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Abstract

In this Perspective, we introduce a minimal active space (MAS) for the lowest N

eigenstates of a molecular system in the framework of a multistate density functional

theory (MSDFT), consisting of no more than N2 nonorthgonal Slater determinants. In

comparison with some methods in wave function theory in which one seeks to ex-

pand the ever increasing size of an active space to approximate the wave functions,

it is possible to have an upper bound in MSDFT because the auxiliary states in a

MAS are used to represent the exact N -dimensional matrix density D(r). In analogy

to Kohn-Sham DFT, we partition the total Hamiltonian matrix functional H[D] into

an orbital-dependent part, including multistate kinetic energy Tms and Coulomb-

exchange energy EHx plus an external potential energy
∫
dr v(r)D(r), and a corre-

lation matrix density functional Ec[D]. The latter accounts for the part of correlation

energy not explicitly included in the minimal active space. However, a major dif-

ference from Kohn-Sham DFT is that state interactions are necessary to represent the

N -matrix density D(r) in MSDFT, rather than a non-interacting reference state for the
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scalar ground-state density ρo(r). Two computational approaches are highlighted. We

first derive a set of non-orthogonal multistate self-consistent-field (NOSCF) equations

for the variational optimization of H[D]. We introduce the multistate correlation po-

tential, as the functional derivative of Ec[D], which includes both correlation effects

within the MAS and that from the correlation matrix functional. Alternatively, we

describe a non-orthogonal state interaction (NOSI) procedure, in which the determi-

nant functions are optimized separately. Both computational methods are useful for

determining the exact eigenstate energies and for constructing variational diabatic

states, provided that the universal correlation matrix functional is known. It is hoped

that this discussion would stimulate developments of approximate multistate density

functionals both for the ground and excited states.
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1 Introduction

Kohn-Sham density functional theory (KS-DFT)1 based on the theorems of Hohernberg

and Kohn is a ground-state method.2 Thanks to its computational efficiency and accuracy

by including dynamic electron correlation, KS-DFT has been a method of choice for large

systems.3 The success is directly related to the development of many exceedingly good,

approximate density functionals,3,4 and continuing efforts are clearly needed.5 Excited-

state energies can also be determined by DFT through linear-response (LR) time-dependent

approaches (TDDFT),6 though there are well-known short-comings including the treat-

ment of conical intersection between the ground state and the first excited state.7 Besides

developing even better approximate functionals for the ground state to overcome these

difficulties, a question has been lingering for sometime:4 what are future directions of

DFT?

Recently, two of the authors, Lu and Gao (LG),8 proved that (1) the Hamiltonian in

the subspace spanned by the lowest N eigenstates is a matrix functional, H[D], of the

multistate matrix density D(r), and (2) the variational minimization of a multistate en-

ergy with respect to D(r) yields the exact energies and densities of the N eigenstates.8

These two theorems lay a foundation for a rigorous multistate DFT (MSDFT) that treats

the ground and excited states on an equal footing. The matrix density D(r) of the N low-

est eigenstates is a matrix function of the coordinate r, in which the diagonal elements

correspond to the densities of all eigenstates and the off-diagonal terms are the transition

densities between the corresponding eigenstates. Importantly, it was shown that the N -

dimensional matrix density D(r) can be represented by no more than N2 nonorthogonal

Slater determinants.8

In wave function theory (WFT), complete active space self-consistent-field (CASSCF)

methods are widely used in electronic structure calculations.9,10 It is a special case of mul-

ticonfiguration SCF (MC-SCF) approaches, which can be systematically improved by ex-

panding the size of the CAS. Although CASSCF is almost perfect for treating strongly cor-
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related systems, its accuracy depends on post-SCF correction for dynamic correlation.11

A difficulty in the latter step, aside from its computational cost, is uneven rates of con-

vergence for different electronic states and its dependency on the choice of the active

space.10,12 Consequently, such a black-box approach still needs to be validated via trial

and error in practice.13

Is there an alternative, a smaller active space (than CAS) or even a minimal active

space (MAS) for the excited states of interest? The answer to the question is positive in

excited-state DFT.8,14 Then, the effort would be shifted from finding proper orbitals and

number of electrons for a given problem to defining representative states in the active

space based on physical properties. In fact, the idea of a MAS is no stranger to electronic

structure calculations. Perhaps, the best-known example is Kohn-Sham density func-

tional theory (KS-DFT), which employs a single Slater determinant to represent the exact

density of the ground state.1,15 Consequently, a non-interacting reference for the real sys-

tem is possible, guaranteed by the Hohenberg-Kohn theorems.1–3,15,16 Furthermore, LR-

TDDFT provides a good balance between accuracy and cost for excited states, making

use of this non-interacting reference state.6,17 18,19 Nevertheless, it has long been a goal

of theorists to develop a time-independent density functional theory beyond the ground

state.20–25 The aim of this Perspective is to introduce a minimal active space (MAS) for

a given number of N lowest-energy states in the framework of multistate density func-

tional theory along with two computational methods: nonorthogonal self-consistent-field

(NOSCF) equations and nonorthogonal state interaction (NOSI) for optimization of the

auxiliary states. It is hoped that this discussion shall stimulate further developments of

time-independent density functional theories to treat both the ground and excited states.

In what follows, we first discuss the two fundamental theorems of multistate DFT8

and its relationship with previous works and wave function theory. Then, we present

MAS for a given number of N states of interest, and the definition of the matrix function-

als for the kinetic, Coulomb and exchange, and correlation energy operators. Approxi-
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mations to construct the matrix elements of the Hamiltonian matrix functional with the

use of approximate functionals developed for KS-DFT are discussed. This is followed

by presentation of a multistate self-consistent-field (MS-SCF) method to optimize both

the orbitals and configuration coefficients, and a nonorthogonal state interaction (NOSI)

approach in which orbitals are separately optimized. The first method provides a for-

mally exact solution for the eigenstates and vectors in theN -dimensional subspace, given

that the universal correlation matrix functional was known. NOSI is a computationally

efficient alternative to the full MS-SCF theory.8,14,26,27 Finally, the two computational ap-

proaches are illustrated, respectively, by determining the potential energy surfaces about

the conical intersection point between the ground and the first excited state in the pho-

todissociation of NH3 and a spintronic sensor involving coupling interactions between

the triplet state of 1-chloro-9,10-anthraquinone and a model nitroxide free radical.

2 Multistate density functional theory

Suppose we are interested in the lowest N eigenstates of a molecular system, which de-

fines the subspace Vmin ∈ H. The system is described by the Hamiltonian Ĥ = Ĥ0 + V̂ext,

consisting of ne electrons under the multiplicative external potential V̂ext =
∑ne

j=1 v(rj)

due to nuclear charges. Here, Ĥ0 = T̂ + Ŵ includes the standard electronic kinetic energy

and Coulomb operators.

