝑒𝑟_𝑧), due to (𝑛 − 2) = 1 , the red box

needs to divided one time more, coded it as “100” based on the position of black point. The result

of combining 3bit codes of two group is “111100”. The conformation will be placed in the memory

space of “data0” at index “111100”.

Figure 4. Transformation of the original octree structure into the global buffer format. For example, the black

dot in the green box in Figure(b) will be encoded as "11100" as shown in Figure (d), and then placed in the

corresponding position in the global buffer according to the encoding result.

QuickVina-W-GPU enables thousands of reduced-steps iterated local search processes running

concurrently within the GPU computational cores. We denote each reduced-step iterated local

search process as a docking thread. Within thread = i , an OpenCL work item is assigned to a

randomly initialized co initialized conformation 𝑪𝑖 , which can be represented by its position,

orientation and torsion (POT):

 𝑪𝑖 = {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖 , 𝑑𝑖 , 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡
𝑖

} (22)

where 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖correspond to the position of the conformation in a pre-determined searching

space; 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 denote its orientation as a rigid body in the quaternion form; 𝜓1
𝑖 , 𝜓2

𝑖 , . . . , 𝜓𝑁𝑟𝑜𝑡

𝑖

represent torsions of 𝑁𝑟𝑜𝑡 rotatable bonds. Then, 𝑪𝑖
′ is the randomly mutated that each

conformation 𝑪𝑖 is to be in one of its POT with the uniform distribution.

 𝑪𝑖
′ = 𝑅(𝑪𝑖) (23)

where 𝑅(∙) is a random jitter function to perturb the conformation. G-check and I-check check

whether 𝑪𝑖
′ is significant or not for the thread. G-check is first performed to calculate the spatial

distance between the perturbed molecular conformation and the conformation in the global memory,

which stores the final conformation after all threads have been optimized twice by the BFGS, is

calculated. The conformations with spatial distances less than the cut-off radius 𝑅 are then filtered

out, and then the Euclidean distance in 𝑁 dimensions between the conformation to be detected and

the conformation within the cut-off radius 𝑅 is calculated, and the first 𝑁 nearest-neighbour

conformations are found in order of Euclidean distance from closest to farthest, and if one of the N

neighbour conformations satisfies the heuristic condition, otherwise I Check is performed. Search

the molecular conformations in the thread's local cache, which stores all the conformations obtained

during the thread's BFGS optimization. The N-dimensional Euclidean distance between the

perturbed molecular conformation and the conformation in the local cache is calculated, and the top

3N nearest-neighbour conformations are found by sorting the N-dimensional Euclidean distances

from closest to farthest. If one of the 3N neighbour point conformations satisfies the heuristic

condition described in Equation (14) and (15), proceed to BFGS. If not, exit that search and start

again at mutating.

The conformation will be continuously evaluated with a scoring function that quantifies the

potential energy of the binding pose. Generally, the potential energy e is calculated with the sum of

intermolecular energy and intramolecular energy:

 𝑒 = 𝑒𝑖𝑛𝑡𝑒𝑟 + 𝑒𝑖𝑛𝑡𝑟𝑎 (24)

where 𝑒𝑖𝑛𝑡𝑒𝑟 represents the interaction energy between the ligand and the receptor, and it is

calculated using trilinear interpolation that approximates the energy of each atom pair by looking

up the grid cache; and 𝑒𝑖𝑛𝑡𝑟𝑎 indicates the interaction energy of the pairwise atoms within the

ligand. Considering that both 𝑒𝑖𝑛𝑡𝑒𝑟 and 𝑒𝑖𝑛𝑡𝑟𝑎 are related to the binding pose, the scoring

function SF can be denoted as a function of POT variables:

 𝑺𝑭𝑪𝑖
′ = 𝑓(𝑪𝑖

′) (25)

A Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization is applied to update the ligand

conformation by minimizing of the scoring function SF. First initialize the hessian matrix 𝑩0 ∈

ℝ(7+𝑁𝑟𝑜𝑡)×(7+𝑁𝑟𝑜𝑡). 𝑩0 is initiated with identity matrix 𝑬, Initial random conformation 𝒙𝑖 = 𝑪𝑖
′ ,

the (𝑘 + 1)𝑡ℎ iteration of the BFGS is calculated as follows：

Calculating direction 𝒅𝑘:

 𝒅𝑘 = −𝑩𝑘
−1𝛻𝑺𝑭(𝒙𝑘) (26)

Where 𝑩𝑘
−1 is the inverse matrix of the Hessian matrix generated by the 𝑘𝑡ℎ iteration

process. Calculating the step size in the direction 𝒅𝑘 by using the Armijo criterion：

