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Abstract: Drug-induced liver injury (DILI) is the principal reason for failure in developing drug 

candidates. It is the most common reason to withdraw from the market after a drug has been approved 

for clinical use. Therefore, a current challenge is enhancing the accuracy of DILI events' predictive 

models. In this context, data from animal models, liver function tests, and chemical properties could 

complement each other to understand DILI events better and prevent them. Since the chemical space 

concept improves decision-making drug design related to the prediction of structure-property 

relationships, side effects, and polypharmacology drug activity (uniquely mentioning the most recent 

advances), it is an attractive approach to combining different phenomena influencing DILI events (e.g., 

individual “chemical spaces”) and exploring all events simultaneously in an integrated analysis of the 

DILI-relevant chemical space. However, currently, no systematic methods allow the fusion of a 

collection of different chemical spaces to collect different types of data on a unique chemical space 

representation, namely "consensus chemical space." This study is the first report that uses the data 

fusion concept to combine different chemical spaces to facilitate the analysis and prediction of DILI-

related events. The present work remarks the importance of analyzing together in vitro and chemical 

data (e.g., topology, bond order, atom types, presence of rings, ring sizes, and aromaticity of 

compounds encoded on RDKIT fingerprints). These properties could be aimed at improving the 

understanding of DILI events. 
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Introduction 

Drug-induced liver injury (DILI) is one of the most frequent reasons to stop the drug candidate 

optimization process (around 67% of these optimizations have been stopped for this issue), and it is 

the most common feature related to post-marketing withdrawals [1]. For this reason, a current challenge 

is to enhance the understanding of DILI events. In this context, the current non-multidisciplinary 

approaches to studying hepatotoxic activity have not been exploiting and combining the large diversity 

of information (in silico, in vitro, in vivo, and clinical data) available to study this endpoint [2,3]. 

Recent studies have demonstrated that combining different data types increased the description and 

prediction of  DILI events. For example, He et al. demonstrated that the combination of physicochemical 

and topological descriptors improved the accuracy of predictive DILI models [4]. Thakkar et al. 

remarked that the compounds associated with DILI events could be classified using mainly by 

anatomical (e.g. drugs used against the nervous system, anti-infectives for systemic use, antineoplastic 

immunomodulating agents, alimentary tract, and metabolism agents) and therapeutical features (e.g. 

drugs that act as antidepressants, anti-inflammatory, antirheumatic and antivirals products) [5]. 

Furthermore, a recent review by Vall et al. described the potential of artificial intelligence (AI) methods 

to predict liver injuries emphasizing that the combination of chemical structures, gene expression, in 

vitro, in vivo, and imaging assays could be used to decode the side effects of drugs [6]. These recent 

findings encourage the development of novel methodologies to simultaneously study a large diversity 

of data to predict DILI events. The next logical question is, “what kind of data and what type of data 

combinations could help to improve the classification and description of DILI-associated compounds?  

In drug design and development, visualization methods are key resources in data mining and 

information extraction from constantly increasing data sets. Indeed, visualization methods are important 

tools for rationalizing and interpreting experimental and calculated data [7]. A key example is the 

chemical space concept, defined as “an M-dimensional cartesian space in which compounds are 

located by a set of M physicochemical and/or chemoinformatic descriptors” [8]. Thus, chemical space 

allows the simultaneous study of different data types, such as structural, chemical, physicochemical, 

biological, clinical, and/or post-market data, to name a few examples. Since the chemical space 

depends directly on the descriptors used to define the M-dimensional cartesian space, it is important 

to mention that it is possible for the coexistence of parallel (or alternative) chemical spaces for the same 

set of molecules, namely, a multiverse chemical space. Also, it is possible to combine the alternative 
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chemical spaces to create a single “consensus” chemical space [9]. The chemical space application 

has demonstrated improvement in drug design, making decisions related to the prediction of structure-

properties relationships (SPR), side effects, and polypharmacology drug activity, to mention a few of 

the most recent advances [10]. 

In this regard, data fusion methods allow putting multiple data observations or calculations 

(descriptors) together to increase the consistency and confidence of the information derived from the 

data [11]. Data fusion was developed initially to improve similarity searching. It is a crucial concept that 

demonstrates its utility to increase the predictability of drug design models against different endpoints 

(e.g., properties, bioactivity, biological pathways, -omics relationships, etc.) from a huge data diversity 

such as structural, physicochemical, spectrometry, bioactivity, transcriptomic, imaging, histological 

data, etc. [12-16]. 