2.1 Hamiltonian matrix functional and variational principle

The original density functional theory of Hohenberg and Kohn (HK) is a ground-state

theory.2 For excited states, Theophilou introduced an analogous, subspace DFT,21 estab-

lishing a one-to-one relationship between an N -dimensional subspace and the subspace

density. However, the Theophilou subspace theory does not offer directly the energies

and vectors of the individual states. Recently, LG proved two theorems for the lowest N
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states of the Hamiltonian, including the ground state.

First, the Hamiltonian Ĥ0 projected on to the subspace Vmin is a universal matrix func-

tional of the multistate matrix density D(r): H0 = F [D].8 Then, the matrix functional of

the full Hamiltonian Ĥ for the system of interest is given by

H[D] = F [D] +

∫
dr v(r)D(r) (1)

where v(r) is the one-body external potential. F [D] is universal because it does not de-

pend on the specific external potential v(r). Conceptually, the HK density functional is a

scalar quantity, a (1x1)-matrix here, for which a non-interacting reference system is suffi-

cient (KS-DFT) to represent the ground-state density ρ0(r).1,2

The second theorem states that the matrix density D(r) can be obtained variationally

by minimizing the multistate energy,8

E[v] = min
D(r)
{EMS[D]} (2)

where EMS = N−1
∑N

I=1 EI , with EI =
∑N

A,B CIACIBHAB[D] being the energy of eigen-

state I . The coefficients {CIA} are elements of the matrix C that diagonalizes the Hamil-

tonian matrix functionalH[D].

2.2 Discussion

Several remarks may be made from different perspectives.

(1) Although the minimization object of eq 2 is the same as the subspace energy E[v]

of Theophilou,21 the two theories are in fact different at least for three reasons. First,

the fundamental variable that is optimized in eq 2 is a matrix density D(r), whereas the

subspace optimization of Theophilou makes use of the subspace density ρV (r), defined as

ρV (r) = 1
N

∑N
I ρI(r).21 Theophilou showed that ρV (r) uniquely determines the subspace
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Vmin spanned by the lowest N eigenstates,21 thus, identical to the subspace of eq 2 since

D(r) determines ρV (r) by ρV (r) = tr [S−1D(r)].28 Here, S is the corresponding overlap

matrix of D(r) given by SAB = n−1
∫

dr DAB(r). Note that D(r) is a matrix that consists of

basis-state densities (diagonal) and transition densities (off-diagonal), but ρV (r) is a scalar

function. Although the subspace density ρV (r) can be obtained from the matrix density

D(r), it is not possible in the reverse direction without invoking eqs 1 and 2. Therefore,

the information contents of the two theories are different.

Secondly, the subspace theory of Theophilou offers only the total energy of the sub-

space E[v] without the energies and densities of the individual eigenstates (eq 2).21 On

the other hand, the matrix density function in the theorems of LG provides the necessary

information to construct a Hamiltonian matrix functional that can be diagonalized. Con-

sequently, as the multistate (subspace) energy is variationally optimized (eq 2), the exact

eigenenergies and vectors of all individual states are simultaneously obtained.8

Thirdly, because of the one-to-one relationship between E[v] and ρV (r) in the Theophilou

subspace theory, a noninteracting reference system with a single Slater determinant, in ex-

actly the same way as KS-DFT for the ground state,21 can be used to represent ρV (r). This

led to the unfortunate impression that a non-interacting system can be used to determine

the eigenstate energies of an ensemble of states. Importantly, it has critical implications

on the origin of the lack of individual states in subspace DFT. In contrast, the nature of

the Hamiltonian matrix functional itself dictates that an interacting reference system is

needed to represent the multistate matrix density D(r). Thus, a straightforward appli-

cation of a Kohn-Sham-like approach, although sufficient for E[v], will be inadequate to

determine individual eigenstates in an excited-state DFT.

(2) Because of the trace of a matrix is invariant to a unitary transformation, the multi-

state (subspace) energy can be equivalently written as8

EMS[D] = tr
[
S−1H[D]

]
(3)
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Here, we note that the subspace trace has been normalized by the dimension of the sub-

space N . This functional expression is conveniently used in a computational algorithm

presented below. The diagonal elements of H[D] correspond to the energies of the basis

states that defines D(r), not necessarily the energies of the eigenstates, whether or not

orthogonal or nonorthogonal basis states are used.

(3) The matrix functional of the Hamiltonian and its functional variable D(r) are re-

lated by linear transformation properties of basis states.29,30 Given Φ′B =
∑N

A=1 L
∗
BAΦA,

where {Φ′B;B = 1, ..., N} is another set of basis states in the minimal active space, the

corresponding N -matrix density D′(r) transforms bilinearly,8 D′(r) = LD(r)L†. Then,

the Hamiltonian matrix functionalH[D] follows the same bilinear transformation,31

H[LDL†] = LH[D]L† (4)

This transformation property applies to the individual terms ofH[D], including matrices

constructed below within a minimal active space, Tms,EHx, as well as the correlation

matrix functional Ec[D].

(4) The variational minimization of eq 2 may be recast as a generalized constrained

search, originally developed for the Hohenberg-Kohn theory.32

E[v] = min
D(r)

{
N−1

N∑
AB

[
(S−1)AB〈ΦA|Ĥ|ΦB〉

]
; {ΦA} → D(r)

}
(5)

Thus, the optimization of the N -matrix density D(r) can be considered as searching for

the minimal subspace energy within all possible sets of N linearly independent wave

functions. In general, the wave functions are not necessarily orthogonal. The optimized

wave functions all belong to the subspace Vmin, which are linear combinations of the

lowest N eigenstates.

(5) The multistate energy in eqs 2 and 3, or, identically, the subspace energy of Theophilou,21

is defined as the average of all eigenstate energies of the subspace Vmin. Its variational
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minimization, at first glance, looks like that of the state-average CASSCF approach in

WFT.9,11 However, there is a fundamental difference between the ”state average” of MS-

DFT and that of WFT. The minimization of eq 2 is based on a variational principle such

that the multistate energy and its individual eigenstate energies are exactly defined. Pro-

vided that the universal functionalF [D] is known, being a density functional theory,15 the

eigenstate energies do not depend on the size of the subspace, i.e., the number of states

N included in the state average. In CASSCF, as is well-known, the energies of individual

states in the state-average minimization depend on the number of states and the weights

used.

(6) In the Gross-Oliveira-Kohn variant of subspace DFT (called ensemble DFT),22,23 the

subspace energy is written as a sum of weighted eigenstate energies,

Ew[v] = min
ρW (r)
{
∑
I

wIEI [ρI(r)]} (6)

where ρW (r) =
∑

I wIρI(r), and the weights are normalized to unity, which must re-

main constant or monotonically decreasing with increasing energies of the eigenstates.

