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Publishable Summary 
This deliverable is produced for the purpose of documenting and reporting the progress that has been made 
within the MELLODDY project. MELLODDY will demonstrate how the pharmaceutical industry can better 
leverage its data assets to virtualize the drug discovery through the development of a secure and privacy-
preserving platform for federated machine learning. The timings and condition of this deliverable was defined 
by the Annex 1 of the MELLODDY Grant Agreement N° 813472.    

This deliverable describes the data preparation for the private pharma data as well as the included public 
data, which each partner must execute on its own data according to the common and agreed procedure. This 
procedure ensures that the data of all partners will be presented in a consistent way across all partners. Only 
the output of this preparation process will be exposed as training data to the federated machine learning 
process.  
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Abbreviations and definitions 

ECFP Extended Connectivity Fingerprint 

LSH Locality Sensitive Hashing 

ML Machine Learning 

ADME Absorption, Distribution, Metabolism, Excretion 

QC Quality Control 

AUC-ROC Area Under Curve-Receiver operating characteristic 

Trunk model The part of the neural network that is shared across the pharma 
partners 

Individual Code data preprocessing code to generate input for the common code 
written by each partner individually 

Common code Part of data pre-processing code that is written by Merck KGaA and 
used by all pharma partners  

MELLODDY-TUNER MELLODDY Tool for UNifying and Encrypting of data Records, also 
referred to as common code 

HTS High-Throughput screening 

prediction task 
A column in the Y matrix. This is linked to an assay. For classification 
with multiple thresholds more than one classification task per assay 
may exist  

AUCPR Area under the precision recall curve 

CRO Contract research organization 

Catalogue assay Assay protocol publicly offered for execution by a CRO and 
identifiable by a catalogues ID 
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1 Introduction 
The purpose of this manual is to ensure that all data contributing partners prepare the input structure activity 
data for the federated machine learning according to the same standards and principles. This is required to 
ensure a consistent representation of chemical structures and the biological activity data. The steps described 
in this manual must be executed by each company individually on its own compute platform. Only the output 
of this preparation process is made accessible to the federated machine learning process. This manual 
describes the data preparation for the third federated machine learning run, which is planned at the end of the 
third project year. 

In this manual example data from ChEMBL release 25 
(10.6019/CHEMBL.database.2510.6019/CHEMBL.database.25) is used to illustrate the workflow and to 
describe the data at the various processing stages) and cover the assay IDs:  

§ CHEMBL3855277 

§ CHEMBL3855278 

§ CHEMBL3855279 

§ CHEMBL3855298 

Individual data points have been modified, in order to be able to illustrate the preparation process. On a 
second note these assays have data for some enantiomer pairs, which have been separated, but where the 
absolute stereochemistry has not been assigned. As a consequence several distinct samples were linked to 
the same ChEMBL ID. In addition, in order to comply with the requirement for the common data preparation 
code (see below) all input ID from ChEMBL have been stripped of the “CHEMBL” prefix to obtain IDs in 
integer format. 

In addition, a purely fictitious single concentration HTS assay with the ID 9999999 has been added for 
illustration purposes. 

An overview of the data preparation process can be found in Figure 1: General data preparation workflow. 
The labels T0 to T11 in this figure refer to example data tables. . The data preparation is divided in two major 
stages, where the first one involves exporting the data from the individual data warehouses of the partners. 
This step will involve replicate aggregation at the sample level. This will be done with code individually created 
by the data contributing partners in order to accommodate their individual data warehousing systems 
(“individual code”). In some cases, only guiding principles have been agreed upon, leaving the details of 
implementation to the individual partner. 

The second stage involves structure processing, descriptor calculation, fold assignment and replicate 
aggregation. This will be performed by a common python script provided by Merck KGaA in collaboration with 
other partners according to the specifications in this manual. (“common code” also referred to as 
“MELLODDY-tuner”, D1.5 and D1.8). 
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Figure 1: General data preparation workflow. The labels T0 to T11 in this figure refer to example data tables. Due to the 
changed workflow with respect to the year 1 data preparation, the numbering of the tables no longer follows the sequence 
in which they are generated, however, for consistency purpose the nomenclature used in year 1 was kept whenever 
possible.  
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Table Description Usage 
T0 Assay metadata. Additional data can be carried through until the 

last step for training.  
Input for MELLODDY-tuner 
provided by pharma as part 
of their individual code 

T1 Main prediction endpoint data as (censored) quantitative values 
with normalized units, an assay identifier referencing T0 and a 
sample identifier referencing T2 

T2 File containing the chemical structures for the samples as smiles 

Tcat Reference file used to assign a unique catalogue task_ID for each 
combination of catalogue_assay_ID and threshold 

Assign of unique catalog 
task Ids across partners 

T3c Metadata for classification tasks, including classification thresholds  
 
 
 
 
Intermediate files and tables 
created by MELLODDY-
tuner  
 
 
 
 

T3r Metadata for regression tasks 

T4c Data table classification task data after replicate descriptor vector 
aggregation  

T4r Data table with regression task data after replicate descriptor 
vector aggregation. 