The present work aims to improve understanding of DILI events through a novel integration of data 

fusion concepts using chemical, physicochemical, and biological data, consensus chemical space, and 

chemical multiverses. 

 

Methodology 

Data set construction and curation 

The dataset was constructed by data deposited on public databases (DrugBank [17] and ChEMBL v.30 

[18]) and bibliographic data collected by X. Liu et al. [19] and S.Thakkar et al. [5]. A total of 2,309 drugs 

approved for clinical use were classified according to their DILI-associated events: if each compound 

has been associated with fatal hepatic adverse drug reaction, liver failure, liver transplantation, 

jaundice, bilirubin, and liver enzymes increase, hepatomegaly, hepatitis, and/or hepatotoxicity. Only 

186 (~ 8%) of the approved drugs were associated with DILI events. 

In parallel, a total of 190,068 compounds tested against the hepatic cell lines HepG2 and Huh7 

(ChEMBL ID: 3307718 and 3307515, respectively) and/or the clinically important cytochromes 

CYP1A2, CYP2A6, CYP2C9, CYP2D6, CYP3A4 (ChEMBL ID: CHEMBL3356, CHEMBL5282, 

CHEMBL3397, CHEMBL289, CHEMBL340, respectively) were retrieved from ChEMBL v.30. 

The approved drugs dataset associated with DILI events and the dataset with cell-based and 

cytochrome activity data were merged based on their canonical SMILES. Only 471 compounds (~20% 

of 2309 approved drugs) are associated with cell-hepatotoxicity activity (HepG2 and/or Huh7) and/or 
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cytochrome inhibition (CYP1A2, CYP2A6, CYP2C9, CYP2D6, and/or CYP3A4). The KNIME software 

[20] was used to assemble, merge, and curate the datasets. The KNIME workflow is available in the 

Supplementary material section (file Multitiverse_DataFusion.knwf). 

  

Descriptor calculation 

Based on the published findings  that suggest that the combination of chemical, physicochemical, and 

structural/topological descriptors improves the classification of DILI-related compounds [4,6], these 

types of descriptors were calculated in this work. 

To describe the chemical and physicochemical context of the data set DataWarrior v. 5.5.0 software 

[21] was used to calculate the number of H-donor bonds, number of H-acceptor bonds, number of 

rotatable bonds, molecular weight, cLogP, and topological surface area (TPSA) for each compound on 

the data set. Additionally, three types of structural/topological descriptors e.g Molecular ACCes System 

(MACCS) Keys, RDKit, and ECFP4 fingerprints were computed using the RDKit [22] module 

implemented by python programming language. 

 

Chemical space construction 

From the dataset with 471 compounds associated with DILI reports (available in the Supplementary 

material: “DB_ConsensusChemSpace_DILI.csv”), hepatotoxicity cell activity and cytochrome inhibition 

data were constructed and analyzed in their different chemical space representations based on 

chemical, physicochemical, structural, and in vitro (bioactivity) profile: cytochrome and hepatotoxic cell 

activity. The implementation of different chemical representations to analyze chemical spaces has been 

recently termed multiverse chemical space analysis [9].  

Before combining all bi-dimensional representations of chemical spaces, each representation was 

constructed using KNIME software v. 4.3.4 and the module “t-SNE” which is widely used to reduce 

high-dimensional data to two dimensions [23]. In t-SNE, the parameters were: 1,000 iterations, 0.5 

theta value, and 30 perplexity values to generate t-SNE 1 and t-SNE 2 coordinates. 

 

Assignment of weights to each chemical space 

Previous to data fusion it is important to establish the relative importance (weights) of each variable 

(chemical space coordinates, i.e., t-SNE coordinates) to describe the studied data (chemical structures 

associated with DILI reports). For this reason, we propose a simple metric, Quadrant weight (QW) - 
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Equation (1), that allows uncovering specific regions on the chemical spaces (2D plot coordinates) that 

are enriched with compounds associated with DILI events: 

(1) QW = (𝐴 ∗  100) / 𝑛)  +  ((𝑁𝐴 ∗ 100/𝑛)) / 2 

where “A” and “NA” represent the number of compounds associated or not with DILI events in a specific 

quadrant of the chemical space plot, respectively; “n” is the total number of compounds contained in 

the database. A positive QW value suggests that a region of the chemical space (2D plot coordinates) 

is enriched with positive DILI compounds.  