The eigenstate-weighting scheme is equivalent to weighted Theophilou subspaces, whose

differences indeed yield the energy changes between different subspaces.21 A number of

applications have been made to extract eigenstate energies from the derivatives of the

subspace energy with respect to the state weight.22,23,33 However, an implicit assumption

in practice using eq 6 is that there is a Hohenberg-Kohn-like relationship for each indi-

vidual excited state, which to our knowledge does not exist. We now know from eqs 1

and 2 that the practical application of eq 6 is only ensured when H[D] is diagonal. In

other words, state interaction is needed in subspace DFT in order to obtain the eigenstate

energies.
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3 Minimal active space

The fundamental variable in MSDFT is the N × N matrix density D(r) as a function of

the spatial coordinates r.8 Recall that the trace of D(r) is the subspace density ρV (r) that

uniquely determines the subspace Vmin and the multistate energy EMS (eq 2).21

In order to design a computational procedure, it is necessary to represent the exact N -

matrix density D(r) of the real system by a set of auxiliary Slater determinants. Theorem

3 of LG8 states that the N -matrix density D(r) can be sufficiently represented by no more

than N2 independent, i.e., non-orthogonal, Slater determinants.

3.1 Minimal active space for multistate DFT

As an obvious departure from Kohn-Sham DFT, the auxiliary system designed to repre-

sent D(r) of the subspace Vmin can no longer be non-interacting. To this end, we introduce

a minimal active space, consisting of N basis states {ΦA;A = 1, · · · , N}, each of which is

written as a linear combination of N2 nonorthogonal determinants,

ΦA =
N2∑
ξ

cAξ Ξξ (7)

where {cAξ } are configuration coefficients. In eq 7, Ξξ is a Slater determinant of ne one-

body spin-orbitals {φξiσ}

Ξξ(r1, · · · , rne) =
1√
ne!

Â{φξ1σ1
(r1) · · ·φξneσn(rne)} (8)

where Â is the anti-symmetrizer. The spin-orbital is written as a product of the spatial

and spin orbitals: φξjσ(r) = φξj(r)σ, where σ represents the spin-up α or spin-down β

state. The orbitals with the same spin are orthonormal
〈
φξiσ|φ

ξ
jσ′

〉
= δijδσσ′ ; however,

orthogonality is not imposed on orbitals between different determinants. Therefore, the

basis determinants in the active space are generally nonorthogonal. The spin orbitals
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φξjσ(r) in different determinants must differ by at least one or more terms, i.e., linearly

independent, and one way of defining these targeted basis states has been described in

reference 34, which is called targeted-state optimizaiton (TSO).34 In general, we assume

that all determinants in the active space, {Ξξ}, have the same number of spin-up (nα) and

spin-down (nβ) electrons because the Hamiltonian matrix functional is block diagonal

with different eigenvalues of Ŝz: 1
2
(nα − nβ).8

TheN -matrix density D(r) of the minimal active space is given by its elementDAB(r) =

〈ΦA|ρ̂(r)|ΦB〉 in terms of nonorthogonal orbitals:

DAB(r) =
N2∑
ξζ

cAξ c
B
ζ

∑
σ=α,β

nσ∑
j,k

f ξζjk;σφ
ξ
jσ(r)φζkσ(r) (9)

where the coefficient f ξζjk is given in eq A.37.

The definition of N auxiliary states {ΦA} in eq 7 is aimed for representing both the

diagonal densities of the basis states and the transition densities. Just as KS-DFT in which

the Kohn-Sham determinant is used purely to represent the ground-state density, these

auxiliary states are not the wave functions for any specific states. It is certainly possible to

adopt an alternative construction to represent D(r) exactly, but we shall not discuss these

scenarios further in this Perspective.

3.2 Kinetic, Hartree-exchange and correlation matrix functionals

Given the multistate multiconfigurational MAS defined above to represent D(r), the total

Hamiltonian matrix functional may be written as follows.

H[D] = Tms + EHx + Ec[D] +

∫
dr v(r)D(r) (10)

where the first two terms originate from the Hamiltonian H0: < ΦA|Ĥ0|ΦB >= TABms +EAB
Hx

(eq 1).
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First, the multistate kinetic energy matrix functional of the MAS, Tms, is given by

TABms =
〈

ΦA|T̂ |ΦB

〉
with the expression of

TABms = − ~2

2m

N2∑
ξζ

cAξ c
B
ζ

∑
σ=α,β

nσ∑
j,k

f ξζjk;σ

〈
φξj;σ|∇2|φζk;σ

〉
(11)

And, the electronic Hartree and exchange-interaction matrix EHx is EAB
Hx =

〈
ΦA|Ŵ |ΦB

〉
,

EAB
Hx =

N2∑
ξζ

cAξ c
B
ζ

∑
σ,σ′=α,β

nσ∑
i,k

nσ′∑
j,l

f ξζij,kl;σ,σ′ 〈ij||kl〉ξζ (12)

where 〈ij||kl〉ξζ is the two-electron Coulomb-exchange integrals (eq A.39) with f ξζij,kl;σ,σ′

being the coefficient (eq A.38).

Then, the correlation matrix functional is defined via eq 1

Ec[D] = F [D]− (Tms + EHx) (13)

Notice that eq 10 has the same appearance as KS-DFT;1,3 however, each term in the

MSDFT Hamiltonian is an N -dimensional matrix functional, whereas those in Kohn-

Sham theory are scalar quantities. The matrix functional of eq 10, one form of an implicit

functional of D(r), consists of explicit state interactions, i.e., non-zero off-diagonal func-

tional terms, in contrast to the single-determinant, non-interacting reference system for

one state.

3.3 Spin symmetry

Here, we consider the structure of spin symmetry in MSDFT.

Since the Hamiltonian commutes with Ŝz, the auxiliary states {ΦA} in eq 7 are linear

combinations of the determinants that have the same eigenvalue of Ŝz. Consequently, ΦA

itself is an eigenstate of Ŝz with an eigenvalue of SAz .35 Then, the matrix density D(r) is
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block diagonal in terms of the eigenstates of Ŝz. That is, if SAz 6= SBz , DAB(r) = 0. Hence,

we also have HAB[D] = 0. That is, the Hamiltonian matrix functional is block diagonal

with different eigenvalues of Ŝz. We note that all spin-complement configurations are

included in the active space as the subspace contains all degenerate states. This ensures

that there is no spin-symmetry breaking during the optimization. Thus, the eigenstates

of the Hamiltonian matrix functional are also eigenstates of the total spin operator Ŝ2.