T5 Mapping table input compound ID – unique descriptor vector ID 

T6 Descriptor data file having one row per unique descriptor vector ID 

T8c Metadata for classification tasks, including classification thresholds 
after removal of entries not fulfilling data volume quorum and with 
renumbered continuous classification task_id 
Pharma partners will use this table to map back their model 
predictions to their original assays 

T8r Metadata for regression tasks, after removal of entries not fulfilling 
data volume quorum and with renumbered continuous regression 
task_id. Pharma partners will use this table to map back their 
model predictions to their original assays 

T9c Same as T8c, but with all metadata not required for training 
removed, including input_assay_id 

 
 
 
Data files for machine 
learning in human readable 
text format before activity 
formatting 
 

T9r Same as T8r, but with all metadata not required for training 
removed, including input_assay_id 

T10c Data table with classification task data after replicate descriptor 
vector aggregation 

T10r Data table with regression task data after replicate descriptor 
vector aggregation 

T11 Compound descriptor data with associated fold index 

	
	

Yclass Sparse scipy csr matrix for classification task data 
Yreg Sparse scipy csr matrix for regression task data 
Ycensoring Sparse scipy csr matrix holding censoring for for Yreg 
X Compound descriptor data a sparse numpy matrix 
folds Fold assignment vector 

 

Table 1: Overview of tables during data processing 
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2 Data Entry Criteria 

2.1 Included Assays 

2.1.1 Primary Prediction Endpoints 

Concentration-response bioactivity assays and assays for physical-chemical or ADME related properties are 
considered as the primary prediction endpoints, for which the model performance should be optimized. 
Concentration response assays will give as main readout a value called IC50, EC50, AC50, Ki, KD or similar in a 
concentration unit, resulting from a fit of a concentration-response curve to the Hill equation (sigmoidal curve). 
These are the values to be included. The additional fit parameters from the hill equation (Hill slope, Ainf and 
A0) are not included as model endpoints. They may be used to guide the decision whether to include a data 
point, if such filtering has not happened already at the stage of curve fitting and data warehouse entry.  

Background 

In a concentration-response assay (also called dose-response assay) a dilution series is produced for each 
compound with concentrations regularly spaced on the logarithmic scale reaching for example from 30 µM to 
1 nM concentration. For each concentration in this dilution series the assay signal is read out, and the 
normalized assay signal as function of the logarithmic concentration is (typically) fitted as a sigmoidal 
concentration response curve. The inflection point of this sigmoidal curve is used as the main numerical value 
summarizing such a dose response experiment and is called IC50, AC50, EC50 or similar, depending on the 
type of activity. If the inflection point lies within the concentration range covered by the dilution series the 
values are typically reported as exact values (e.g. IC50 =0.5 µM). For cases in which the inflection point is lying 
outside the maximum measured concentration (extrapolated inflection points) or the concentration response 
curve is flat, qualified values are usually reported (e.g. IC50 >30 µm). For some instances, qualified values can 
occur within the concentration range, if, for example, some measurements of the dilution series become 
unusable because of confounding effects at higher concentrations such as cytotoxicity and therefore have 
been excluded from curve fitting. For highly potent compounds, extrapolated inflection points can lie below the 
lower limit of the dilution series and qualified values may be reported (e.g. IC50  <0.001 µM).  

Types and units of ADME-related assays are typically more variable, and guidance for inclusion is given 
below in §3.2.3 

In general, each assay is treated as its own prediction endpoint. This means that there is no 
aggregation done based on the assay target (with the exception of public data, as described below). The 
rationale for this is the following:  

§ Different assays on the same targets are not expected to give the exact same numerical values, since 
many different assay principles are used which can lead to weak correlation between the assays. Even 
in case of the same or similar assay principle, simple dose response read-outs such as IC50 values are 
depending on assay conditions such as the concentration of reagents or target protein. Since the 
partners are interested in obtaining (semi)quantitative models for at least a part of their assays, this 
requires the numeric outputs to be comparable. 

§ The inclusion of assays not tightly coupled to an individual target biomolecule is possible and 
encouraged.  

The assay identity is thereby established by the assay registration systems used at the individual partners. It 
is explicitly acknowledged, that the identity criteria may vary from partner to partner. For example, when a 
concentration response assay is handed over from one lab that established and used it for validation of results 
from a single concentration HTS campaign to another biology lab running it for the purpose of further lead 
optimization, some partners may choose to treat both assays as different, whereas other partners still treat 
this as an identical assay.  

In most cases relying on the partners’ own assay registration system to establish assay identity is sufficient, 
as assays are typically not shared among the partners. There is however an exception to this for the 
“catalogue assays”, which are offered by CROs on a fee-for-service basis and are used by multiple pharma 
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companies. In this case, multiple companies may actually own data from an identical assay. The partners 
using such catalogues assays may therefore wish to combine their data into joint prediction endpoints. In 
order to enable this, partners can map their internal assay ID in the input to published catalogue assay IDs. 
Catalogue fusion is only applied to classification tasks, but the corresponding tasks can be still used in 
regression without catalogue fusion since under the standard paradigm each partner’s assay is a separate 
task. 

In the public data there is no assay registration at all, and assay identity is typically tied to the underlying 
scientific publication or patent. 

In some cases one assay may produce more than one relevant read-out, as for example a solubility assay 
may report solubility values at multiple pH values. In such a situation each relevant read-out should be treated 
as its own prediction endpoint and have its unique input_assay_id. 

2.1.2 Auxiliary data 

Also in the third project year, in addition to the dose-response assays as the primary prediction endpoints, we 
will include auxiliary data. Auxiliary data will be used in the training to fit the model, but will not be included in 
model performance evaluation. 