For this work, we define nine regions of each chemical space representation using the minimum and 

maximum values of the t-SNE coordinates that contain positive DILI compounds (this step is 

schematically explained in Figure S1 in the Supplementary material). The criteria to delimit each region 

are available in the Supplementary material (MetricOfDataFusion.xlsx). Finally, each weight peer 

quadrant was multiplied by the coordinate (t-SNE 1 or 2) of each compound contained in each chemical 

space representation.  

 

Data fusion 

Normalized value of weighted t-SNE coordinate (NWtSNE) was calculated to compare directly the 

representation of the chemical spaces i.e., based on in vitro data, chemical and physicochemical 

properties, and fingerprints. Each of the two dimensional coordinates t-SNE 1 and t-SNE 2 were 

calculated using Equation (2): 

(2) NWtSNE = ( (𝑊𝑡𝑆𝑁𝐸) −  (𝑀𝐼𝑁 (𝑊𝑡𝑆𝑁𝐸) ) ) / (𝑀𝐴𝑋 (𝑊𝑡𝑆𝑁𝐸) −  𝑀𝐼𝑁(𝑊𝑡𝑆𝑁𝐸) ) 

where “WtSNE” is the weighted t-SNE coordinate, “MIN” and “MAX” are the minimum and maximum t-

SNE value, respectively.  

Finally, the consensus t-SNE coordinates were generated by summing the normalized coordinates 

of each chemical space representation of each compound. The automatic workflow of this method was 

implemented in KNIME and it is available in the Supplementary material 

(Multitiverse_DataFusion.knwf). The interactive visualizations of the chemical spaces were generated 

with DataWarrior software v.5.5.0., and are available in the Supplementary material 

(DB_ConsensusChemSpace_DILI.dwar) [21,24]. 
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Distance calculations 

A strategy to evaluate if the clustering of associated and non associated DILI compounds is efficient is 

calculating the distance between each compound in each chemical space representation. Namely, the 

shortest distances between DILI-associated compounds indicate that the clustering method is more 

efficient. The largest distance in the clustering between DILI-associated compounds indicates that the 

method is not capable of clustering them. To this end, the Manhattan distances were calculated by 

each pair of compounds on the dataset [25]. The distances were calculated using the “distance matrix 

calculate” node in KNIME. The protocol is available in the Supplementary material 

(Multitiverse_DataFusion.knwf). The mean distance between associated (or non-associated) DILI 

compounds and their standard deviation were calculated and plotted. 

 

Results  

In this section, we discuss the chemical multiverse of compounds associated with DILI reports, and a 

methodology to integrate chemical space data. Figure 1 shows chemical structures of representative 

compounds associated with DILI events. Interestingly, these compounds exhibit a notable structural 

diversity with different chemical scaffolds, and also present different types of atoms (e.g., O, N, S, Cl, 

F, P, etc.) that confer different kinds of properties. 

 

Figure 1. Chemical structures of representative compounds associated with DILI events. 

 

Figure 2A-E shows the multiverse chemical space (i.e., different chemical space representations to 

the same data set) of 471 compounds associated with DILI reports. Each chemical space 
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representation illustrates structural (e.g., MACCS keys), topological (e.g., RDKIT, and ECFP4), 

chemical and physicochemical (e.g., drug-like properties), or in vitro data of this dataset. The data 

points colored in red represent compounds associated with DILI events (i.e., compounds associated 

with hepatotoxic signatures), in contrast with the compounds represented with data points in blue (that 

have not been related to DILI issues). Figure 2 illustrates an overview of the impact of each kind of 

descriptor on the clustering of compounds associated with DILI events. For example, the poor clustering 

generated by data from bidimensional structural descriptors (MACCS fingerprint - Figure 2-A) suggests 

that this information is not enough to cluster the compounds according to their DILI events. In contrast, 

topological (tridimensional) descriptors (like RDKIT) offer a better clustering of compounds associated 

with DILI events (red dots). Interestingly, the poor clustering based on drug-like properties (Figure 2-D) 

and in vitro data (Figure 2-E) suggests that these features (independently) do not guarantee the correct 

description of DILI events. 
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Figure 2. Representation of the multiverse chemical space of 471 compounds associated with DILI. Each 

chemical space visualization was constructed by dimensional reduction (t-SNE coordinates) of fingerprints (A) 

MACCS keys, (B) RDkit, (C) ECFP4, (D) chemical and physicochemical properties, and (E) in vitro data. Each 

data point in the graph represents a chemical structure, and the color of these points indicates if the chemical 

structure has been associated (red) or not (blue) with DILI events. Representative compounds are labeled with 

the compound numbers as in Figure 1. 