This is illustrated by the Hamiltonian matrix functional of the lowest five eigenstates

of the diatomic molecule, LiF, which consists of two singlet states, resulting from the

admixture of an ionic and a covalent configuration, plus the lowest triplet states with

Sz = +1, 0, and -1. The 5-matrix density D(r) is block-diagonal with respect to different

eigenvalues of Ŝz, D(r) = D(−1)(r) ⊕ D(0)(r) ⊕ D(+1)(r), where each of D(±1)(r) has one

single element as the triplet state density ρ(±)
T (r), corresponding to Sz = ±1, and D(0)(r)

is a 3-matrix density, containing two (the ground and the first excited) singlet states and

one triplet state of the Sz = 0 projection. The 5-state Hamiltonian matrix functional H[D]

has the same block-diagonal structure

H[D] = H(−1)[D(−1)]⊕H(0)[D(0)]⊕H(+1)[D(+1)] (14)

whereH(±1)[D(±1)] = ET [ρ±T ], is a single-state energy functional, andH(0)[D(0)] represents

a 3-state Hamiltonian matrix functional. As a result, the 5-state subspace energy func-

tional (eq 2) includes three independent terms

EMS[D] =
1

5

(
ET [ρ

(+)
T ] + ET [ρ

(−)
T ] + 3E

(0)
MS[D(0)]

)
(15)

Minimization of eq 15 is equivalent to the minimization of the three energy functionals

separately. One immediately recognizes that ET [ρ
(±)
T ] are the energy functionals of KS-

DFT, respectively, corresponding to a triplet determinant with either two extra spin-up or

spin-down electrons. Consequently, the problem is reduced to finding the 3-state Hamil-
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tonian matrix functionalH(0)[D(0)], giving rise to the ground and first excited singlet states

and one spin-multiplet of the lowest triplet state. The latter must be energy degenerate

with that of the other two blocks − a constraint to the correlation matrix functional.36,37

This conclusion can be straightforwardly generalized to all spin manifolds.37

4 Nonorthogonal self-consistent-field theory

We use the term multistate SCF (MS-SCF) to distinguish the present DFT approach from

the well-known MC-SCF methods in WFT because the basis states in the active space

for DFT include dynamic correlation, a dynamic-then-static ansatz.38 However, we em-

phasize that these states (eq 7) are used as auxiliary functions to represent the exact ma-

trix density D(r) of the N -dimensional subspace Vmin.14 In this section, we derive the

self-consistent-field equations for the general case of a nonorthogonal multistate DFT, or

NOSCF.

The variational minimization of the multistate energy (eq 2) is carried out using the

expression in eq 3 subject to the constraints of normalization for each multiconfigurational

state, 〈ΦA|ΦA〉 = 1, and the orthonormal conditions for orbitals within each determinant,〈
φξjσ|φ

ξ
kσ

〉
= δjk. Consequently, we introduce the Lagrangian

L[D] =EMS[D]−N−1

N∑
A

EA

(
N2∑
ξζ

cAξ Sξζc
A
ζ − 1

)

−
N2∑
ξ

∑
σ=α,β

nσ∑
jk

εξjk;σ

(〈
φξjσ|φ

ξ
kσ

〉
− δjk

)
(16)

where Sξζ = 〈Ξξ|Ξζ〉 is the overlap between two determinants, and {EA} and {εξjk;σ} are

the Lagrange multipliers that impose the constraints. The Lagrangian L[D] (eq 16) is

minimized simultaneously with respect to variations of both the orbitals {φξjσ(r)} and the
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CI coefficients {cAξ },

δ

δcAξ
L = 0,

δ

δφξjσ(r)
L = 0 (17)

4.1 Functional derivatives

To begin, we introduce the functional derivatives of the correlation matrix functional

Ec[D]. We emphasize that Ec[D] is a one-to-one mapping between the matrix density D(r)

and the correlation matrix, rather than a term-by-term mapping between the correspond-

ing elements of the two matrices.30 That is, in the general scenario, each matrix element,

EABc [D], is an implicit functional of all elements of D(r).8 This complication arises natu-

rally from the definition of the correlation matrix functional Ec[D] (eq 13), which is the part

of electronic correlation that is not explicitly included in configuration interaction among

the auxiliary states used to represent the exact matrix density D(r) of the subspace Vmin.

In analogy to the Kohn-Sham exchange-correlation functional,3,18 it is expected that Ec[D]

is a nonlinear functional of the matrix density D(r). Therefore, the functional derivative of

each element EABc [D] with respect to the transition density, DEF (r), leads to a four-index

potential,

vABEF (r) =
δ

δDEF (r)
EABc [D] (18)

where A,B,E, F = 1, · · · , N .

It follows that the variation of Ec[D] with respect to the CI coefficients is given by

δ

δcAξ
EBEc [D] = 2

N∑
F

N2∑
ζ

cFζ

∫
dr vBEAF (r)Dξζ(r) (19)

where Dξζ(r) = 〈Ξξ|ρ̂(r)|Ξζ〉 is the transition density between two determinants. Simi-
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larly, the variation of Ec[D] with respect to the orbital φξiσ(r) reads

δ

δφξiσ(r)
EBCc [D] =

N∑
EF

N2∑
ζ

(
cEξ c

F
ζ + cEζ c

F
ξ

) ∫
dr′ vBCEF (r′)

δ

δφξiσ(r)
Dξζ(r

′) (20)

The functional derivative of the transition density is written as

δ

δφξiσ(r)
Dξζ(r

′) =
nσ∑
k

(
f ξζik;σδ(r − r

′)φζkσ(r′) +
nσ∑
j 6=i

δf ξζjk;σ

δφξiσ(r)
φξjσ(r′)φζkσ(r′)

+
nσ̄∑
j

δf ξζjk;σ̄

δφξiσ(r)
φξjσ̄(r′)φζkσ̄(r′)

)
(21)

where the coefficient f ξζjk;σ is given in eq A.37 and σ̄ represents the opposite spin of σ. The

last two terms on the right-hand-side are due to the use of nonorthogonal orbitals in dif-

ferent determinants, where the derivatives of coefficients are given in eq 36 of Supporting

Information.

4.2 Generalized Fock equations for configuration coefficients

Variation of the Lagrangian L[D] with respect to cAp gives rise to

δ

δcAξ
L =N−1

N∑
BC

(
S−1
BC

δ

δcAξ
HBC [D]− δSBC

δcAξ

[
S−1H[D]S−1

]
BC

)

−2N−1EA

N2∑
ζ

Sξζc
A
ζ = 0 (22)

where we have used the identity δ
δcAξ

S−1 = −S−1
(

δ
δcAξ

S
)
S−1. Solution of eq 22 yields the

Fock-like equation,

N∑
B

N2∑
ζ

cFABξζ cBζ = EA

N2∑
η

Sξηc
A
η (23)
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The appearance of the overlap matrix, {Sξζ}, in eq 23 is due to the use of nonorthog-

onal determinants to construct each configuration state ΦA (eq 7). The Lagrangian multi-

plier EA acquires the physical meaning of the state energy for state ΦA. The Fock matrix

for the CI coefficients in eq 23 reads as follows.

cFABξζ = (S−1)ABHξζ +

∫
dr vABc (r)Dξζ(r)− (S−1H[D]S−1)ABSξζ (24)

The first and second terms of the Fock matrix cFABξζ come from the variation of the Hamil-

tonian matrix functional H[D] with respect to cAp and the last term is due to variation

of the overlap matrix S. We have defined in eq 24 the direct interaction matrix element

between two determinants,

Hξζ =
〈

Ξξ

∣∣∣Ĥ∣∣∣Ξζ

〉
(25)

4.3 Multistate correlation matrix potential

The multistate correlation potential between states A and B, vABc (r), in the second term of

the Fock matrix (eq 24) is defined by the weighted average of the four-index potentials

(eq 18),

vABc (r) =
N∑
EF

(S−1)EFv
EF
AB (r) (26)

The summation extends to interactions including all determinants of states ΦA and ΦB.