The following auxiliary data categories are considered for year 3: 

Single concentration high-throughput screening data: This data will typically result from plate-based 
screens. The raw read-outs are expected to be normalized by on-plate controls. Typically, a neutral (low) 
control and an active (high) control are used, in order to create a percent activity read-out. However, also 
normalizations only to a low control are acceptable. We expect HTS data to be quality controlled and 
normalized. Confounding effects such as edge effects or liquid handling artefacts have either been corrected 
for or the affected data points been removed.  

Pseudolabel data: This type of auxiliary data results from high content experiments such as cellular imaging 
or transcriptomics.  Imaging data will typically result from plate-based imaging screens, where images are 
acquired by an automated microscope and are then processed automatically by an image analytics software 
such as Acapella or CellProfiler. This will involve typically an expert designed segmentation process to detect 
cellular components and taking measurements on them. In either case a dense matrix of experimental 
features for each sample is generated in such experiments. These features are not used directly as auxiliary 
prediction tasks, but are used to generate so-called pseudolabels, which are predictions of main endpoints 
based on the auxiliary data.  

Generation of auxiliary pseudo labels is two-step process. The first step requires a dense feature matrix Xaux 
resulting from a high content experiment such as imaging as input alongside with the main task Y matrix, in 
order to train a model predicting main task values from the feature matrix. In the second step, this model is 
used to predict the main task Y data. The resulting predictions are filtered by quality, retaining only high 
quality predictions. This results in a data matrix Yaux of predicted pseudo labels, which is much denser than 
the original Y matrix, but contains only a subset of tasks amenable to reliable prediction. This Yaux matrix is 
then combined with the original Y matrix (see also Figure 2). Yaux from pseudolabels is directly generated in 
binary form.  

	
Figure 2: Generation of auxiliary pseudo-label tasks 
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In case there is more than one feature matrix, this process must be repeated for each feature matrix. The task 
quality filter criterion is a parameter, which each partner will have to optimize by himself. The use of such 
auxiliary data per partner is optional and not expected from every partner. 

Both types of auxiliary data will be brought in as classification tasks only. It is however possible in a hybrid 
model setup to include both regression and classification tasks, that also regression tasks can potentially 
benefit from auxiliary data.  

Given that auxiliary data is introduced for the exclusive purpose to improve the prediction of the main 
endpoints, partners are asked to assert individually for their auxiliary data that this is actually the 
case. An auxiliary data set may only be introduced if the following conditions are met in a single partner setup.  

1. The aggregated primary performance metric across all endpoints must not suffer from the introduction 
of auxiliary data 

2. At least one of the following criteria must be met: 

a. The primary performance metric of a hyper-parameter optimal model with auxiliary is larger 
than the corresponding metric of a hyper-parameter optimal model without auxiliary data.   

b. The domain of applicability was extended as measured by conformal predictor efficiency 
increases when introducing auxiliary data   

3. Main endpoint tasks closely related to auxiliary tasks must benefit. For single concentration HTS 
assays, these are the main tasks corresponding to the concentration response validation of the HTS 
data. It is understood that it may not be possible to identify a pairing for each HTS assay. The benefits 
of HTS data should assessed on that subset of main endpoints that can be linked to a HTS single 
concentration assay. For pseudolabel tasks, the main task from which the pseudolabels were derived 
is always known and needs to benefit. Benefit needs to be established either as: 

a. Improvement of primary performance metric 

b. Increase of applicability domain 

These criteria above should be evaluated by training models on the three training folds and evaluate the 
performance on the validation fold. The independent test fold should NOT be used. 

2.1.3 Regression tasks 

In the year 3 run partners are requested to include only such task into the regression model, that have the 
chance to result in a meaningful model. As a guidance the following criteria are provided: 

• Tasks with categorical, discrete values are not suited for regression 

• Tasks need to have a minimal level of variance. The standard deviation across all observations needs 
to exceed the standard error that is expected from repeated measurements on the same sample. For 
pIC50 type assay readouts, this experimental error can be assumed to be at least 0.3 log-units.  

• Tasks for which partners were successful in building an in-house regression model are generally 
acceptable. 

• If partners wish to evaluate whether for a task a reasonable model can be built, they should do so by 
training on the three training folds and then evaluate the task performance on the validation fold  

The fact that a task is considered not suitable for regression does NOT imply that it cannot be used as a 
classification task, where the aim is still to be very inclusive (see also 3.8.1).  
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Non-ADME Tasks that have a standard deviation below 0.5 log-units in one or more folds are automatically 
de-selected for evaluation (aggregation_weight is set to 0.0). These tasks are still used in training if the 
training quorum is met. 

2.2 Chemistry Space Criteria 
Small, organic molecules, without any exclusion criteria by chemical attractiveness, drug-likeness or similar 
empiric rules, represent the chemical space of the model training.  

In order to prevent the structure processing described below to take excessively long for individual extremely 
large molecules the number of non-H atoms is limited to ≤ 100. This limit is enforced by the common structure 
processing code (see §4.1) to ensure that the restriction to small molecule data is fulfilled. 

2.3 Data Volume Criteria 
In order to ensure that enough data are present for training and reliable calculation of performance figures, 
two types of data volume criteria are used 

• Training quorum: This quorum must be met or exceeded so that the task / assay can be included in 
the training set at all. This quorum will be checked by the MELLODDY-tuner code after replicate 
aggregation. However, as replicate aggregation will possibly reduce the number of data points it 
would be good practice to filter accordingly before processing it with MELLODDY-Tuner, in order to 
speed up the processing. 

