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Intrinsic Bond Strength Index as a halogen bond inter-
action energy predictor†

Ona Šivickytė,a and Paulo J. Costa,a∗

Halogen bonds (XBs) have become increasingly popular over the past few years with numerous
applications in catalysis, material design, anion recognition, and medicinal chemistry. To avoid a
post factum rationalization of XB trends, descriptors can be tentatively employed to predict the
strength of potential halogen bonds. These typically comprise the electrostatic potential maximum
at the tip of the halogen, VS,max, or properties based on the topological analysis of the electronic
density. However, such descriptors either can only be used with confidence for specific families of
halogen bonds or require intense computations and, therefore, are not particularly attractive for large
datasets with diverse compounds or biochemical systems. Therefore, the development of a simple,
widely applicable, and computationally feasible descriptor remains a challenge as it would facilitate
the discovery of new XB applications while also improving the existing ones. Recently, the Intrinsic
Bond Strength Index (IBSI) has been proposed as a new tool to evaluate any bond strength, however,
it has not been extensively explored in the context of halogen bonding. In this work, we show that
IBSI values linearly correlate with the interaction energy of diverse sets of halogen-bonded complexes
and therefore, can be used to quantitatively predict halogen bond strength. The linear fit models
based on quantum-mechanics-based electron density provided MAEs typically below 1 kcal mol−1.
Moreover, we also explored the exciting possibility to use a promolecular density approach (IBSIPRO),
which only requires the complex geometry as an input which is computationally cheap. Surprisingly,
the performance was comparable to the QM-based methods, thus opening the door for the usage of
IBSIPRO as a fast, yet accurate, XB strength descriptor in large datasets but also in biomolecular
systems such as protein–ligand complexes.

1 Introduction
A halogen bond (XB) is a directional non-covalent interaction be-
tween a Lewis base (B), e.g., the lone pairs on an N-, O-containing
molecule, and a halogen atom (X) in a molecular entity acting as
a Lewis acid1–3. Indeed, while typically halogens are perceived
as electron-rich electronegative species behaving as nucleophiles,
the picture is more complicated when they are covalently bound
to another atom (R–X) as the electrons are anisotropically dis-
tributed, forming regions of higher and lower electron density
(ED). The region of lower ED located at the tip of the halogen op-
posite to the covalent bond corresponds to the so-called σ -hole4.
This site is typically electropositive and can interact with nucle-
ophiles, thus offering an electrostatic explanation for the forma-
tion of XBs (R–X· · ·B). A larger polarizability of X corresponds to
a larger σ -hole and consequently to a stronger XB, and there-
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fore, the XB strength typically increases along the halogen series:
Cl < B < I5,6. A seemingly opposing view describes XBs as charge-
transfer (CT) complexes explained by the existence of electron
transfer from a filled donor orbital of the Lewis base to the accept-
ing R–X σ∗ orbital of the halogenated molecule3,7,8, following
the same trends as mentioned above. However, while both views
might reveal different sides of a dual XB nature9, it has been ar-
gued that both essentially describe the same phenomenon10,11 or
that CT is practically negligible for the overall interaction12.

XBs are seen as hydrophobic counterparts for hydrogen bonds
(HBs), but they are often considered to be more versatile13 since
halogen atoms can act as both a Lewis base (HB acceptor) and
a Lewis acid (XB donor). This versatility also arises from their
directionality and tunability as the XB length, the R–X· · ·B angle,
and the magnitude of the σ -hole largely depend on the halogen,
the existence of other substituents on the XB donor, and the na-
ture of the Lewis base13–15. All these factors can easily be chosen
or adjusted to meet a set of unique specifications thus, XBs span
a wide range of interaction energies13,16,17. In principle, such
factors could be represented by a combination of descriptors of
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electronic and/or electrostatic effects and, therefore, these could
be used to estimate the strength of XBs7,18. However, it is also ad-
mitted that the applicability of XBs is often rationalized post fac-
tum as it remains a challenge to accurately predict the outcomes
and their strength in complex systems (e.g. protein-ligand com-
plexes) and thus, we are still far from taking full advantage of XBs
in the rational design of new systems19–21, even though various
potential applications are constantly emerging22–25. There have
been attempts to overcome this challenge and provide a solid ba-
sis for designing new halogen-bonded structures8,21,26–28, but ac-
curate modelling of XBs is still not straightforward. This issue
is paramount given the increased attention put on XBs and and
their broad application in catalysis19,29–32, material design33–35,
supramolecular36–38 and medicinal39–41 chemistry, among other
areas.