 

Figure 3 shows the consensus chemical space representation. This new chemical space 

representation improves the visual identification of positive DILI compounds (red data points). Each 

region of each consensus chemical space representation is constructed, as per equations 1 and 2, to 

improve the separation of the positive and negative DILI compound cases. Figure 3-A the new t-SNE 

coordinates generated from the fusion of multiverse chemical space data (e.g., structural, topological, 
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chemical, physicochemical, and in vitro data). Figure 3-B shows the new coordinates generated from 

the fusion of structural (RDKIT fingerprint) and in vitro data. 

 

 

Figure 3. Consensus chemical space of 471 compounds associated with DILI reports. Each chemical space was 

constructed using the assignment and normalization of the weights by each region of the chemical space. (A) 

Consensus chemical space representation of reduced dimensions generated from fingerprints, 

chemical/physicochemical properties, and in vitro data related to each compound associated with DILI reports. 

(B) Consensus chemical space representation using the reduced dimensions generated from RDKit fingerprint 

and in vitro data. (C and D) Consensus chemical space representations showing only compounds associated 

with DILI events. Each point in the chemical spaces represents a chemical structure. Data points are colored by 

if the chemical structure has been associated with DILI events (red) or not (blue). Representative compounds are 

labeled with the compound numbers as in Figure 1. 

 

It is remarkable the clustering difference observed in the visualization of the chemical spaces 

generated by only a type of data (Figure 2) as compared to the combined data (Figure 3). 

To remark on the improved clustering of the combined descriptors, Figure 4 shows the mean 

pairwise distance of associated (red) and non-associated (blue) compounds with DILI events generated 

by each chemical space representation. Figure 4 indicates that the use of a single data type generates 

a higher average pairwise distance (low clustering efficiency) of positive DILI compounds (from 12.7 to 
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25.7), and paired negative DILI compounds (from 17.9 to 25.1). This is in contrast with the consensus 

chemical space representation (fused data) that exhibits lower mean pairwise distance (high clustering 

efficiency) between positive DILI compounds (from 1.0 to 1.1) and negative DILI compounds (from 1.7 

to 3.2). 

Interestingly, using single or fused data, the distance between the non-associated DILI compounds 

continues to be higher than the distance between associated-DILI compounds. This fact suggests that 

the non-associated DILI compounds exhibit a higher intrinsically data diversity. 

 

 

Figure 4. Pairwise Manhattan distances of positive and negative DILI compounds in chemical space 

representations obtained with different descriptors. The 2D plots of the chemical space visualizations are in 

Figures 2 and 3. 

 

Each representation offers a unique form to cluster each chemical structure (Figures 2 and 3). 

However, consensus methods provide a mathematical framework to establish a weight to each region 

on the different chemical space representations (generating a semi-unsupervised approach to 

construct enriched chemical space representations, Figure 3). From a pharmacological view, these 

results remark on the importance of multidisciplinary approaches, using chemical and biological data, 

to develop methodologies capable of efficiently DILI events.  

 

Discussion 

There are multiple representations available to describe compounds and study the SPR of a data set. 

The large variety of molecular descriptors is linked to the subjectivity of the “molecular similarity” that 
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is dependent on the molecular representation [26]. Namely, the similarity of a pair of compounds 

depends on the features used to compare them. In fact, a pair of compounds could be considered 

similar if we use structural descriptors, but this does not guarantee that both compounds have similar 

in vitro activity [27]. For this reason, it is crucial to evaluate the similarity of the compounds and, in 

general, the SPR of data sets using different descriptors and similarity metrics. The combined analysis 

of alternative representations (aka data fusion) could reduce the information gap between the chemical 

structures vital in drug development and biological knowledge. However, one of the most important 

issues in data fusion is assigning adequate weights to each variable that is being combined (e.g., 

dimensions that define the compound's chemical space) because different mathematical 

approximations could be used to generate them [28]. In fact, there is no unique and “best” manner to 

generate consensus chemical spaces. Namely, it is necessary to adapt the data fusion approach to 

consider each data set. This important point could lead to the feature selection for prospective studies, 

generating a good starting point for exploring large datasets. 

There is a crescent interest in developing protocols capable of predicting DILI events. However, 

these side effects are complicated to predict because they are associated with (parallelly) multiple 

pharmacological events and become a typical problem to address with multiple-parameter optimization. 