• Evaluation quorum: This quorum must be met or exceeded so that a task is included in the 
calculation of the global performance metrics. It must be at least as stringent as the Training quorum, 
in order to take effect, as tasks not included in the training cannot be included in performance metric 
calculation anyway. This quorum is meant to ensure that only such tasks will be included in the 
aggregated performance figure calculation, that have enough data points in the validation or test fold 
to ensure that performance figures can be calculated accurately.  

The values for these quorums are dependent on model type (classification versus regression and also on the 
assay type).  
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Assay type Quorum 
Type 

Classification Regression 

Primary Prediction 
endpoints 

NON-CATALOG-
PANEL 
OTHER 
ADME 

Training • 25 observations per 
class label 
(active/inactive) in whole 
dataset 

• 50 observations in 
whole dataset 

• 25 observations without 
qualifier in whole 
dataset 

Evaluation • 25 observations per 
class label 
(active/inactive) in each 
fold 

• 50 observations in each 
fold 

• 25 observations without 
qualifier in each fold 

• For non-ADME: 
Standard deviation > 0.5 
in all folds 

Primary Prediction 
endpoints 

CATALOG-PANEL 

 

Training • 400 observations in total Not applicable (catalogue fusion 
is not used for regression) 
CATALOG-PANEL tasks are 
treated as NON-CATALOG-
PANEL tasks. 

Evaluation • 25 observations per 
class label 
(active/inactive) in each 
fold 

Not applicable (catalogue fusion 
is not used for regression) 
CATALOG-PANEL tasks are 
treated as NON-CATALOG-
PANEL tasks. 

AUX_HTS 
AUX_PL 

 

Training • 10,000 measurements 

• 10 actives 

Not applicable (no auxiliary data 
in regression for year 3) 

Evaluation Not applicable Not applicable 

Table 2: Minimal data volume quorum for training and evaluation by assay type  

2.4 Data Quality 
Experimental results are obtained from a physical sample, to which a chemical structure has been attributed, 
in an assay that serves as reduced model system for biological or biochemical process, such as for example 
binding to a specific target. From these data we wish to conclude that a molecule with attributed structure 
causes the biological effect the assay intends to measure. In reality, the samples are almost never 100% 
pure, but contain impurities, and likewise most assays are vulnerable to some forms of perturbation, which will 
result in a positive assay outcome even in absence of the biological affect the assay was designed for.     
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2.4.1 Sample Quality 

In order to ensure that the assay results in the data set can be truly attributed to the nominal structure, ideally 
the identity and purity of the sample should be verified at the time of experiment. While this goal cannot be 
fulfilled in practice, all pharma partners agreed to adhere to their internal good practice guidelines and will 
avoid including data generated on impure samples or samples with an incorrectly attributed structure to the 
best of their abilities. 

Background 

In industrial compound collections, analytical compound sample quality control (QC) is performed in at least 
one of the two stages below to ensure chemical integrity of the sample: 

Initial sample QC by the synthesizing chemist. Though typically there apply company guidelines for minimum 
purity requirements, the analytical methods deemed appropriate may vary for the compound structure in 
question. Low throughput methods are acceptable, as the analytical measurements and their interpretations 
are distributed over the chemists.  

Analytical QC of the screening stock solutions at the time the screening stock solution was produced or the 
assay was run. This needs to run in high-throughput and is typically done by liquid chromatography coupled to 
mass spectrometry and UV readout (LC/MS). The UV trace is used to establish the sample purity, whereas 
the MS is used to confirm whether the molecular mass under the main peak is in agreement with the expected 
mass of the nominal structure. The measurements and interpretations in this case will be highly standardized 
and automated to cope with the necessary throughput.   

In either scenario the purity information may be available explicitly in numerical form, or only implicitly (“if it 
has a registration number, it is at least X % pure”). Implicit purity criteria make it impossible to require a fixed 
level of purity across all partners. Older sample may not have undergone the purity check of current industry 
standards. In any case sample QC is a snapshot in time and does not guarantee that the sample has fulfilled 
the purity requirement at the time the assay data point has been generated. 

2.4.2 Frequent Hitters 

The treatment of frequent hitters is left to the individual partners, based on necessity. In general we expect 
that frequent hitters will be removed from the auxiliary HTS data. 

Background 

While most of the assays have been designed and optimized to measure the interaction of small molecules 
with a single target, protein complex or pathway, in practice most assays are sensitive to a at least some 
unspecific interference mechanisms such as aggregation1, redox cycling2, metal contamination effects3, 
electron transport chain inhibitors4, in order to name only a few examples. While there is the expectation that 
these specific mechanisms can be addressed with appropriate counter assays, in practice it is not always 
straightforward to identify the mechanism that makes a specific compound or compound class a frequent 
hitter. The analysis of the complete screening history of the compound as for example described by Beck5 is 
thus often a more efficient and pragmatic approach to identify such compounds. Sometimes it is possible to 
define substructure patterns from such empirical frequent hitter data, as for example the PAINS filters.6 While 
typically only a small minority of a screening collection shows a frequent-hitter behaviour, depending on the 
robustness of the assay, a significant fraction of the active compounds may be frequent-hitters. 