Several approaches allow the estimation of the XB strength and
this topic is tightly related to the discussion regarding the nature
of this interaction and the importance of various bonding compo-
nents to the overall XB stability12,42. The most commonly em-
ployed XB interaction energy descriptor is the electrostatic poten-
tial maximum at the tip of the halogen (VS,max), i.e. the magni-
tude of the σ -hole. This simple descriptor encompasses only the
electrostatic component of XBs and does not always adequately
predict the interaction strength43–45. This occurs mainly due to
its static nature as it is computed in the absence of the base, thus
neglecting the contribution from the XB acceptor. It can be cor-
rected by adding polarization to the static VS,max, evaluating its
magnitude in the presence of a negative point charge, yielding an
extended electrostatic model46–48. It has also been proposed that
the minima of the local attachment energy, analogous to the av-
erage ionization energy but reflecting the susceptibility towards
nucleophiles, can be used to complement VS,max or used as an in-
dependent descriptor to predict XB energies in methyl- and aryl
halides49. Alternatively, some authors approached the incom-
pleteness of the VS,max by combining it with CT descriptors such as
the charge transfer energy45,50 or the C–X σ∗ orbital energy8, of-
ten leading to improved XB energy predictions8. Other attempts
to predict XB strength include the usage of ED properties such
as the kinetic, potential, and total energy density51,52, also its
Laplacian and curvature53 evaluated at the bond critical point.

All the mentioned approaches typically require ab initio or DFT
calculations to obtain the descriptors and therefore, could be
computationally demanding, hindering their application in large
datasets or large molecules such as protein-ligand systems54.
Machine-learning (ML) approaches could offer an alternative, as
highlighted by a statistical model trained against high–accuracy
ab initio calculations, which depends on only two fitted parame-
ters along with the equilibrium distance. This model, whose com-
putational cost is negligible, outperforms some of the best density
functionals55. However, the physical interpretation of fitted ML
parameters is often not straightforward.

The above considerations indicate that the need to develop
more straightforward and easily accessible XB energy estima-
tors persists. In this context, the Intrinsic Bond Strength In-
dex (IBSI)56, emerging from the Independent Gradient Model
(IGM)57,58, evaluates the strength of the interaction between a

given pair of atoms. It is a score that allows us to quantitatively
compare interactions and estimate their nature, i.e., distinguish
covalent from non-covalent interactions, based on threshold val-
ues. Although methods relying on topological analysis of the ED
are common in identifying and characterizing chemical bonds,
e.g., electron localization function, these are often not able to
quantify interactions59. In contrast, with IBSI, the quantification
is outstandingly easy to interpret and is becoming a common tool
to evaluate other types of interactions60–62. However, despite a
few XB complexes being included in the original study56, IBSI has
not yet been systematically explored in the context of these inter-
actions. Herein we report an exploratory study on how IBSI can
be used to fairly predict XB interaction energies. Most strikingly,
we will show that IBSI values calculated using a promolecular
approach that does not require any QM calculation, also linearly
correlate with interaction energies while providing similar accu-
racy. These exploratory results open the door for the development
of fast methods to estimate XB energies in large datasets and/or
biomolecular systems, and also for the usage of IBSI as a fast-
obtainable XB feature for ML models.

2 Methods

2.1 IGM and IBSI

Herein, a succinct overview of the IBSI approach is given. Fur-
ther details can be found in the original publications56–58. The
concept of IBSI originates from the Independent Gradient Model
(IGM)57,58 which can be viewed as an extension of the NCI anal-
ysis method63. NCI is based on the topological analysis of the
reduced density gradient s (also called RDG). However, the NCI
approach has a semiquantitative character since the integration
of quantities over NCI regions is not trivial57. On the contrary,
the IGM approach, by providing a non-interacting reference sys-
tem58, allows quantification of the interactions.