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆𝐹(𝒙𝑘 + α𝒅𝑘) (27)

Updating the conformation 𝒙𝑘+1:

𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘

Updating the conformation 𝑩𝑘+1:

 𝑩𝑘+1 = 𝑩𝑘 +
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒔𝑘

−
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘
𝑇

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

 (28)

Where 𝒚𝑘 = 𝛻𝑺𝑭(𝒙𝑘+1) − 𝛻𝑺𝑭(𝒙𝑘) , 𝒔𝑘 = 𝛼𝑘𝒅𝑘 . The BFGS iteration process ends if the

following conditions are met:

 ‖𝛻𝑺𝑭(𝒙𝑘+1)‖ ≤ 𝜀 𝑜𝑟 𝑘 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ (29)

Where 0 < 𝜀 ≤ 1 , α(𝛼𝑘) means the step size in the direction 𝒅𝑘, along the decrease of the

𝑆𝐹 value, the conformation of the BFGS output is 𝒙𝑘+1. Next, a metropolis acceptance criterion is

adopted to decide whether to accept the optimized conformation or not, by comparing the energy

𝑒0 before the mutation and the energy 𝑒𝑜𝑝𝑡 after the optimization. Here, the accept probability P

is represented by:

 𝑃 = {
1 𝑒0 > 𝑒𝑜𝑝𝑡

exp (𝑒0−𝑒𝑜𝑝𝑡)

1.2
 𝑒0 ≤ 𝑒𝑜𝑝𝑡

 (30)

It indicates that the accepted conformation is more likely to have a lower energy. Once accepted,

the conformation will be further evaluated and optimized by BFGS. Then, the next iteration

continues to update the previous optimized conformations until convergence. Finally, all the best

conformations found by work items are returned to the host part.

Algorithm 3 proposed the pseudocode of our QuickVina-W-GPU. In Algorithm 2, Mutute(.)

means a random mutation of the POT in a ligand conformation; 𝐼_𝐶ℎ𝑒𝑐𝑘(.) and 𝐺_𝐶ℎ𝑒𝑐𝑘(.)

determines whether the current conformation requires further local search which is described in

Equations (14) and (15);BFGS(.) represents the BFGS optimization method which is described in

Equations (26)–(29); Scoring(.) is the potential energy of a binding pose described in Equations (24)

and (25); Metropolis(.) is the metropolis acceptance criterion described in Equation (30); and

Clustering&Sorting&refinment&RMSD_filtering (.) is the aggregation, filtering (based on the

RMSD) and reordering (based on the docking score) of all ligand conformations among all threads.

Algorithm 3 QuickVina-W-GPU

Input: random ligand conformations: {𝑪0, 𝑪1, ⋯ , 𝑪𝑀}

Output: top 𝒌 ligand conformations: {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ }

1: for all 𝑪𝑡ℎ𝑟𝑒𝑎𝑑(𝑡ℎ𝑟𝑒𝑎𝑑 = 0,1,2, ⋯ , 𝑛) 𝐜𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭𝐥𝐲 𝒅𝒐

2: for all 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 0,1,2, ⋯ , 𝑠 do

3: 𝑀𝑢𝑡𝑎𝑡𝑒(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

4: if 𝐺_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)|| 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑) then

5: 𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

6: 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙_𝑏𝑢𝑓𝑓𝑒𝑟. 𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑)

7: if 𝑀𝑒𝑡𝑟𝑜𝑝𝑜𝑙𝑖𝑠(𝑪𝑡ℎ𝑟𝑒𝑎𝑑 , 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
) then

8: 𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
= 𝑪𝑡ℎ𝑟𝑒𝑎𝑑

9: if 𝐺_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
)|| 𝐼_𝐶ℎ𝑒𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡

) then

10: 𝐵𝐹𝐺𝑆(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
)

11: 𝑔𝑙𝑜𝑏𝑎𝑙_𝑏𝑢𝑓𝑓𝑒𝑟. 𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘(𝑪𝑡ℎ𝑟𝑒𝑎𝑑𝑏𝑒𝑠𝑡
)

12: end if

13: end if

14: end if

15: end for

16: end for

17: 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔&𝑆𝑜𝑟𝑡𝑖𝑛𝑔&𝑟𝑒𝑓𝑖𝑛𝑚𝑒𝑛𝑡&𝑅𝑀𝑆𝐷_𝑓𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(𝑪0𝑏𝑒𝑠𝑡
, 𝑪1𝑏𝑒𝑠𝑡

, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡
)