The impact of frequent hitters on ML model building is still poorly understood. In a setup where the primary 
modelling endpoints are assays and not targets (see §2.1.1), the prediction of a frequent hitter as a compound 
active in the assay is formally a correct prediction. Still, the concern is that such frequent hitters could take up 
an unduly large fraction of model degrees of freedom or could inflate the performance metrics, as predicting 
mostly frequent hitters as active might be a more straightforward and trivial task than modelling truly active 
compounds.   

Single partner studies showed that the impact of frequent hitters on the modelling results differs between the 
partners. This is a consequence of the different practice between pharma partners with respect to the stage at 
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which frequent hitters are removed. For partners which remove frequent hitters after single concentration HTS 
before selecting compounds for follow-up in concentration response assays have often less frequent hitters in 
their dataset compared to companies applying such a setup only after progression of compounds to 
concentration-response assays.  

3 Individual Data Processing 

3.1 Overview of tasks to perform 
The partners will export their structure activity data from their data warehouses. During this export the 
following tasks must be performed: 

• Assignment of assay types (§3.2) 

• Assignment of catalogue assay IDs (§3.2.3) 

• Unit harmonization and scaling (§3.3) 

• Optional definition of expert thresholds (§3.4) 

• Replicate aggregation on sample level (§3.6) 

In addition pharma partners can take the necessary steps that the year 3 MELLODDY Tuner input is also 
suitable for time gated analysis of the year 2 models. These steps are optional. They are described in §3.7. 

The result of this export is a set of three files as described in §3.8: 

1. T0: A unique list of assays. This file has to contain a unique input_assay_id, alongside with required 
metadata such as the assay type (§3.2) and optional expert thresholds (see §3.4)  

2. T1: A table of assay results representing primary prediction endpoints. This table needs to reference 
input_assay_id from T0 and input_compound_ID from T2. It contains the activity data after unit 
harmonization, scaling (§3.2.3) and sample replicate aggregation (§3.6). 

3. T2: A table of chemical structures associated to the input_compound_ID. input_compound_ID in 
this table is expected to be unique, whereas replicate smiles are acceptable and expected. 

3.2 Assignment of Assay Types 
Background 

Besides project specific assays, pharma partners typically run assays which are used by many different 
projects to characterize their compounds with respect to physical-chemical and other ADME (Absorption, 
Distribution, Metabolism, Excretion) properties as well as biological assay panels to discover undesired off-
target interactions related to adverse effects (“safety” panels). Because of their use across individual projects, 
these assays are exposed to more diverse chemical matter than assays used in the context of an individual 
discovery project, which should make them more amenable to machine learning. Also, the endpoints of these 
assays are overlapping to a large degree between the partners, indicating higher potential to benefit from the 
federated approach. Thus, if the federated approach is not able to show superiority across all assays in the 
second year, we may at least be able to demonstrate superiority for such assay types which is expected to be 
less challenging to achieve.     

The pharma partners will group their assays and the resulting classification and regression tasks into assay 
types according to their role in the drug discovery process. This type of annotation is based on the general 
operation mode for drug discovery in the pharmaceutical industry and is not informative in any way about the 
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partner’s disease, target or assay technology portfolios. The classification scheme is described below in Table 
3: Assay types.  

Assay types are used for two purposes: 

• During the automated data preparation in MELLODDY-Tuner, some steps of the processes are done 
differently for different assay types, such as for example automated threshold setting to define 
classification tasks.  

• During performance evaluation the results for the different assay types will be also analysed 
separately.  

Assay Type Characteristics 
Chance to observe 

improvement in 
multi-partner ML 

ADME 

• Used to optimize the pharmacokinetic properties  
• Assays run for a long time  
• Diverse compounds from a wide range of projects  
• High overlap of endpoints between pharma companies  
• Assays may be identical between partners because some 

contract these out to service providers 
• Readout often not dependent on small molecule – target 

interactions  

High success chance 
based on y2 results 

NON-CATALOG-
PANEL 

• Used to optimize selectivity against off-targets with the aim 
to anticipate adverse events  

• Assays run for a long time  
• Diverse compounds from a wide range of projects  
• High overlap of endpoints between pharma companies 

(see Bowes et al. 7) 
• Assays may be identical between partners because some 

contract these out to service providers 
• Often compounds are submitted to a whole panel at a time, 

making the part of the activity matrix less sparse, but by far 
not fully filled, as panels change over time and are often 
also structured into subpanels.   

Increased success 
chance over OTHER 

expected 

CATALOG-PANEL • Same as NON-CATALOG-PANEL, but used in catalog 
fusion High success chance 

OTHER 

• Typically used to identify molecules with on target activity 
or to optimize their potency  

• Overlap of endpoints between pharma is lower than in the 
other two types  

• Especially in case of assays used in lead optimization 
stage of an individual project, the number of compound 
classes having data in this assay will be limited  

• Vast majority of assays will fall in this type  

More Challenging 

AUX_HTS Auxiliary task from single concentration HTS, contribution 
only to training, but not to evaluation metrics Not applicable 

AUX_PL Auxiliary data generated as pseudo-labels, contribution only 
to training, but not to evaluation metrics Not applicable 

Table 3: Assay types 

3.2.1 Which assays should go into the category ADME?  

One key criterion is that the assay has been or is used across a wide range of projects. Examples of assays 
to go into ADME category are:  

§ Solubility assays  
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§ logP and logD@pH  
§ pKa, fraction ionized  
§ Permeability (MDCK, Caco-2, PAMPA etc.)  
§ Membrane affinity  
§ HSA binding, Plasma protein binding  
§ Liver microsomal or hepatocyte stability  

		

3.2.2 Which assays should go into the category NON-CATALOG-PANEL?  

One key criterion is that the assay has been or is used across a wide range of projects. This means project 
specific selectivity assays, such as for example an assay addressing sub-type selectivity for the project’s 
target should not go into the PANEL category.  Examples of PANEL assays are:  

§ general pharmacology safety panels  
§ Ion channel assays addressing cardiac safety (e.g. hERG)  
§ target family specific selectivity panels, such as kinase panels  
§ CYP inhibition panels 

Phenotypic toxicity assay such as Ames tests or phosholipidosis assay should not be assigned to the PANEL 
type, but rather be treated as OTHER. 