For a system with interacting fragments A and B, the norm of
the ED gradient |∇ρ pair|, defined as

|∇ρ
pair|= |∇ρA +∇ρB| (1)

is attenuated in the region between the interacting fragments.
The sum of the absolute value of the density gradient of each
fragment, denoted |∇ρ IGM,pair|

|∇ρ
IGM,pair|= |∇ρA|+ |∇ρB| (2)

is introduced by the IGM approach as a non-interacting reference.
Since the sign of the individual gradients is ignored in the sum-
mation, and thus, the density gradient originating from different
fragments will not cancel with each other, |∇ρ IGM,pair| is the up-
per limit of the true ED gradient. From these, the δgpair descriptor
emerges

δgpair = |∇ρ
IGM,pair|− |∇ρ

pair| (3)

which is a unique bond signature that precisely quantifies the net
ED gradient collapse due to the interaction between any pair of
interacting atoms. Additionally, δg can be plotted against the ED
multiplied by the second eigenvalue of the ED hessian matrix,
sign(λ2)ρ, producing plots analogous to those obtained in NCI
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analyses, allowing to discriminate if δgpair occurs in attractive
(λ2 < 0) or repulsive (λ2 > 0) regions. To get a global score for
a given bond, the integral of δgpair over the interaction volume
divided by the square of the internuclear distance d is taken

∆gpair =
∫

V

δgpair

d2 dV (4)

∆gpair is a bond index by itself, however, in order to obtain a
score comparable between bond indices and molecules, it has to
be normalized for the H2 molecule:

IBSI =
∆gpair

∆gH2
(5)

IBSI is dimensionless value that does not correspond to a bond
order, but reflects the bond strength56.

2.2 ED and partition schemes

IGM and IBSI are dependent on the ED (ρ) and the partition
scheme used to assign it to atoms/fragments. Originally, IGM was
developed specifically for promolecular ED-based calculations57

and this promolecular density is obtained from a sum of simple
exponential atomic functions fitted to averaged ab initio atomic
electron densities. Even though the obtained gradient is approx-
imate as it lacks relaxation, the accuracy is reasonable as long as
it is used in the non-covalent regime57. This approach is very at-
tractive since minimal computational resources are required and
only the geometry is required as input. Given its simplicity, the
partition of the total ED gradient into atomic contributions is
straightforward. The calculation of IBSI values from promolec-
ular densities (here denoted as IBSIPRO) was not considered in
the original implementation56,64 which used QM-based densities
and a Gradient-Based Partitioning scheme (see below). However,
such calculation is implemented in the MultiWFN package65 (see
Computational Details).

Another approach takes advantage of the ED obtained from QM
calculations. In this case, the ED is in principle more accurate
but the partition of the total gradient is not trivial. The Gradient-
Based Partitioning (GBP) scheme was introduced in the context of
IGM58 and is implemented in IGMplot64. This method proposes
that each individual gradient element ∂ρi/∂x can be assigned to
an atomic orbital ϕi and IBSI values calculated within this ap-
proach are henceforth termed IBSIGBP.

Recently66, it was argued that the isosurfaces of δg are too
bulgy leading to erroneous analysis conclusions. To tackle this,
IGM based on an Hirshfeld partition of the ED was proposed66

and implemented in the MultiWFN package65. Hirshfeld is a very
common method to obtain atomic densities67 and allows the cal-
culation of all quantitative indices available under the framework
of the original IGM, including IBSI (here denoted IBSIH).

2.3 Data sets

To test a possible correlation of IBSI with XB interaction ener-
gies we used 3 data sets containing various X-bonded systems
with available optimized equilibrium geometries and energies ob-
tained from high-level QM calculations.