18: return {𝑪0
∗ , 𝑪1

∗ , ⋯ , 𝑪𝑘
∗ } ∈ {𝑪0𝑏𝑒𝑠𝑡

, 𝑪1𝑏𝑒𝑠𝑡
, ⋯ , 𝑪𝑛𝑏𝑒𝑠𝑡

}

3. Results and Discussion

3.1 Experimental Settings

All experiments were executed on the same computer with Intel (R) Core (TM) i9-10900K

CPU @ 3.7 GHz using Windows 10 Operating System with 64 GB RAM and OpenCL v.3.0 with

Nvidia Geforce RTX 3090 GPU under single-precision floating-point format (FP32). The center

and volume of the docking box, the number of random seeds (cpu or thread) and the runtime options

(exhaustiveness or 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ) were used to configure these experiments. We created a config.txt

file for complexes, which contains the parameters and their definitions as shown in Table I. Our

experimental parameters such as cpu, thread, exhaustiveness, and 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ are set as shown in

Table 2. For instance, the argument exhaustiveness and cpu were set to 128 and 20 in the AutoDock

Vina, while the argument 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ was set by the heuristic formula and thread were set to 8000

in the Vina-GPU.

Table 1. Parameters are included in the config.txt file

Argument Description

receptor the recrptor file (in .pdbqt format)

ligand/ ligand_directory the ligand file (in .pdbqt format)/

this path contains all the ligand files

center_x/y/z the center of searching box in the receptor

size_x/y/z the volume of the searching box

cpu/thread the number of random seeds

exhaustiveness/search_depth the size of searching iterations

Table 2. Experimental parameters setting

Docking method
the number of

random seeds
the runtime options

AutoDock Vina 𝑐𝑝𝑢 = 20 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =128

Vina-GPU 𝑡ℎ𝑟𝑒𝑎𝑑 =8000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ was set by the heuristic formula

QuickVina 2 𝑐𝑝𝑢 = 8 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 8

QuickVina-W 𝑐𝑝𝑢 = 16 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =16

Vina-GPU+ 𝑡ℎ𝑟𝑒𝑎𝑑 =8000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ 𝑤𝑎𝑠 𝑠𝑒𝑡 𝑏𝑦 𝑡ℎ𝑒 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑓𝑜𝑟𝑚𝑢𝑙𝑎

QuickVina 2-GPU 𝑡ℎ𝑟𝑒𝑎𝑑 = 5000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ =1

QuickVina-W-GPU 𝑡ℎ𝑟𝑒𝑎𝑑 = 8000 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ =5

 For Vina-GPU and Vina-GPU+, the size of searching iterations in each thread (𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ)

was set by the heuristic formula. The heuristic formula is given as follows,

 𝑠𝑒𝑎𝑟𝑐ℎ_𝑑𝑒𝑝𝑡ℎ = 𝑚𝑎𝑥 (1, 𝑓𝑙𝑜𝑜𝑟(0.24 ∗ 𝑁𝑎𝑡𝑜𝑚 + 0.29 ∗ 𝑁𝑟𝑜𝑡 − 3.41)) (31)

where 𝑁𝑎𝑡𝑜𝑚 is the number of atoms and 𝑁𝑟𝑜𝑡 is the number of rotatable bonds in a ligand.

The function 𝑓𝑙𝑜𝑜𝑟(𝑛) is the function that gives as output the greatest integer less than or equal to

𝑛 when takes as input a real number 𝑛.

The docking accuracy is determined by their docking score and RMSD. The runtime

acceleration (Acc) of our proposed method against the baseline method is defined by

 𝐴𝑐𝑐 =
𝑡baseline

𝑡our
 (32)

We evaluated the similarity of top 𝑖 compounds with the lowest docking scores on the baseline

methods or our Vina-GPU 2.0 by Jaccard index[22] as defined by

 𝐽𝑖 =
|𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑖 ∩𝑇𝑜𝑢𝑟
𝑖 |

|𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪𝑇𝑜𝑢𝑟

𝑖 |
 (33)

where 𝑖 = 15, 50, 100, 200, 300, and 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖

 and 𝑇𝑜𝑢𝑟
𝑖

 represent subset of top 𝑖 compounds of

the baseline methods and Vina-GPU 2.0, respectively.

3.2 Virtual Screening on RIPK1

To show the acceleration effect of our Vina-GPU 2.0 in implementing real virtual screens, a

case was detailed on the receptor RIPK1 with the docking of DrugBank. The receptor RIPK1 is a

key regulator of apoptosis and necrosis as well as inflammatory pathways, and it has emerged as

one of the effective targets for the treatment of various diseases such as neurodegenerative diseases,

autoimmune diseases and inflammation. DrugBank[23] is one of the most popular drug databases

that contains detailed information on drugs and drug targets. A total of 9125 molecules were

downloaded from the DrugBank database at https://go.drugbank.com/releases/latest#structures.