Using eq 18, we further find that

vABc (r) =
N∑
EF

(S−1)EF
δ

δDAB(r)
EEFc [D] (27)

As a result, this allows us to define the multistate correlation matrix potential, Vc[D], as the

matrix with elements of {vABc (r)}. Under the basis transformation with matrix L within
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the minimal active space and using the expression of eq 27, it is straightforward to show

that Vc[D] is also transformed bilinearly,

Vc[LDL†] = LVc[D]L† (28)

Therefore, the multi-state correlation matrix potential Vc[D] is induced by the outer

dynamic correlation (Ec[D]) and is a property of the exact subspace Vmin. The correlation

potential also highlights the origin of density-driven and state-driven correlation func-

tionals in ensemble DFT,39,40 which can be understood as an artefact of ignoring state

interactions, i.e., lacking the property of the above transformation. The relationship of

eq 28 unifies the two classes of correlation functions on an equal footing. Naturally, we

expect Vc[D] also plays a crucial role in the generalized Fock equation for orbitals.

4.4 Generalized Fock equation for orbitals

Similarly, variation of the Lagrangian L[D] with respect to φξjσ(r) leads to the generalized

Fock equation for orbitals:

N∑
AB

N2∑
ζ

nσ∑
k

(
cAξ c

B
ζ + cAζ c

B
ξ

)
oFAB;σ

ξζ;jk φ
ζ
kσ(r) = eξjσφ

ξ
jσ(r) (29)

where eξjσ has the meaning of the orbital energy of φξjσ(r) and is the j-th eigenvalue of the

matrix {εξik;σ} with i, k = 1, . . . , nσ in eq 16. Analogous to the Fock matrix for the config-

uration coefficients (eq 24), the Fock matrix for orbitals oFAB;σ
ξζ;jk consists of contributions

from four different sources, the Hamiltonian matrix HΦ constructed in the minimal active

space with HAB
Φ =

〈
ΦA|Ĥ|ΦB

〉
, the overlap matrix, the normalization condition (eq 16),
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and the correlation matrix functional:

oFAB;σ
ξζ;jk =(S−1)AB

(
oFσ

ξζ

)
jk
−
(
S−1H[D]S−1

)
AB

f ξζjk;σ − δABEAf
ξζ
ik;σ

+

[
f ξζjk;σv

AB
c (r) +

(
nσ∑

i 6=j;l 6=k

f ξζij,lk;σ,σ

〈
φξiσ|vABc |φ

ζ
lσ

〉
+

nσ̄∑
il

f ξζij,lk;σ̄,σ

〈
φξiσ̄|vABc |φ

ζ
lσ̄

〉)]
(30)

Since nonorthogonal orbitals are used in constructing different determinants, the func-

tional derivatives of various coupling constants with respect to orbitals should be ad-

dressed in the Fock equation, resulting in more complexity compared to the Fock equa-

tions based on orthogonal orbitals. The Fock matrix of the first term on the right-hand-

side of eq 30, oFξζ;σ, is given by the functional derivative of the Hamiltonian matrix HΦ,

N∑
AB

N2∑
ζ

nσ∑
k

(
cAξ c

B
ζ + cAζ c

B
ξ

) (
S−1
)
AB

(
oFσ

ξζ

)
jk
φζkσ(r) =

N∑
AB

(
S−1
)
AB

δ

δφξjσ(r)
HAB

Φ (31)

The derivation of the expression for oFσ
ξζ is given in the Supplementary Information.

4.5 Eigenstate energies and densities

With the solutions of eqs 29 and 23, the optimized configuration states {ΦA} can be used to

construct the Hamiltonian matrix functional H[D] (eq 1). The solution of the generalized

secular equation of the Hamiltonian matrix functional,

H[D]C = SCE0 (32)

gives the N -lowest adiabatic energies E0 = diag (E1, · · · , EN) and state vectors that give

the exact densities {ρI(r)} of the individual eigenstates.

In summary, a flowchart of the NOSCF computational procedure and that of the NOSI

method below is given in Scheme 1.
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Scheme 1: Flowchart illustrating key computational steps for the non-orthogonal
self-consistent-field (NOSCF) and non-orthogonal state interaction (NOSI) methods.
Acronyms are listed at the end of the article.
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5 Nonorthogonal state interaction

In wave function theory, a multiconfigurational (MC) wave function can be either opti-

mized self-consistently (MC-SCF) or determined by configuration interaction (CI). In MS-

DFT, the same two routes can be taken. In the latter case (Scheme 1), each determinant of

the MAS is variationally optimized first, followed by a single step of diagonalization, and

this approach is called nonorthogonal state interaction (NOSI). NOSI differs from NOCI

in WFT in that dynamic correlation is included in the first place.14,38 Although the config-

uration coefficients are not fully optimized as in MS-SCF (Scheme 1), an important benefit

of the NOSI approach is to produce variationally optimized diabatic configuration-states

(VDC).41 The latter is more useful and relevant to energy decomposition analysis,42,43 and

to studying charge transfer reactions and excited-state energy transfer processe44–46 than

the consistently produced basis states (CDC) from MS-SCF.41

5.1 Diagonal elements of the Hamiltonian matrix functional

In NOSI, we use the determinant states {ΦA} directly, which are defined by a constrained

KS-DFT for a particular set of non-aufbau configurations.34,47 This may be formally con-

sidered as applying a constraining potential that forces the determinant to keep in a spe-

cific pattern of orbital occupation.48 We argue that the use of an approximate density

functional developed for KS-DFT to determine the energies of these states, correspond-

ing to the diagonal elements of the Hamiltonian matrix functional H[D], is appropriate

because a single determinant is used in constrained ground-state optimization.14,26,49

HAA
Φ = EKS[ρA(r)] (33)

whereEKS[ρA(r)] is the KS-DFT energy obtained using the density from a single-determinant

state ΦA. Each of these non-aufbau states can be variationally optimized either by the

block-local excitation (BLE) method − a form of local ∆-SCF calculation47 − or by the
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targeted-state optimization (TSO) approach.34 In this regard, we point out that the con-

strained DFT optimizations in the BLE and TSO methods are performed in the orbital

space,14,26,27 which is different from that by spatial partition of the electron density.50

In MS-SCF calculations, individual basis states, {ΦA}, are expressed as a linear combi-

nation of N2 determinants (eq 7), but Kohn-Sham exchange-correlation functional is ap-

plied at the level of each individual determinant state, rather than a multi-configurational

density.51–55 Therefore, in principle, approximate density functionals for KS-DFT can also

be used. However, it might be necessary to adjust the correlation energy in such an

MS-SCF optimization.51 We have examined the Fermi-level scaled approach proposed

by Savin and coworkers with encouraging results in preliminary tests.56 More thorough

validation is certainly needed in future studies, and perhaps, a multistate approximation

to the correlation matrix functional is really desired and a focus in the future.