Set 1 was taken from reference 68 which revises and corrects
some values earlier reported for the XB18 and XB51 benchmark-
ing sets69. These benchmarks consist of 69 systems bearing only
neutral fragments with Cl-, Br-, and I-containing molecules as XB
donors, and N, O, P, and Cl as acceptor atoms. XB18 contains
18 systems with NCH and OCH2 as acceptors. Here, the geome-
tries were optimized at CCSD(T)/aVQZ, and the interaction en-
ergies were calculated at the CCSD(T)/CBS level of theory. XB18
was intentionally constructed using only small molecules so that
highly accurate calculations could be easily performed. The XB51
is an extended version of XB18 and includes a wider range of
both donor and acceptor fragments. The geometry optimizations
for XB51 were performed at ωB97X/aVTZ level of theory with
single-point energies computed using an MP2-based extrapola-
tion of the CCSD(T) energy. Herein, we merged both XB18 and
XB51 and in cases where binding energies and geometries were
available from both, the data were taken from XB15, yielding a
total of 64 complexes (see Table S1 in ESI†). The energy values
reported for these data sets correspond to −Eint , meaning that
more positive values show stronger interactions, however, in this
work we used Eint values for consistency with other data sets.

Set 2 was taken from the Non-Covalent Interactions Atlas, a
library containing accurate benchmark non-covalent interaction
energies70. It comprises halogen-bonded systems, optimized at
the B3LYP-D3(BJ)/def2-QZVP level, containing small molecules
with Cl, Br, and I as XB donors, and various XB acceptors bearing
O, N, P, and S, such as acetonitrile, pyrazine, acetone, thiacetone,
and molecular halogens. The X-bonded compounds in this library
were chosen to cover a wide range of σ -hole magnitudes and each
fragment contains no more than 13 atoms. The benchmark inter-
action energies were calculated using a composite CCSD(T)/CBS
scheme based on MP2 and CCSD(T) calculations with very large
basis sets. Herein we excluded X· · ·π bonds because they can-
not be unambiguously described by a single IBSI value, therefore
yielding a final set of 99 complexes (see Table S2 in ESI†).

Set 3 consists of A–X· · ·B systems, where A = H, F, Cl,
Br, I, and X = F, Cl, Br, I taken from reference 55. The
data contained originally 140 high-accuracy ab initio bench-
mark interaction energies (CCSD(T)-F12b/CBS) calculated on
CCSD(T)-F12b/VTZ-(PP)-F12 optimized structures whose geom-
etry is available. In this work, only 124 of those systems were
used (see Table S3 in ESI†) since 10 complexes containing X· · ·π
contacts were removed for the same reason mentioned above for
Set 2 along with those containing F2 as a XB donor. Notice that
fluorine is typically not considered a XB donor and fluorine inter-
actions are fundamentally different from typical XBs71.

2.4 Computational details

All QM calculations were performed using the Gaussian 09 pro-
gram package72. Since optimized geometries were available, to
obtain the ED for the IBSI estimation (IBSIGBP and IBSIH), single-
point calculations were performed at the DFT M06-2X/def2-TZVP
level of theory73 in the gas phase with the associated effective
core potential for iodine. This functional is commonly applied
in XB studies8,31,74 with good performances69,70,75 and is also
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recommended by the IBSI method56. Additional calculations us-
ing def2-SVPD73,76 and def2-QZVP77 were performed in order to
evaluate the significance of the basis set (see below). An ultrafine
integration grid was applied in all the calculations. Checkpoint
(chk) or wave function files (wfn/wfx) were stored for further
analysis and calculation of IBSI.

IBSIPRO and IBSIH were calculated with MultiWFN 3.765. As
mentioned above, IBSIPRO only required the optimized geometry
while for IBSIH, the M06-2X/def2-TZVP wave function file was
provided. In both cases, the reported values are normalized to
H2 by the ∆gH2 value obtained in the same conditions. IBSIGBP

values were obtained with IGMplot 2.6.9b64 using the same wave
function files. Herein, the values are internally normalized for H2
at the M06-2X/6-31G∗∗ level of theory and no re-normalization
was performed for M06-2X/def2-TZVP values. Notice that this
does not have any impact on statistics of the obtained linear-fit
models.