Table 3. Comparison of docking runtime on RIPK1

Baseline method
Time

(hours)
Vina-GPU 2.0

Time

(hours)
Acc

AutoDock Vina 176.66 Vina-GPU+ 2.50 70.67X

Vina-GPU 8.18 Vina-GPU+ 2.50 3.27X

QuickVina 2 8.62 QuickVina 2-GPU 5.91 1.46X

QuickVina-W 26.37 QuickVina-W-GPU 8.16 3.23X

Acc: the runtime acceleration of Vina-GPU 2.0 against the baseline method.

Vina-GPU+ took only 2.50 hours to complete the whole docking process while AutoDock Vina

took 176.66 hours and Vina-GPU took 8.18 hours, demonstrating that our Vina-GPU+ achieved

acceleration of 70.67X and 3.27X. In addition, our QuickVina 2-GPU and QuickVina-W-GPU

obtained acceleration of 1.46X and 3.23X, respectively.Among all the methods, the least time-

consuming methods are Vina-GPU+ (2.5h), QuickVina 2-GPU (5.91h), QuickVina-W-GPU (8.16h)

and Vina-GPU (8.18h) respectively (Table 3). Figure 5 shows the comparison of docking scores

between our Vina-GPU 2.0 and the baseline methods. The color bar represents the number of atoms

in a ligand. Based on the docking scores of the complexes, most complexes are distributed near the

diagonal and fall into a lavender margin of 0.5 kcal/mol difference. Their Pearson correlation

coefficients are 0.912, 0.953, 0.802 and 0.915 for AutoDock Vina VS Vina-GPU+, Vina-GPU VS

Vina-GPU+, QuickVina 2 VS QuickVina 2-GPU, and QuickVina-W VS QuickVina-W-GPU,

respectively. Except for QuickVina 2-GPU, our Vina-GPU 2.0 achieves close docking scores with

the baseline methods. QuickVina 2 lost its docking accuracy to obtain docking conformations

quickly, and the docking results returned each time were not stable, thus resulting in the docking

structures derived from QuickVina 2 and QuickVina 2-GPU are not very similar. In addition, the

docking scores of all 9125 molecules for our Vina-GPU 2.0 and baseline methods were shown in

Supplementary Data S1. For example, the average docking score of AutoDock Vina and Vina-GPU+

are -6.16 and -5.98, respectively. For AutoDock Vina, the top three docking scores are -10, -9.4, -

9.3 and their corresponding binding poses were DB12983, DB09187, and DB15997, shown by

DrugBank accession number. For Vina-GPU+, they are DB12983, DB09187, DB13136 with the

best docking scores (-10, -9.5, -9.3). Table 4 shows that all the Jacard indexes of the docking results

of our Vina-GPU 2.0 and the baseline methods on RIPK1.

Figure 5. Comparable docking scores on RIPK1 between Vina-GPU 2.0 and the baseline methods on all 9125

compounds from the DrugBank dataset. The color bar encodes the number of atoms in one ligand. A margin of 0.5

kcal/mol difference on the docking score between Vina-GPU 2.0 and the baseline methods is highlighted with

lavender. The Pearson correlation coefficient of their docking scores is 0.912,0.953,0.802 and 0.915, respectively

(indicated by “pearson”).

Table 4. The Jacard indexes 𝐽𝑖 on the top 𝑖 subsets of Baseline method and Vina-GPU 2.0 on RIPK1

(a) AutoDock Vina VS Vina-GPU+

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−𝐺𝑃𝑈 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−𝐺𝑃𝑈 2.0

𝑖 Jacard Index

15 9 21 0.429

50 33 67 0.493

100 69 131 0.526

200 129 271 0.476

300 205 395 0.519

(b) Vina-GPU VS Vina-GPU+

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖 Jacard Index

15 13 17 0.765

50 44 56 0.786

100 91 109 0.834

200 175 225 0.778

300 266 334 0.796

(c) QuickVina 2 VS QuickVina 2-GPU

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖 Jacard Index

15 7 23 0.304

50 29 71 0.408

100 60 140 0.429

200 128 272 0.471

300 190 410 0.463

(d) QuickVina-W VS QuickVina-W-GPU

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖 Jacard Index

15 11 19 0.579

50 41 59 0.695

100 84 116 0.724

200 166 234 0.709

300 233 367 0.635

3.3 Virtual Screening on RIPK3

The receptor RIPK3 is also a key regulator of apoptosis and necrosis as well as inflammatory

pathways, and it has become one of the effective targets for the treatment of various diseases such

as neurodegenerative diseases, autoimmune diseases and inflammation. Therefore, in this paper,

another case was detailed on the receptor RIPK3 (PDBid) with the docking of DrugBank. Table 2

shows a detailed comparison of the docking times of our Vina-GPU 2.0 and the baseline methods.