For example, existing reports demonstrate the relationships between the chemical structures and 

physicochemical properties of the DILI events, but at the same time, other authors show that ADME 

properties, cell-based data, and other in vitro assays lead to the identification/prediction of DILI events. 

Namely, the DILI events are a complex case study that requires using all available data to rationalize 

(almost in part) and predict their occurrence during the pre-clinical and clinical interventions. 

Fortunately, the current multi-objective optimization methods could help address this issue briefly [29]. 

Consensus chemical spaces are an approach to fuse and use different kinds of data (e.g., 

descriptors that define the multidimensional vector space) to improve predicting a specific, desired 

property. To this end, the main challenge is to choose from the several methods available to combine 

high dimensionality of data using a robust mathematical scheme. 

Additionally, and as happens in any other predictive methodology, another major issue to address 

is the limited access to data [30], considering that several results that are regarded as of  “no interest” 

for a particular study (at some point in time) are rarely published. This fact creates a crescent gap in 

the available information related to compounds associated with poor activity or side effects like DILI 

events. 
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For prospective studies, it will be necessary to assess multiple methods to fuse data [31] and use 

other high-dimensional reduction methods such as principal component analysis and support vector 

machine, etc. [32]. 

The DILI understanding is relevant to elucidating molecular mechanisms, identifying novel 

biomarkers, and preventing drug side effects previously to pre-clinical and clinical interventions. The 

multiverse chemical space and the consensus chemical space representations (using fused data) 

enrich the information that could generate useful knowledge. For example, the drug design methods 

based on fused data could improve the next generation of toxicological and post-marketing decision-

making approaches. 

The results illustrated in Figure 4 show that the RDKIT fingerprint allows more efficient clustering in 

contrast with other kinds of fingerprints and descriptors explored in this work. This observation 

highlights the importance of the intrinsic descriptor encoded by the RDKIT fingerprint (e.g., topology, 

bond order, atom types, presence of rings, ring sizes, and aromaticity of each compound) that could 

be used to improve the understanding of DILI events. 

Figure 5 shows a classification of the 471 compounds associated with DILI according to the type of 

chemical taxonomy. The analysis shows that major types of compounds exhibit around 10% of 

chemical structures associated with DILI events. However, organohalogens, phenylpropanoids, 

polyketides, organic acids, organosulfur, alkaloids, and organophosphorus compounds exhibit a rate 

higher than 10% of associated DILI compounds. 

 
Figure 5. Types of compounds and their association with DILI events. 471 compounds associated with DILI 

reports were classified [33] according to their chemical taxonomy, and each chemical taxonomy was associated 

with the number of cases associated (red) and no associated (blue) with DILI events. 
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Additionally, the most frequent compounds associated with DILI events contain complex ring 

systems, specific functional groups, and atoms (e.g., double carbon bonds, carboxylic acids, ketones, 

halogens, sulfur, phosphorus) that per se have been associated with hepatic injuries [34-38]. From a 

chemical perspective, these observations could lead to the early identification of compounds potentially 

associated with DILI events. 

Finally, and from a pharmacological perspective, we remark on the importance of incorporating data 

that predict the hepatic and microbiota biotransformation [39,40] of xenobiotics to increase the early 

identification of potential associated DILI compounds. Acetaminophen provides a typical example of 

the importance of studying biotransformation. This drug is not hepatotoxic but its metabolites generate 

fulminant liver injuries [41,42]. 

 

Conclusions 

DILI is the principal reason for failure in developing drug candidates. It is the most common reason to 

withdraw from the market after a drug has been approved for clinical use. However, the current 

approaches to predicting DILI have not allowed a complete understanding of chemical and biological 

alerts to identify early compounds associated with DILI events. 

Drug design methodologies based on fused data could be the next generation of tools used in rational 

design, especially to decode complex pharmacological issues like DILI events. Here, we introduce a 

combined analysis of DILI-related events using the concept of consensus chemical space and the 

chemical multiverse, using chemical, physicochemical, structural, biochemical, and biological data to 

improve the understanding of DILI events. Our results, which suggest that the combination of chemical 

structural and biological data improves the clustering of associated DILI compounds, pave the way to 

new opportunities to develop predictive models (like machine and deep learning models) capable of 

predicting DILI events in an early stage of the drug development process. It was also concluded that 

organohalogens, phenylpropanoids, polyketides, organic acids, organosulfur, alkaloids, and 

organophosphorus compounds are associated with a higher rate of DILI events. For this reason, we 

suggest more exhaustive preliminary studies for these types of compounds with the aim of reducing 

the cases associated with DILI events. 
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