2.5 Statistical analysis

The data in the three sets were fitted separately to the following
equation

Eint = m× IBSI +b (6)

via the m and b parameters using an ordinary least squares (OLS)
regression model. The quality of the fit of the data was analyzed
by evaluating the coefficient of determination R2, the Pearson cor-
relation coefficient r, the Spearman’s Rank Correlation Coefficient
ρ, and the Kendall rank correlation coefficient (τ) using in-house
python scripts. The Mean Absolute Error (MAE) was employed as
a performance metric of each model. Before the fitting stage, an
explanatory data analysis (EDA) was performed to characterize
each set. Multivariate outliers, i.e. the unusual combination of
Eint and IBSI values, were discarded using the minimum covari-
ance determinant (MCD) method78,79 with a significance level
threshold of 0.001 using in-house python scripts. This is a highly
robust estimator of multivariate location and scatter as the MCD
is computed using only a subset of the sample, thus, the outlying
points will have a small impact on the MCD location or shape es-
timate. Further information can be found in the section Outlier
Removal in ESI†.

3 Results and discussion

3.1 Basis set influence on IBSI

In the original IBSI implementation based on GBP the authors
showed that IBSIGBP values are typically independent of the
method and basis set, therefore, stable results are expected as
long as the same method is used for comparative studies56. Re-
garding the IBSIH approach66, although it was claimed that a
low sensitivity to wave function quality was observed, the data
was not disclosed. Given the novelty of this partition scheme,
and the unprecedented application to XBs, we selected 3 com-
plexes from Set 1 featuring a strong (FI· · ·pyr, -20.34 kcal mol−1),
a mild (FI· · ·OPH3, -13.36 kcal mol−1) and a week (FI· · ·PCH,
-2.74 kcal mol−1) XB, and calculated IBSIH values with an in-
creasing basis set size (def2-SVPD, def2-TZVP, and def2-QZVP).
IBSIGBP values were also calculated for comparison and the re-

sults are presented in Table 1). When comparing IBSIH and
IBSIGBP, an obvious difference is observed in the magnitude of
the values, with IBSIGBP yielding larger IBSI values. This will be
further discussed below, nonetheless, we highlight the fact that
comparative studies also require that the same scheme is used.
Within the same partition scheme, the values obtained vary little
with the basis set. Strikingly, IBSIH is even less sensitive to the
size of the basis set while the larger deviation is found for the
stronger XBs, especially for IBSIGBP, although still acceptable.

3.2 IBSIH and IBSIGBP linearly correlate with XB interaction
energies

Although XBs were explored in the original IBSI reference56, a
real systematic study for this type of non-covalent bond is yet
to be performed. Herein, we explore if such a “simple” index
linearly correlates with the interaction energy (Eint) for large and
diverse sets of halogen-bonded systems taken from the literature.
Since two methods based on QM EDs exist, namely, the original
GBP formulation (IBSIGBP) and the recently proposed Hirshfeld
partitioning (IBSIH), in the next sections we will compare the
performance of both for each set individually.

3.2.1 Set 1.

In Set 1 the interaction energies span a wide range of values, from
very weak (FI· · ·FCCH, −0.29 kcal mol−1) to strong (FI· · ·HLi,
−33.79 kcal mol−1) XBs. However, the distribution of the ener-
gies is slightly skewed (Figure S1 in ESI†) and with a data gap
between the very strong XBs and the remaining values. Indeed,
Set 1 is actually more representative of weak to moderate XBs
(median = −4.17 kcal mol−1). Although plotting Eint as a func-
tion of IBSI for the full dataset shows a fair linear correlation
between the two properties (Figure S19 in ESI†), two outliers,
easily identified by visual inspection, were identified by the MCD
method. They correspond to Br2· · ·HLi (−23.11 kcal mol−1) and
FI· · ·HLi (−33.79 kcal mol−1), the stronger XBs in the set, both
possessing an hydride as the XB acceptor atom B (see the Out-
lier Removal section in ESI† for further discussion). Curiously,
an analysis of the IBSI values beyond the X· · ·B pair shows that
the bonding pattern is odd (Figure 1) for these two complexes.
Indeed, for Br2· · ·HLi, the covalent Br–Br bond is much weaker
(0.075 and 0.189 for IBSIH and IBSIGBP, respectively) than the
supposedly non-covalent Br· · ·H contact (0.185 and 0.382). A less
pronounced difference was found for FI· · ·HLi where the IBSIH

value for the I–F bond is lower (0.120) than the H· · · I contact
(0.128) ever so slightly. IBSIGBP values, on the contrary, yield a
lower value for the H· · · I XB pair (0.259), although very similar