Only 2.55 hours were taken to execute the whole docking process by Vina-GPU+ while 154.38

hours by AutoDock Vina and 8.87 hours by Vina-GPU, indicating that the acceleration of 60.54X

and 3.48X are achieved by our Vina-GPU+ (Table 5). Also, the acceleration of 1.41X and 3.97X

was obtained by our QuickVina 2-GPU and QuickVina-W-GPU, respectively. Among all the

methods, the least time-consuming methods are Vina-GPU+ (2.55h), QuickVina 2-GPU (6.60h),

QuickVina-W-GPU (8.81h) and Vina-GPU (8.87h) respectively (Table 3).

Figure 6 shows the comparison of docking scores between our Vina-GPU2.0 and the baseline

methods, where most compounds lie around the diagonal line and within the margin (in lavender)

of 0.5 kcal/mol difference on the docking score. The color bar encodes the number of atoms in one

ligand. Their Pearson correlation coefficients are 0.976, 0.991, 0.921 and 0.975 for AutoDock Vina

VS Vina-GPU+, Vina-GPU VS Vina-GPU+, QuickVina 2 VS QuickVina 2-GPU, and QuickVina-

W VS QuickVina-W -GPU, respectively. It shows that our Vina-GPU2.0 achieves the very close

docking scores with the baseline methods. the docking scores of all 9125 molecules for our Vina-

GPU 2.0 and baseline methods were shown in Supplementary Data S2. For example, the average

docking score of AutoDock Vina and Vina-GPU+ are -7.54 and -7.47, respectively. For AutoDock

Vina, the top 3 binding poses with the lowest docking scores (-13.3, -13, -13) are DB14773,

DB06896, DB11977 (DrugBank accession number). For Vina-GPU+, they are DB14773, DB06896,

DB05454 with the best docking scores (-13.7, -13.4, -12.5). Table 6 shows that all the Jacard indexes

of the docking results of our Vina-GPU 2.0 and the baseline methods on RIPK3.

Table 5. Comparison of docking runtime on RIPK3

Baseline method Time(hours) Vina-GPU 2.0 Time(hours) Acc

AutoDock Vina 154.38 Vina-GPU+ 2.55 60.54X

Vina-GPU 8.87 Vina-GPU+ 2.55 3.48X

QuickVina 2 9.31 QuickVina 2-GPU 6.60 1.41X

QuickVina-W 34.94 QuickVina-W-GPU 8.81 3.97X

Acc: the runtime acceleration of Vina-GPU 2.0 against the baseline method.

Figure 6. Comparable docking scores on RIPK3 between Vina-GPU 2.0 and the baseline methods on all 9125

compounds from the DrugBank dataset. The color bar encodes the number of atoms in one ligand. A margin of 0.5

kcal/mol difference on the docking score between Vina-GPU 2.0 and the baseline methods is highlighted with

lavender. The Pearson correlation coefficient of their docking scores is 0.976,0.991,0.921 and 0.975, respectively

(indicated by “pearson”).

Table 6. The Jacard indexes 𝐽𝑖 on the top 𝑖 subsets of Baseline method and Vina-GPU 2.0 on RIPK3

(a) AutoDock Vina VS Vina-GPU+

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−𝐺𝑃𝑈 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−𝐺𝑃𝑈 2.0

𝑖 Jacard Index

15 9 21 0.429

50 28 72 0.389

100 66 134 0.493

200 147 253 0.581

300 218 382 0.571

(b) Vina-GPU VS Vina-GPU+

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖 Jacard Index

15 14 16 0.875

50 41 59 0.695

100 87 113 0.770

200 173 227 0.762

300 269 331 0.813

(c) QuickVina 2 VS QuickVina 2-GPU

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖 Jacard Index

15 6 24 0.25

50 24 76 0.316

100 51 148 0.351

200 111 289 0.384

300 172 428 0.402

(d) QuickVina-W VS QuickVina-W-GPU

Top 𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ⋂𝑇Vina−GPU 2.0

𝑖 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑖 ∪ 𝑇Vina−GPU 2.0

𝑖 Jacard Index

15 12 18 0.667

50 36 64 0.563

100 77 123 0.626

200 155 245 0.633

300 238 362 0.657

3.4 Docking acceleration on the AutoDock-GPU dataset

The benchmark dataset from the AutoDock-GPU[24] study is comprised of 85 complexes from

the Astex Diversity Set[25], 35 complexes from CASF-2013[26], and 20 complexes from the