3.2.3 Which assays should go into the category CATALOG-PANEL?  

They key criterion for putting an assay into this category is that the assay was run as catalogue assay at a 
CRO, to which multiple customers can submit samples for screening. Assays in this category must be 
mapped to a reference catalogue of assays offered by CROs, which is made available to the pharma partners. 
In order to map an internal assay to a given catalogue assay, the pharma partner must be certain without any 
doubt that the data resulted from that catalogue assay. In addition, the specific data volume quorum as set out 
in Table 2 must be met.  

3.3 Unit Harmonization and Scaling 

3.3.1 Scaling of Concentration Response Data 

Concentration response activity will give read-outs like IC50, AC50, EC50, Ki, KD, which are in molar 
concentration units such as µM. The original values in molar are transformed into the negative logarithm to the 
basis 10 to give pIC50, pAC50, pEC50, pKi, pKD. Some conversion examples are shown below:  

 

	  



813472 – MELLODDY – D1.3  

18 
 

Input activity standard_qualifier standard_value 

0.1 mM = 4.0 

> 30 µM < 4.5 

0.1 µM = 7.0 

< 0.001 µM > 9.0 

10 nM = 8.0 

	
Please note that due to the use of the negative logarithm also qualifiers will have to be inverted.  

The resulting standard_values are expected to be in the credibility range from 3-10.  

3.3.2 Use of single concentration data for CRO profiling assays 

Normally single concentration data should not be used as primary endpoints. An exception is made for CRO 
based profiling panel assays, which will often be catalogue assays. In many such assays the CRO starts with 
a single concentration screen, and only follows up with a concentration response measurement, if the activity 
in the single concentration measurement is sufficiently high (typically 50%). In order to make use also of the 
single concentration measurements, and thus increase the number of measurements, the following approach 
is suggested: 

• If a concentration response curve is measured, the data from this is used. 
• If single concentration data exist, and no single concentration data point has an activity greater than 

25%, then this will be treated as inactive example, with an IC50 > [maximal single concentration 
measured] 

 

Reported IC50 %activity @ 10 uM %activity @ 30 uM pIC50 used for T1 file preparation 
4.6 uM 72 96 5.3 

> 30 uM 16 12 < 4.5 
> 30 uM 20 35 < 4.5 

 3  < 5 
  3 < 4.5 
 41  Don’t use this data point 
  41 Don’t use this data point 

Table 4: Example for catalogue CRO assay preparation. This example is built on IC50, but applies in analogy also to AC50, 
EC50 and other concentration-response summary values 

This representation is mandatory for all catalogue assays undergoing catalogues assay fusion (type 
CATALOG-PANEL), but also recommended for other CRO panel assays run under the same operational 
model. 

3.3.3 Scaling of ADME Assays 

The read-outs of ADME assays are more heterogeneous than those for bioactivity assays. For common types 
of assays the rules have been specified in Table 5. Pharma partners can, over the course of MELLODDY, 
mutually agree to define rules for additional types of ADME assays. The types of ADME assays that can be 
included are not limited to those assays for which common scaling rules have been agreed upon. As a 
general rule for those assays not listed in the table, the distribution of values should be analyzed. If the data 
are rather lognormal distributed than normal, a log-transform is suggested.  
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In addition, this table also provides a direction of interest. This will be used in automated thresholding to 
decide which direction of the scale should get the “active” label. As some performance metrics like AUCPR 
are not symmetric, it is important to define to which end of the scale precision and recall should refer to.  In 
general, the direction chosen here is the end of the scale, at which ADME problems and obstacles are to be 
expected. However, not for all ADME assays this direction make sense, and for such assays asymmetric 
metrics like AUCPR are most likely not suitable. The direction of interest is applied to the unit transformed and 
scaled data. During the transformation, the directionality may change, as for example in the case of PLASMA 
Protein binding, where a high plasma protein binding leads to a low value of logKa.  

	
Assay Measurement Standardized Unit and Scaling Direction of 

interest 
Permeability 
assays (caco-2, 
MDCK, PAMPA) 

Permeation coefficients PA-B 10-6cm/s, Log10 scaled low 

Efflux Ratio (=PB-A/PA-B) Unitless, Log10 scaled high 
Plasma Protein 
Binding %PPB logKa = log10((100% - PPB)/PPB), 

with PPB in %. See also 8 low 

Solubility 
Solubility at given pH, 
separate task for each pH 
reported 

Log10 for the molar solubility. Solubility 
values in g/l need to be converted 
using the solute’s molecular weight. 

low 

logP logP Unitless, no conversion necessary high 

logD logD at given pH, separate 
task per each pH reported 

Unitless, no conversion necessary 
 high 

CYP time 
dependent 
inhibition 

Kobs Log10(Kobs [min-1]) high 

Microsomal and 
hepatocyte 
clearance 

clearance 

Log10 (CLint ) with CLint in µL/min*mg. 
It is understood that not all partners 
can easily convert their read-outs to 
this desired target representation. In 
this case it is till recommended to log-
transform the available clearance read-
out 

high 

Standardized in 
vivo-PK 

Clearance 
Log10(Clearance measured in 
[mL/min/kg]). Use only data from 
intravenous (i.v.) dosing 

high 

Bioavailability Log10(Bioavailability) from oral dosing low 

Vss (volume of distribution) L/kg, log10 scaled high 

 MRT (mean residence time) h, log10 scaled low 
Table 5: Units and scaling for experimental ADME readouts.  