Fig. 1 Calculated IBSIH and IBSIGBP values for all interacting atoms in
Br2· · ·HLi (top) and FI· · ·HLi (bottom).
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Table 1 Calculated IBSIH and IBSIGBP values for 3 halogen bonded systems taken from Set 1. The ED was obtained at the M06-2X/b (b = def2-SVPD,
def2-TZVP, and def2-QZVP) level. The reported interaction energies (Eint) are CCSD(T)/CBS values from reference 68

IBSIH IBSIGBP

System Eint / kcal mol−1 def2-SVPD def2-TZVP def2-QZVP def2-SVPD def2-TZVP def2-QZVP

FI· · ·PCH -2.74 0.016 0.016 0.016 0.053 0.051 0.052

FI· · ·OPH3 -13.36 0.038 0.041 0.041 0.109 0.102 0.107

FI· · ·pyr -20.34 0.057 0.062 0.061 0.175 0.154 0.141
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Fig. 2 Eint as a function of IBSIH and IBSIGBP for the final Set 1 (see
Tables S1 and S5 in ESI†).

to the one observed for the I–F bond (0.279). Notice also that
the IBSIGBP values (X· · ·B pair) are larger than the 0.15 threshold
for non-covalent interactions defined in reference 56. The above
considerations highlight the importance of an explanatory data
analysis along with the minimum covariance determinant (MCD)
method to confidently discard outliers and this approach was fol-
lowed in all subsequent analyses. Further discussion regarding
outlier removal can be found in ESI†.

Using an outlier-free Set 1, the plot of Eint as a function of IBSI
(Figure 2) shows a strong linear correlation between the variables
(R2 ≈ 0.9 and |r| > 0.93 for both IBSIH and IBSIGBP). Addition-
ally, ρ and τ clearly indicate a monotonic association between
the variables. The final fitted parameters can be found in Ta-
ble S4 in ESI†. Noticeably, the intercepts b are ≈ 0 for both IBSIH

and IBSIGBP while the slopes are very different reflecting the dif-
ferent ranges of the IBSI scales. Thus, it seems that the indica-
tive threshold of the non-covalent domain (0.15) for IBSIGBP 56

is not applicable to IBSIH, however, IBSIH and IBSIGBP correlate
linearly (Figure S2 in ESI†). The performance of the model is
acceptable with MAE values ≈ 1 kcal mol−1 and typically, larger
deviations between the predicted and reference data are observed
for stronger XBs (Figure S3 in ESI†) whereas the deviations are
fairly distributed around zero (Figure S4 in ESI†) meaning that

no obvious under or overestimation of the predicted values is ob-
served although a very slight skewness is observed for IBSIGBP to-
wards negative deviations, probably leading the the slight larger
MAE when compared with IBSIH.

3.2.2 Set 2.

Set 2 contains systems featuring mostly weak XBs
(Eint > −10 kcal mol−1, median = −2.97 kcal mol−1),
with a few exceptions (see Table S2 and Figure S5 in ESI†). As
in Set 1, there is also a data gap between the stronger XBs (max
= −17.14 kcal mol−1) and the remaining values. Apart from
dihalogens and acetone, which were also present in Set 1, this set
includes some cyclic acceptors (pyrazine, pyridine-N-oxide) and
compounds containing sulfur (thioacetone, dimethylthioether).
After the outlier removal (Table S5 in ESI†), and despite being a
larger dataset, the correlation between IBSI and Eint is strong for
both IBSIH and IBSIGBP, with R2 ≈ 0.9 and |r| > 0.93 (Figure 3).
Again, the final fitted parameters can be found in Table S4 in
ESI†. The intercepts b are ≈ 0 for both methods and the different
slopes reflect a quite different scale of IBSIH and IBSIGBP, though
a linear correlation between the two is observed (Figure S6 in
ESI†) as observed earlier. There is no obvious performance dif-
ference between the methods, both providing a similar accuracy
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Fig. 3 Eint as a function of IBSI for the final Set 2 (see Tables S2 and
S5 in ESI†).
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(MAE < 0.70 kcal mol−1) and larger deviations for stronger XBs
(Figure S7 in ESI†). Again, no obvious under- or overestimation
was found as the error values are close to normally distributed
around zero for both partition schemes (Figure S8 in ESI†).