Protein Data Bank[27]. They cover a wide range of ligand complexities and targets properties. Table

5 shows the total docking runtime of our Vina-GPU 2.0 and the baseline methods on all 140

complexes of the AutoDock-GPU dataset. Only 0.25 hours were taken to execute the whole docking

process by Vina-GPU+ while 9.15 hours by AutoDock Vina and 0.29 hours by Vina-GPU, indicating

that the acceleration of 36.60X and 1.16X are achieved by our Vina-GPU+ (Table 3). Since the

molecular docking on the AutoDock-GPU dataset is not a single receptor docking with multiple

ligands, Vina-GPU+ generates the same number of grid cache as Vina-GPU, and the 1.17X speedup

is due to the fact that the grid cache of Vina-GPU+ is computed in parallel in the GPU. Also, the

acceleration of 1.75X and 4.20X was obtained by our QuickVina 2-GPU and QuickVina-W-GPU,

respectively. Among all the methods, the least time-consuming methods are QuickVina 2-GPU

(0.08h) and QuickVina 2 (0.14h), respectively (Table 7). QuickVina-W-GPU requires inter-thread

communication. Compared to AutoDock Vina, Vina-GPU and Vina-GPU+, QuickVina 2-GPU

contains heuristics that reduce unnecessary local searches, and therefore, QuickVina 2-GPU docking

is the fastest.

Table 7. The total docking runtime on the AutoDock-GPU dataset

Baseline method
Time

(hours)
Vina-GPU 2.0

Time

(hours)
Acc

AutoDock Vina 9.15 Vina-GPU+ 0.25 36.60 X

Vina-GPU 0.29 Vina-GPU+ 0.25 1.16X

QuickVina 2 0.14 QuickVina 2-GPU 0.08 1.75X

QuickVina-W 0.63 QuickVina-W-GPU 0.15 4.20X

Acc: the runtime acceleration of Vina-GPU 2.0 against the baseline method.

Figure 7 shows the runtime acceleration (Acc) on each complex by our Vina-GPU 2.0 against

the baseline methods. The average acceleration is highlighted by a white dot in the center, and the

shape of the violin shows the distribution of Acc values. Compared to AutoDock Vina, Vina-GPU+

achieves the maximal acceleration of 58.26X, as well as the average of 31.90X (Figure 8).

Compared to Vina-GPU, Vina-GPU+ achieves the maximal and average acceleration of 2.53X and

1.61X, respectively. Compared with QuickVina 2, QuickVina 2-GPU reaches the maximal

acceleration of 5.14X and the average of 1.74X. Compared with QuickVina-W, QuickVina-W-GPU

obtains the maximal acceleration of 28.46X and the average of 5.52X.

Figure 7. Acceleration of docking time (Acc) of our Vina-GPU 2.0 against the baseline methods (Vina-GPU,

QuickVina 2, QuickVina-W) on 140 complexes from the AutoDock-GPU dataset. The average Acc is highlighted

with a white dot in the center. (a) Vina-GPU+ VS AutoDock Vina; (b) Vina-GPU+ VS Vina-GPU; (c) QuickVina2-

GPU VS QuickVina2; (d) QuickVina-W-GPU VS QuickVina-W.

3.5 Docking accuracy on the AutoDock-GPU dataset

We compare the overall docking accuracy of our Vina-GPU 2.0 with the baseline methods in

terms of the docking score and RMSD performances on all 140 complexes. The color bar encodes

the number of atoms in a ligand. For AutoDock Vina VS Vina-GPU+, docking scores of most

complexes distribute around the diagonal line and fall into the lavender margin of 0.5 kcal/mol

difference and their Pearson correlation coefficient of the scores is 0.971 (Figure 8a), which denotes

a significant positive correlation. The average docking score of AutoDock Vina and Vina-GPU+ are

-8.92 and -8.65, respectively. These results show that our Vina-GPU+ achieves the very close

docking scores with AutoDock Vina. Similar phenomena and conclusions were found in the docking

scores of other comparison methods (Figure 8a).