3.3.4 Scaling of single concentration HTS assays 

It is expected that the pharma partners will access instrument read-outs that are normalized to the neutral 
(low) and, if available active (high) controls on the same plate. These readouts will typically have the form of 
%activity, and ideally have undergone further QC procedures such as Gubler et al.9 

The activity values obtained in this way are then re-normalized across the whole sample domain of the assay, 
that is all measured samples, using the robust Z-score also referred to as rscores. For each data 
representation possibility, we use the r-scored values of HTS data using the formula below: 

rscorei = (xi−median(X)) / mad(X) 

xi: the raw activity value of sample i  
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X: the percentage activity value vector of the assay. This will typically be percentage activity in case 
there is a neutral and an active control.  

mad: median absolute deviation 

The presence of read-outs can be ignored for the purpose of calculating median and mad. 

Typically, these assays have also one direction of interest, in which the desired activity can be found. Single 
partner studies demonstrated that classification using absolute rscore values worked well, providing that 
setting the direction of interest is possible though not strictly required. 

A script to convert the input HTS data into r-scores will be provided. This script will also annotate samples as 
frequent hitters based on the rscore readout and the method by Nissink et al.10 Partners can use their own 
frequent hitter annotation instead. 

3.4 Definition of Expert Thresholds 
For the classification models, most classification tasks will be generated using automatically defined 
thresholds during the MELLODDY_Tuner processing, as described below in §4.2.4 by analysing the task 
value distribution. However, partners have the possibility to pre-define thresholds based on expert knowledge. 
These thresholds will be added to the T0 file. The number of expert defined thresholds must not exceed five 
for each assay. Reasons for defining expert thresholds can be: 

• Assay read-out thresholds triggering regulatory consequences, such as in safety panel assays 

• Replication of assay reads-out thresholds used in internal models 

• Harmonization of thresholds among partners for assays contracted out to CROs and used identically 
by multiple partners  

Expert thresholds must match in unit and scale the transformed activity data. 

In order to ensure a uniform representation of assays undergoing catalogues assay fusion, for all assays of 
the type CATALOG-PANEL the following expert thresholds will be enforced by MELLODDY-Tuner and 
override any expert thresholds set in the input: 5 (10 µM), 6 (1 µM), and 7 (0.1 µM). Further auxiliary 
thresholds like 4.5 (31 µM) or others will be included in the given reference file (Tcat) if benefical. 

3.5 Binary Task Values 
It is possible to present assay results in binary form. This needs to be indicated by a flag in the T0 file. For 
these assays, the thresholding step in MELLODDY-Tuner is bypassed and the data is directly presented as 
classification tasks. Because of the discrete nature, no regression is possible for such tasks.  

There are two use cases for this: 

• Auxiliary pseudolabel data, which is generated in binary form.  

• Results from assays which are only reported in discrete categories.  

For all other assays, which report their data as continuous readout, this mechanism should not be used. If 
desired, thresholding of continuous valued assay data can be controlled by using the expert threshold 
mechanism described above (§ 3.4). 



813472 – MELLODDY – D1.3  

21 
 

3.6 Replicate Aggregation on Sample Level 
Background 

Different types of replicates can occur during structure activity data processing: 

§ Technical replicates: In some assays, all measurements are systematically done in replicates for 
each submitted sample. Such technical replicates are typically already aggregated at the stage the 
assay results are reported into the data warehouse. 

§ Sample replicates: Sample replicates result from repeated independent submission of the same 
compound sample to the assay.  

§ Structure replicates: Measurements of different samples with the same attributed chemical structure. 
Detecting this in a consistent manner across partners requires uniform structure standardization to be 
used at each partner’s side 

§ Descriptor replicates: Result from measurements of samples with different chemical structures but 
having the same descriptor vectors. This type of replicates is undesirable, as it results from the inability 
of the descriptor to encode all relevant structural information required for their distinction. In the case of 
descriptors not encoding stereochemistry such as the ECFP variants used, this means that results on 
different stereoisomers will be descriptor replicates. Even if such replicates were not explicitly 
aggregated during data preparation, the ML algorithm would implicitly aggregate the data on the items 
indistinguishable to it. 

	
Pharma partners are expected to aggregate replicates at the sample level. Later in the work-flow aggregation 
will take place at the descriptor level. As replicate read-outs taken on the same sample are expected to give 
the same result, this is the stage where best to deal with diverging measurements. The following principle 
apply: 

• Aggregations of technical replicates made before data warehouse entry are treated as a single result 
and not undone. 