3.2.3 Set 3.

Set 3 comprises dihalogen and hydrogen halide XB donors paired
up with common XB acceptors, mostly small molecules such as
NH3, CH2O, and H2O (Table S3 in ESI†). As earlier, the energies
span a wide range of values, from −20.51 kcal mol−1 (FCl· · ·PH3)
to −1.28 kcal mol−1 HBr· · ·PH3, the distribution being skewed to-
wards negative values with a median of −5.52 kcal mol−1, how-
ever, in this case, no obvious gaps exist in the energy values (Fig-
ure S9 in ESI†). The correlation between IIBSIH and IBSIGBP with
Eint is shown in Figure 4 whereas the final fitted parameters can
be found in Table S4 in ESI†. Both IBSIH and IBSIGBP provide
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Fig. 4 Eint as a function of IBSI for the final Set 3 (see Tables S3 and
S5 in ESI†).

strong linear correlations with Eint (R2 = 0.90) and the MAE val-
ues are below 0.9 kcal mol−1 with no obvious systematic over-
or underestimation of the predicted Eint values (Figure S11 and
Figure S12 in ESI†). Both partition schemes perform similarly, the
values being correlated (Figure S10 in ESI†).

3.3 IBSIPRO as a fast XB strength descriptor

In the previous section, we showed that IBSI values obtained
using QM-based electron densities (IBSIH and IBSIGBP) linearly
correlate with XB interaction energies (Eint) for diverse sets of
halogen-bonded complexes. This type of linear relationship can
be useful, for instance, to estimate high-level ab initio Eint values
using DFT geometries. However, such a task still requires the us-
age of QM-based electron density which could be unpractical not
only for large datasets of small molecules, but also for biomolec-
ular systems. Therefore, we wondered if IBSI values, calculated

using a promolecular approach (IBSIPRO) and therefore neglect-
ing relaxation (among other terms), could also be used similarly.
Notice that for the covalent regime, the promolecular ED under-
estimates the troughs of the ED gradient, hence not describing the
bonds correctly58. Owing to the disputed varying degree of co-
valency involved in XBs, promolecular ED may not describe them
correctly. However, it is also true that as long the complexes stay
in the weak to mild non-covalent regime, the promolecular ap-
proach could be enough to capture the correct bond pattern. In-
deed, in Set 1 and after outlier removal (Table S6 in ESI†), the
correlation between IBSIPRO values and Eint is linear (R2 = 0.88,
|r| = 0.94) (see Figure 5 left and Table S4 in ESI† for the fit-
ted parameters). Also, the other coefficients, ρ and τ, show a
strong monotonic relationship between Eint and IBSIPRO. In fact,
comparing IBSIPRO with IBSIGBP or IBSIH, the difference in linear-
ity (R2, |r|) is almost negligible while the MAE (≈ 1 kcal mol−1)
slightly outperforms the QM-based methods (IBSIH and IBSIPRO).
The error is fairly normally distributed around zero (Figure S14 in
ESI†), similarly to IBSIH and IBSIGBP, meaning that IBSIPRO does
not strongly over- or underestimate interaction energies, while
larger errors are typically associated with stronger XBs (Figure
Figure S13 in ESI†). This suggests that using approximate pro-
molecular densities may result in similar accuracy compared to
QM methods, even for moderate-strength XBs. Notice that here,
the intercept of the plot is ≈ 1, and the slope is quite different
from both other methods, indicating a different IBSI scale with
IBSIPRO values consistently larger than IBSIGBP or IBSIH.

Set 2 is larger than Set 1 and contains a wider variety of ac-
ceptors. The linear correlation between Eint and IBSIPRO (Figure 5
center) is again strong (R2 = 0.84, |r| = 0.92) and equivalent to
that found for IBSIH and IBSIGBP. The final fitted parameters can
be found in Table S4 in ESI†. The MAE value (0.70 kcal mol−1) is
slightly larger than that for IBSIGBP(0.62 kcal mol−1) but similar
to the one obtained for IBSIH (0.67 kcal mol−1). The difference
between estimated and true Eint is close to normally distributed
around zero (Figure S16 in ESI†), and, while the values are some-
what right-skewed, there is no significant tendency towards con-
sistently over- or underestimating Eint .