A docking conformation is typically acceptable when its RMSD difference with the ground

truth structure is smaller than 2Å , and the red dashed line distinguishes whether a docking

conformation is acceptable or not from the RMSD aspect (Figure 8b). Results demonstrates that

most complexes fall into the lower left region where both our Vina-GPU 2.0 and the baseline

methods succeed to obtain the acceptable docking except for the QuickVina-W VS QuickVina-W-

GPU. For instance, for Vina-GPU+, 102 out of 140 RMSD results are within 2 Å, while 111 out of

140 for AutoDock Vina. The average RMSD of AutoDock Vina and Vina-GPU+ are 1.54 and 1.67,

respectively. Due to the RMSD results of QuickVina-W is large, and QuickVina-W-GPU uses the

GPU to accelerate QuickVina-W while ensuring that the accuracy of both is comparable, the red

dashed line is very close to the x and y axes in Figure 8(b). These results show that our Vina-GPU

2.0 achieves the similar comparable docking RMSD with the baseline methods. Thus, these findings

indicate that Vina-GPU 2.0 exhibits the comparable docking accuracy with respect to the baseline

methods on both docking score and RMSD.

Figure 8. Comparable docking accuracy between Vina-GPU 2.0 and the baseline methods on all 140 compounds.

The color bar encodes the number of atoms in one ligand. (a) A margin of 0.5 kcal/mol difference on the docking

score between Vina-GPU 2.0 and the baseline methods is highlighted with lavender in Figure 8a. The Pearson

correlation coefficient of their docking scores is 0.971,0.967,0.910 and 0.976 respectively (indicated by “pearson”).

(b) The RMSD value that indicates an acceptable binding pose (< 2 Å) are separated by a red dashed line in Figure

8b.

3.6 GUI

We developed a user-friendly and installation-free graphic user interface (GUI) for its

convenient operation on Windows 10 Operating System (Figure 9). The GUI contains three docking

methods, Vina-GPU+, QuickVina 2-GPU and QuickVina-W-GPU. The users can select docking

methods in interest for molecular docking and enter their parameters involving Receptor file path

(Receptor), Ligand file path (Ligand), Output Files path (Output File path), 3D coordinates of the

center of the docking box (Box center), the size of the docking box (Box size), thread, and search

depth. All input parameters required for molecular docking are provided in the GUI, and all input

parameters can be customized by users or by default values determined by heuristic formulas. Once

all input parameters have been entered, please click on the Start button to start docking. The progress

bar will show current docking progress. To facilitate the processing of output conformations, the

GUI can generate a table of all output conformations. The table contains the names of all output

conformations and their docking scores which are sorted from the lowest to the highest docking

score. This allows the user to quickly obtain the best output conformation. The codes, tools and

datasets of VINAs-GPU 2.0 are freely available at https://github.com/DeltaGroupNJUPT/VINAs-

GPU 2.0, coupling with explicit instructions and examples.

Figure 9. Graphic user interface (GUI) of Vina-GPU 2.0.

Conclusion

The further speedup of AutoDock Vina and its derivatives with GPUs is beneficial for

systematically pushing their popularization in large-scale virtual screens due to their high benefit-

cost ratio and easy operation for users. Thus, we proposed the Vina-GPU 2.0 method, to further

accelerate AutoDock Vina and the most common derivatives with new docking algorithm

(QuickVina 2 and QuickVina-W) with GPUs. Caused by the discrepancy of their docking algorithms,

our Vina-GPU 2.0 adopts different GPU acceleration strategies. In real virtual screening for two hot

protein kinase targets RIPK1 and RIPK3 from the DrugBank database, our Vina-GPU 2.0 reaches

an average of 65.6-fold, 1.4-fold and 3.6-fold docking acceleration against the original AutoDock

Vina, QuickVina 2 and QuickVina-W while ensuring their comparable docking accuracy. In addition,

we develop a friendly and installation-free graphical user interface (GUI) tool for their convenient

https://github.com/DeltaGroupNJUPT/VINAs-GPU
https://github.com/DeltaGroupNJUPT/VINAs-GPU

usage. The codes and tools of Vina-GPU 2.0 are freely available at

https://github.com/DeltaGroupNJUPT/ Vina-GPU 2.0, coupling with explicit instructions and

examples. In future studies, the following aspects would be taken into consideration for pushing the

popularization of AutoDock Vina and its numerous derivatives in large virtual screens. (1) We will

implement GPU acceleration for more derivatives, such as Vina-Carb, AutoDock VinaXB, Vinardo

and Smina。

Acknowledgements

We acknowledge the support from Yanxiang Zhu and Ruiqi Chen for providing nice

suggestions.

Funding

This work was supported in part by the National Natural Science Foundation of China

(61872198, 81771478 and 61971216) and the Basic Research Program of Science and Technology

Department of Jiangsu Province (BK20201378).

Conflict of Interest: none declared.

References

[1] Bohacek, Regine S., Colin McMartin, and Wayne C. Guida. "The art and practice of structure‐based drug

design: a molecular modeling perspective." Medicinal research reviews 16.1 (1996): 3-50.

[2] Lyu, J. , et al. "Ultra-large library docking for discovering new chemotypes." Nature 566.7743(2019):1.