5.2 Transition density functional

As in KS-DFT, the exact multistate correlation matrix functional Ec[D] is unknown. Un-

like KS-DFT for which many approximate functionals have been developed in the past six

decades, exhibiting excellent performance in present-day applications, there is currently

no approximate matrix functional for subspace correlation among individual states. In

fact, the very concept of a transition density functional (TDF) for the off-diagonal ele-

ments of Ec[D] is new, accounting for the dynamic correlation in state interactions.14

Equation 13 shows that Ec[D] is a property of the subspace Vmin itself, expressed in

terms of the full matrix density D(r) and the corresponding set of basis states. Recall

that the matrix functional relationship is not a simple element-by-element mapping be-

tween EABc and DAB(r). That is, the total correlation in eq 13 is unique as far as the N -

dimensional subspace Vmin is concerned, but its matrix functional values are dependent

on the basis state transformation relationship of eq 4, also specifically shown for the cor-

relation potential in eq 28.
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Figure 1: Transition density functional for spin-coupling interactions in the MS = 1/2
manifold of quartet and doublet states. (A). Schematic illustration of the ground and
H → L excitation (MS > 0 components are shown). (B). Conditions for spin multiplet
degeneracy of the MS = 1/2 and MS = 3/2 states. In wave function theory (1), the
matrix element Kij is the exchange integral for orbitals i and j (i, j = L,S,H), δ is the
Kronecker delta function, and σi is the spin coordinate of an electron in orbital iwhere the
superscripts indicate the low-spin and high-spin configurations. For multistate density
functional theory (2), the wave functions are the block-localized excited (BLE) Kohn-Sham
determinants (A = 1, · · · , 4) and the orbital indices in (1) for the exchange integrals are
changed to the corresponding BLE-determinants for the off-diagonal matrix element of
the Hamiltonian matrix functional, corresponding to the spin flip, HMSDFT

BA = KWFT
ij . ∆E

is an energy difference between one of the low-spin configurations (ψ1 − ψ3) and that of
the high-spin configuration (ψ4).
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Although the functional form of the TDF is unknown, in special situations such as

electron spin-pairing interactions, the TDF correlation energy can be fully determined

consistently with the energy of a high-spin state that can be obtained,36,37,57 in princi-

ple exactly, using KS-DFT.58 This is achieved by enforcing the degeneracy condition of

spin multiplets of the same total spin S.59 Let KMSDFT be a column vector with the off-

diagonal matrix-element HAB
Φ placed in sequence and ∆EBLE be a column vector of the

KS-DFT energy difference between the high-spin state ΨBLE(S + 1) and the mixed-spin

microstates {ΨBLE
A (S)}, arranged in order consistent with the matrix M to yield the effec-

tive TDF terms KMSDFT in MSDFT (see Figure 1).37 Then, we have the relationship that

ensures all spin multiplets of spin S be energy-degenerate.37

KMSDFT = −(Uσ−1VT )∆EBLE (34)

where Uσ−1VT is a singular value deomposition of the matrix M that defines non-zero

elements of the exchange integrals between the determinant ΨBLE(S + 1) of the high-

spin configuration (all-spin up) and all the microstate determinants {ΨBLE
A (S)}with spin

S.37 Thus, provided KS-DFT is adequate with a single determinante for the highest spin

state (all-spin up of unpaired electrons), which is,58 the TDF energies (off-diagonal terms

of HΦ[D]) are consistently defined if the same approximate density functional is used

to obtain the energies of the diagonal terms (eq 33). If nonorthogonal determinants are

used, a Lowdin transformation may be applied to ensure that the parameters in eq 34 are

consistent with state orthogonality.37 For further details, see the original references.36,37

For example, the TDF correlation energy for the spin coupling interactions between

two unpaired electrons, resulting in a singlet state and the MS = 0 multiplet of the triplet

state, can be determined by enforcing the energy degeneracy condition between the mul-

ticonfiguration MS = 0 state and the MS = 1 triplet states. The latter (EKS(|1, 1 >) can be
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adequately determined by KS-DFT with a single determinant.36

EABc [Ψ↓↑,Ψ↑↓] = EKS
c [ρ(Ψ↑↑)]− EKS

c [ρ(Ψ↑↓)] (35)

where Φ↓↑ and Φ↑↓ are determinants A and B with different spin combinations of the

two spin-coupled electrons, and EKS
c [ρ(Φ↑↑)] and EKS

c [ρ(Φ↑↓)] are energies using a KS-DFT

correlation functional for the high-spin (triplet) determinant and one of the spin-mixed

determinant. Here, an extra calculation is needed to determine the high-spin energy.

Equation 35 can be obtained by inversion of the M matrix directly without the need for

singular value decomposition (though only KS-correlation energies are included in the

elements of ∆EBLE).37

In other cases, we have found that the approximation using an overlap-weighted

Kohn-Sham correlation energy of the two interacting determinants to yield reasonable

results in many applications.14,27

EABc [D] =
1

2
SAB(EKS

c [ρA] + EKS
c [ρB]) (36)

In eq 36, EKS
c [ρA] and EKS

c [ρB] are the correlation energies for states A and B, determined

by the KS-DFT correlation functional that is used to model the diagonal terms. In fact, eq

36 is the leading term in the matrix correlation function under the local density approxi-

mation.60

6 Illustrative examples

In this section, we illustrate two examples that are not easily treated, if not impossible, by

using conventional KS-DFT and linear response TDDFT: (1) a conical intersection between

the ground and the first excited state by MS-SCF, and (2) the spin-coupling interactions

between an excited chromophore and a free radical species by NOSI.
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Table 1: Summary of Computational Details for the Conical Intersection of Ammonia
Photodissociation (NH3) and the Anthraquinone and Nitroxide (AQ-NO) complex.

System CSF1 Determinants2 Orbitals3 CI-Opt4 Method5

NH3 6 9 Orth. Yes ROKS

AQ-NO 4 5 Non-orth. No
gs: KS-DFT

es: BLE/UKS

1. Configuration-State Functions; 2. Number of determinants included;
3. Type of orbitals: orthogonal (orth.) or non-orthogonal (non-orth.); 4.
CI coefficients optimization; 5. ROKS: restricted open-shell Kohn-Sham
DFT; gs: ground-state optimized by KS-DFT; es: non-Aufbau determinant
optimized by block-localized excitation with unrestricted KS-DFT (BLE-
UKS).