Set 3 contains systems with only dihalides as donors, making it
the most uniform dataset used in this work. The final linear cor-
relation between IBSIPRO and Eint is strong (R2 = 0.91, |r| = 0.95,
see Figure 5, right), with an MAE value of ≈ 0.8 kcal mol−1, out-
performing the QM-based methods. The values of error deviation
are very close to normally distributed (Figure S18 in ESI†), the er-
ror increasing with increasing XB strength (Figure S17 in ESI†).
The final fitted parameters are listed in Table S4 in ESI†.

The above results suggest that, overall, this quite simple model
which uses promolecular density was able to adequately predict
interaction energies in these fairly large and diverse datasets. It is
also remarkable that the compounds that were poorly described
by QM methods (outliers) are also recurrently observed as out-
liers with IBSIPRO. Moreover, it could be expected that larger de-
viations are typically observed with increasing XB strength when
using IBSIPRO owing to the lack of relaxation of the ED which
becomes important in the covalent regime. However, such a ten-
dency (Figures S4, S10, S16 in ESI†) is also observed in QM-based
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Fig. 5 Eint as a function of IBSIPRO for Set 1, Set 2, and Set 3.

methods such as IBSIH and IBSIGBP (Figures S3, S7, S11 in ESI†).
Therefore, it becomes evident that the accuracy of a simple linear
regression estimator based on promolecular properties is at least
very similar to that obtained by methods that require rigorous
QM calculations for these types of halogen bonded complexes.
This means that for large systems such as protein-ligand com-
plexes where high-level QM calculations are often not feasible,
IBSIPRO can be a fast and reliable solution, provided that proper
calibration curves are available.

4 Conclusions

Predicting the trends and interaction energies of halogen bond-
ing interactions using simple and computationally cheap molecu-
lar descriptors has been recursively addressed in the literature. In
this scope, the usage of VS,max of the halogen atom has been an ex-
ample of such an approach, however, this single descriptor cannot
be directly applied to diverse datasets such as Set 1–Set 3. In this
exploratory work, we tested the possibility of using the Intrinsic
Bond Strength Index (IBSI) as halogen bond strength descriptor
for three different datasets containing highly accurate QM-based
interaction energies. Notice that XBs were mentioned in the origi-
nal IBSI reference56, however, this is the first systematic study re-
garding the usage of IBSI in halogen bonding. We first addressed
two ED partition methods that rely on QM calculations (IBSIGBP

and IBSIH). Both yielded IBSI values that were insensitive to the
basis set size for 3 complexes featuring strong, mild, and weak
XBs. When applied to the Set 1-Set 3, both IBSIGBP and IBSIH

linearly correlated with the interaction energy with the linear
models providing MAEs typically below 1 kcal mol−1, reaching
0.62 kcal mol−1 for IBSIGBP in Set 2. We did not observe any sys-
tematic differences in the performance of the two different parti-
tion schemes apart from the different IBSI scale and both IBSIGBP

and IBSIH produced consensual outliers, typically corresponding
to a few complexes featuring the strongest XBs in each set. Thus,
both IBSIGBP and IBSIH can in principle be used as a qualitative
index to compare the halogen bond strength in complexes, but
also can be used to provide quantitative estimates of the interac-
tion energy. Despite these exciting results, the usage of QM-based

electron density could still hinder applications in large datasets or
biomolecular systems. Therefore, we also explored the possibility
of obtaining a quantitative model that predicts the interactions
energies based in IBSIPRO which relies on the so-called promolec-
ular approach which is based on tabulated data and hence, it only
requires the geometry as an input. In spite of its simplicity, the
performance of IBSIPRO was comparable to the QM-based meth-
ods, actually outperforming IBSIGBP and IBSIH for Set 3, suggest-
ing that computationally demanding calculations are not neces-
sary in order to achieve reasonable accuracy, as long as one stays
in the non-covalent regime, which is often the case in halogen-
bonded protein-ligand systems systems54. Our exploratory work
can open the door to the usage of IBSIPROas a fast and reliable XB
strength descriptor in large systems, e.g. proteins, provided that
proper calibration curves are available.
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