[3] Trott, Oleg, and Arthur J. Olson. "AutoDock Vina: improving the speed and accuracy of docking with a new

scoring function, efficient optimization, and multithreading." Journal of computational chemistry 31.2 (2010):

455-461.

[4] Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. "Fast, accurate, and

reliable molecular docking with QuickVina 2. " Bioinformatics (2015): 2214–2216.

[5] Hassan, N. M. , et al. "Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-

Temporal Integration." Scientific Reports 7.1(2017):15451.

[6] Gorgulla, Christoph, et al. "An open-source drug discovery platform enables ultra-large virtual screens."

Nature 580.7805 (2020): 663-668.

[7] Li, H. , K. S. Leung , and M. H. Wong . "idock: A multithreaded virtual screening tool for flexible ligand

docking." IEEE Symposium on Computational Intelligence in Bioinformatics & Computational Biology IEEE,

2012.

[8] Jaghoori, Mohammad Mahdi , B. Bleijlevens , and S. D. Olabarriaga . "1001 Ways to run AutoDock Vina for

virtual screening." Journal of Computer-Aided Molecular Design 30.3(2016):237-249.

[9] Yu Y, Cai C, Zhu Z, Zheng H. Uni-Dock: A GPU-Accelerated Docking Program Enables Ultra-Large Virtual

Screening. ChemRxiv. Cambridge: Cambridge Open Engage; 2022; This content is a preprint and has not been

peer-reviewed.

[10] Tang, Shidi et al. “Accelerating AutoDock Vina with GPUs.” Molecules (Basel, Switzerland) vol. 27,9 3041.

9 May. 2022, doi:10.3390/molecules27093041

[11] Handoko, S. D. , et al. "QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global

optimization. " IEEE/ACM Transactions on Computational Biology & Bioinformatics 9.5(2012):1266-1272.

[12] Nivedha, A. K. , et al. "Vina-Carb: Improving Glycosidic Angles During Carbohydrate Docking." Journal of

Chemical Theory & Computation 12.2(2016).

[13] Koebel, Mathew R. , et al. "AutoDock VinaXB: implementation of XBSF, new empirical halogen bond scoring

function, into AutoDock Vina." Journal of Cheminformatics 8.1(2016):27.

[14] Quiroga, Rodrigo , and M. A. Villarreal . "Vinardo: A Scoring Function Based on Autodock Vina Improves

Scoring, Docking, and Virtual Screening." Plos One 11.5(2016):e0155183.

[15] Eberhardt, J. , et al. "AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python

Bindings." (2021).

[16] Koes, David Ryan , M. P. Baumgartner , and C. J. Camacho . "Lessons learned in empirical scoring with

smina from the CSAR 2011 benchmarking exercise. " Journal of Chemical Information & Modeling

53.8(2013):1893-1904.

[17] Mifflin, Lauren et al. “Receptor-interacting protein kinase 1 (RIPK1) as a therapeutic target.” Nature reviews.

Drug discovery vol. 19,8 (2020): 553-571.

[18] Morgan, Michael J, and You-Sun Kim. “Roles of RIPK3 in necroptosis, cell signaling, and disease.”

Experimental & molecular medicine, 10.1038/s12276-022-00868-z. 12 Oct. 2022.

[19] Zhan, Chaoning et al. “MLKL: Functions beyond serving as the Executioner of Necroptosis.” Theranostics

vol. 11,10 4759-4769. 4 Mar. 2021.

[20] Newton, Kim. “RIPK1 and RIPK3: critical regulators of inflammation and cell death.” Trends in cell biology

vol. 25,6 (2015): 347-53.

[21] Metropolis, Nicholas , et al. "Equation of State Calculations by Fast Computing Machines." The Journal of

Chemical Physics 21(2004).

[22] Jaccard, P. . "THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE. " New Phytologist

11.2(2010):37-50.

[23] Wishart, David S , et al. "DrugBank 5.0: A major update to the DrugBank database for 2018." Nucleic Acids

Research 46.Database issue(2017).

[24] Santos-Martins, D. , et al. "Accelerating AutoDock4 with GPUs and Gradient-Based Local Search." Journal

of Chemical Theory and Computation (2021).

[25] Hartshorn, Michael J , et al. "Diverse, High-Quality Test Set for the Validation of ProteinLigand Docking

Performance." Journal of Medicinal Chemistry 50.4(2007):726-741.

[26] Li, Y. , et al. "Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation

Methods and General Results." Journal of Chemical Information & Modeling 54.6(2014):1717-1736.

[27] Sussman, J. L. , et al. "The Protein Data Bank." Genetica 106.1(1999):149-158.