6.1 Photodissociation of ammonia

The photochemical process, NH3 → NH2 + H, is a classic example that has been exten-

sively studied (see references in refs. 61 and 62).61,62 At the crossing point between the

NH2(2B1) and NH2(2A1) states along the bond dissociation coordinate in the molecular

plane, bending about the molecular plane lifts the energy degeneracy, resulting in a con-

ical intersection with a double cone feature in the two potential energy surfaces for the

ground state and the first excited state. Previously, we have used NOSI to determine

the potential energy curves along the N−H stretch coordinate, employing a set of twelve

valence bond configurations.14 Here, to illustrate the MS-SCF method in MSDFT calcula-

tions, we reconstructed the potential energy surfaces using delocalized molecular orbitals

in an active space consisting of 4 electrons and three orbitals, rather than the localized va-

lence bond states previously.14 Since we have not fully implemented the nonorthogonal

optimization algorithm, the present calculations are performed employing a common set

of orthogonal orbitals, which are adequate in view of the small size of the orbital space.

Here, a total of six spin-adapted configurations (nine determinants) are included (Table

1), and this example shows that MS-SCF can be conveniently adapted into any code with

MC-SCF (CASSCF) capability.
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Figure 2: Potential energy surfaces of the ground and first excited states as a function
of the N−H bond-dissociation coordinate (in Å) and its bending angle about the plane
of the NH2 group (in degrees). The PBE approximate functional is used along with the
cc-pVTZ basis set. An active space consisting of four electrons and three orbitals is used
with a total of five configuration-state functions in multistate self-consistent-field (MS-
SCF) optimizations. Energies are given in eV.
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Figure 1 displays the potential energy surfaces for the ground and first excited states

in the bond-dissociation coordinate along one of the N−H bond and its bending angle

from the plane of the NH2 group. The conical intersection point occurs at a distance

of 2.001 Å with an energy of 5.00 eV above that of ammonia, which may be compared

with values of 1.990 Å and 5.16 eV in the full-dimension potential energy surface.61 The

topology of the PES about the conical intersection point is correctly produced from MS-

SCF optimizations.

Figure 1 shows that the use of a commons set of orbitals in MS-SCF optimization is ad-

equate for the ammonia bond dissociation process in the S1 state. There are many benefits

to use orthogonal orbitals in MS-SCF calculations over that with nonorthogonal orbitals

since the computational efforts and costs will be significantly reduced. Indeed, prelim-

inary results indicate that it is possible to define a finite active space to fully represent

the exact matrix density D(r) with orthonormal orbitals, but the number of determinant

configurations will be more than that by using nonorthogonal determinants.

6.2 Spin coupling of anthraquinone and nitroxide free radical

Management of spin state in spintronic materials can be useful to affect display efficiency

of organic light-emitting diode, among other applications.63,64 For example, an aromatic

compound such as benzene and pyridine can be directly excited to the triplet state in

the presence of a free radical species such as oxygen and NO,65,66 whereas the triplet

state of closed-shell porphyrins can become highly luminescent with an unpaired metal

d-electron.67 In a recent biomolecular application of the spintronic coupling between 9,10-

anthraquinone and a stable nitroxide radical (Figure 2A),68 it was found that its spin state

can be controlled by visible light through DNA binding. The S1 and T1 excited states

of 9,10-anthraquinone can strongly couple with the nearby nitroxide radical (D0) in the

absence of DNA, resulting in a quartet (Q1) state and a doublet state (Figure 3B)68 termed

as tripdoublet (D1), plus another high-energy singdoublet (not shown).67 Intercalation
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into a double stranded DNA structure causes the nitroxide free-radical fragment from

forming a folded complex with the anthraquinone unit, rendering disappearance of the

quartet state from EPR experiments to give a distantly coupled T1 and D0 combination.68

Employing a minimal active space shown in Figure 3B, we determined the spin cou-

pling interactions among the T1 and S1 excited states of 1-chloroanthraquinone (1) and the

D0 ground state of the model nitroxide, 2, (Figure 3C), involving three electrons in three

orbitals. The BLE method was used to optimize the orbitals of each individual microstates

plus the spin all-up quartet state (|3/2, 3/2 >). The latter was used to enforce the energy

degeneracy of the multiconfigurational |3/2, 1/2 > multiplet of the Q1 state (see Figure 1

and text).37,57 In addition, we included a charge-transfer configuration, A−·(D0)N+(S0).

A total of five microstates are included in the NOSI calculation (Figure 3B).

We first optimized the bimolecular complex between 1-chloro-9,10-anthraquinone (1)

and the nitroxide free radical 2 in the doublet ground state, which has a distance of about

3.5 Å between the nitrogen atom of 2 and the C4 atom of 1 (Figure 3C, the optimized

structure has roughly a Cs symmetry). The computed binding energy is -9.0 kcal/mol

from M06-2X/cc-pVDZ optimization, whereas NOSI@M06-2X/cc-pVDZ single-point en-

ergy calculations lowers the binding energy by 1.2 kcal/mol (0.05 eV) to -10.2 kcal/mol,

showing a small amount of multiconfiguraiton character in the doublet ground-state com-

plex. The singlet and triplet excited states due to HOMO → LUMO excitation of 1 is

strongly spin-coupled with the doublet state of 2.57,67,68 Consequently, the T1 state is split

into a quartet (Q1) state and a tripdoublet with an energy gap of 22.1 kcal/mol (0.96 eV).

The vertical excitation energy of the spin-coupled quartet state (Q1) is 67.1 kcal/mol (2.91

eV), slightly greater than the vertical T1 excitation energy of 1 (66.2 kcal/mol or 2.87 eV);

the small difference is largely due to ground-state effect. For comparison, the T1(1) en-

ergy is in reasonable agreement with an experimental value of 62.4 kcal/mol (2.75 eV)

for the triplet state of chloroanthraquinone.69 The tripdoublet-state energy, however, is

significantly increased to 89.2 kcal/mol (3.87 eV), largely responsible for the computed
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Figure 3: Illustration of (A) the change in molecular conformation of an anthraquinone-
nitroxide compound upon binding to a segment of double-strand DNA, (B) orbitals
and microstates used in nonorthogonal state interaction (NOSI) calculations for 1-
chloroanthraquinone (1) and an organic nitroxide model (2), and (C) strengths of spin
coupling in the bimolecular complex and at 13.5 Å separation between the C4 carbon of
1 and the nitrogen atom of 2. The vertical line in the charge-transfer structure of (B) in-
dicates fragment block localization. Energies are given in kcal/mol or electronvolts in
parentheses relative to the doublet ground state in each structure.
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quartet-doublet splitting gap. As the two molecular fragments are pulled apart by 10 Å

to 13.5 Å between the two distinguished atoms above, the energy splitting is reduced to

5.8 kcal/mol, still significant in view of the large intermolecular distance. As in the com-

plex structure, the energy of the Q1 state for the separated structure is nearly unchanged,

but the tripdoublet is now lowed to 72.6 kcal/mol (3.20 eV).

We found that the 2 → 1 charge-transfer state becomes lower in energy than the trip-

doublet at 84.6 kcal/mol (3.67 eV) in the molecular complex, which is the lowest spin-

coupled doublet state (local singlet for 1). The energy of the charge-transfer state is in-

creased to 119.2 kcal/mol (5.17 eV) as the two molecular fragments are separated to 13.5

Å. Surprisingly, in both cases, the charge-transfer state has little effects on the energies

of the covalent excited states. The experimental work did not report absorption or emis-

sion spectra of the spintronic system in solution; the authors focused on analysis of EPR

spectra to demonstrate the formation of a quartet state in the absence of DNA, and the

loss of its signal when a segment of DNA was introduced.68 These features are reflected

in Figure 3.

7 Summary

Whereas density functional theory has become a method of choice for electronic structure

calculations of large molecules in ground state, excitation energies are obtained in the

framework of linear-response time-dependent approaches. In this Perspective, we dis-

cuss the fundamental theory, computational methods, and optimization techniques of a

time-independent DFT for the lowestN states, and highlight two applications to illustrate

the capability of such a multistate density functional theory.

We first present the theorems on the existence of a Hamiltonian matrix functional

and the variational optimization of the multistate energy for a subspace spanned by the

N states. Importantly, the minimization of the multistate energy leads to the solutions
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for the exact energies and densities of the N -lowest eigenstates, provided the universal

Hamiltonian matrix functional is known. The method enables the ground and excited

states to be treated on an equal footing.

Based on the third theorem of reference 8 for representation of the multistate matrix

density D(r),8 we introduce a minimal active space for the N -dimensional subspace, con-

sisting of no more than N2 nonorthogonal Slater determinants. This is possible because

the ”active space”, unlike that in WFT, is for the purpose of representing D(r) rather than

searching for the exact wave functions of the N -lowest eigenstates. The latter is only

possible in the limit of full configuration interaction, while the number of variational

variables for representing the N -matrix density is finite and limited by the dimension of

the subspace. Given a multistate MAS, we can define the matrix functionals for the ki-

netic energy, Coulomb-exchange energy and the external potential energy, which leads to

the introduction of correlation matrix functional. Clearly, development of approximate

matrix functionals suitable for multistate calculations is essential.

Two computational approaches are discussed. First, a set of nonorthogonal self-consistent-

field equations (NOSCF) are presented to optimize the orbitals and configuration coef-

ficients for a set of N auxiliary states constructed from N2 Slater determinants. Alter-

natively, in nonorthogonal state interaction (NOSI), each determinant is separately op-

timized, followed by a single step of diagonalization. In both cases, state interaction

is essential. While NOSCF yields the exact solution, NOSI provides variational diabatic

states that can be used in simulations of electron transfer and excited-state energy transfer

processes.

We also present two illustrative cases, one on the conical intersection between the

ground and the first excited state in the photodissociation of NH3 and the other on spin

coupling between a triplet excited state and a ground-state radical. Both examples are not

easily treated with standard time-dependent DFT methods for lacking, respectively, of

proper dimension in state interaction and of double excitation. The results are promising.
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Of course, there are several challenges and limitations that need to be overcome to

gain broad applications.

1. An obvious choice to approximate the diagonal elements of the correlation matrix

functional is to directly use one of the approximate density functionals developed

for KS-DFT. However, its scope of applicability beyond the ground state needs to

be carefully examined in view of the possibility of introducing double counting of

correlation.14,51

2. There is currently no explicit functional form to approximate the transition density

functional since the very concept is new. It is of great interest to develop a complete

and consistent correlation matrix functional to treat both the ground and excited

states.

3. The development of efficient optimization methods, especially with the use of non-

orthogonal orbitals, is needed. The future development of MSDFT models can cer-

tainly benefit from the recent spurt of studies on optimization techniques in NOCI-

based methods, for instance, the construction of reference determinants and SCF

optimization of nonorthogonal orbitals.41,44,70–77

4. It will be useful to implement analytical gradient techniques and to develop dynam-

ics simulation methods to treat nonadiabatic processes.

With the proof of the fundamental theorems for an excited-state density functional

theory, we hope that this Perspective could stimulate further developments of multistate

DFT for applications.

List of Acronyms

AQ-NO: anthraquinone-nitroxide

BLE: block-local excitation
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CASSCF: complete-active-space self-consistent-field

CDC: consistent diabatic state

CI: configuration interaction

CSF: configuration-state function

∆−SCF: delta-self-consistent-field

DFT: density functional theory

HK: Hohenberg and Kohn

HOMO: highest occupied molecular orbital

KS-DFT: Kohn-Sham density functional theory

LG: Lu and Gao

LR: linear response

LUMO: lowest unoccupied molecular orbital

MAS: minimal active space

MC-SCF: multi-configurational self-consistent-field

MSDFT: multistate density functional theory

MS-SCF: multistate self-consistent-field

NOSCF: non-orthogonal self-consistent-field

NOSI: non-orthogonal state interaction

ROKS: restricted open-shell Kohn-Sham

SCF: self-consistent-field

TDF: transition density functional

TDDFT: time-dependent density functional theory

UKS: unrestricted Kohn-Sham

VDC: variational diabatic state

WFT: wave function theory
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Appendices

A.1 Expressions of coefficients

The coefficient fAp,Bqjk;σ is given by the coupling between two determinants with (n− 1) or-

bitals, the determinant ΞX less of orbital φXjσ and ΞY less of orbital φYkσ (with X = Ap, Y =

Bq),

fXYjk;σ =
(−1)j+k

(n− 1)!

∫
||φX1σ1

· · · φ̂Xjσ · · ·φXnσn||||φ
Y
1σ1
· · · φ̂Ykσ · · ·φYnσn|| (A.37)

Similarly, the coefficient fAp,Bqjk;σ is given by the coupling between two determinants with

(n−2) orbitals, the determinant ΞX less of orbitals φXiσ, φXjσ′ and ΞY less of orbitals φYkσ, φ
Y
lσ′

(with X = Ap, Y = Bq),

fXYij,kl;σ,σ′ =
(−1)i+j+k+l

(n− 2)!

∫
||φX1σ1

· · · φ̂Xiσ · · · φ̂Xjσ′ · · ·φXnσn ||||φ
Y
1σ1
· · · φ̂Ykσ · · · φ̂Ylσ′ · · ·φYnσn|| (A.38)

The two-electron Coulomb-exchange integral 〈ij||kl〉Ap,Bq reads: if σ = σ′,

〈ij||kl〉Ap,Bq =
e2

4πε0

∫
dr1dr2

φXiσ(r1)φXjσ(r2)

|r1 − r2|
(
φYkσ(r1)φYlσ(r2)− φYlσ(r1)φYkσ(r2)

)
(A.39)

and if σ 6= σ′,

〈ij||kl〉Ap,Bq =
e2

4πε0

∫
dr1dr2

φXiσ(r1)φXjσ′(r2)

|r1 − r2|
φYkσ(r1)φYlσ′(r2) (A.40)
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