• Measurements resulting from independent, repeated submissions of the same sample to an assay 
are aggregated according to internal rules of the pharma partners, which will typically be averaging.  

o In case of divergent measurements partners should remove all observations if there is no 
knowledge available, which replicate is wrong (respectively right). If partners are in 
possession of knowledge, which observation is the correct one, they may remove the 
erroneous replicate, as partners are in general encouraged to remove observations they know 
to be erroneous or be problematic.   

3.7 Preparation for Time-Gated Analysis  
This section describes the necessary steps for time gated analysis. There are two steps required: 

• Addition of time stamps: Two time stamps can be considered:  

o Structure registration dates: necessary to define the temporal data set based on a pure 
compound wise split. The registration dates of a sample should represent the minimum 
registration date at which any sample of the same structure was registered at (i.e. the oldest 
date at which the structure has appeared in data warehouses). Sample A structure 
registration dates can be assigned to each sample included in T2.   

o Experimental timestamps: necessary to define temporal data sets on the basis of each 
modelled assay. Aggregated experimental timestamps should represent the oldest date at 
which any experiment with the sample structure was performed (i.e. the first experiment in 
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this assay with any sample of the same structure). Experimental timestamps can be included 
in T1.   

• Ability to map year 2 tasks to year 3 tasks: The most straightforward way to achieve this, to use for 
each internal source assay the same input assay ID in year 2 and year 3. Otherwise a mapping table 
between year 2 and year3 can be used. 

3.8 File Formats 

3.8.1 Assay Metadata File (T0) 



	 	

	

	
input_ 

assay_id assay_type use_in_ 
regression 

Is_binary expert_ 
threshold_ 

1 
... 
_2 

... 
_3 

... 
_4 

... 
_5 direction 

catalog_ 
assay_ 

id 

parent_ 
assay_id 

3855277 OTHER True False         
3855278 OTHER True False         

3855279 CATALOG-
PANEL True False 5.0      12  

3855298 ADME True False 2.0     high   
9999998 AUX_PL False True        3855277 
9999999 AUX_HTS False False         

	
Table 6: Example of a T0 table. Even if the expert thresholds for input_assay_ID 3855279 had not been present or different than those shown here, MELLODDY Tuner would 
have imposed these thresholds for CATALOG-PANEL assays 



	 	

	

	
This comma separated file contains the initial assay metadata required for pre-processing and machine 
learning.  

• input_assay_id represents the identifier for the assay (integer format), and needs to be unique in this 
file. If the year 3 MELLODDY Tuner input should be suitable for time gated analysis (optional!), then 
either the same input_assay_id needs to be used for each source assay in year 2 and year 3 input, or 
at least a mapping table needs to exist.  

• assay_type must be one of the following “NON-CATALOG-PANEL”, “CATALOG-PANEL”, “ADME”, 
“OTHER”, “AUX_HTS”, or “AUX_PL”. 

• use_in_regression: Can be either “True” or “False” and indicates whether a task should be included 
in the regression dataset. In the year 3 run, the partners are asked to include only such tasks into 
regression, where there is a chance that a meaningful regression model can be obtained. If this is left 
empty, True is assumed, unless the task is marked as binary. For tasks of type AUX_HTS and 
AUX_PL, or tasks marked as binary use_in_regression =  “False” is enforced. Please note that it is 
permitted set use_in_regression = True for CATALOG-PANEL tasks, despite the fact, that catalogue 
fusion is only used for classification. In the regression arm of the data preparation, this task will be 
converted to a “NON-CATALOG-PANEL” task.  

• Is_binary: Can be either Tue or False, with False being the default. True indicates that the data for 
this assay is presented in binary form already. Is_binary = True implies automatically 
use_in_regression = false. AUX PL type tasks are presented already in binary form.  

• expert_threshold_1, expert_threshold_2, expert_threshold_3, expert_threshold_4, 
expert_threshold_5 : Columns for providing optional expert defined thresholds (see 3.4). Either 
empty, or a single floating point number, indicating a threshold. Expert Thresholds for assays of type 
“CATALOG-PANEL” are ignored. 

• direction: Encodes the direction at which end of the scale compounds of interest to be predicted are 
located (see also §3.3.3 and  §3.3.4). This must be either “high” or “low”. Filling this column is 
mandatory for the assay type ADME, optional for AUX_HTS. For the main activity endpoints in the 
categories “NON-CATALOG-PANEL”, “CATALOG-PANEL” and “OTHER” this is not interpreted, as 
here always the high end of the pIC50-type scale is considered of interest.  

• catalog_assay_id: Column referencing a catalogue assay ID. Must match an ID from a reference file 
Tcat (seel below in Table 14) made accessible to pharma partners. This column is mandatory to be 
filled for assays of type “CATALOG-PANEL”. Each catalog_assay_id may be mapped only on exactly 
one input_assay_id 

• parent_assay_id: For auxiliary assays then can be linked to a parent assay it is possible to add here 
the input assay_id for that task 

The presence of other columns is tolerated, they are carried through, and only removed at the last stage when 
the data files for ML are written. All assays are expect to be listed in the T0 file, including auxiliary tasks and 
assays. MELLODDY-Tuner accepts multiple T0 files as input, which will then be concatenated. Across the T0 
files, the input_assay_id must be unique. 
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3.8.2 Activity Data File (T1) 

input_compound_id input_assay_id standard_qualifier  standard_value 
3950540 3855277 = 9.58 
3955505 3855277 = 9.38 
3896638 3855277 = 9.24 
3946901 3855277 = 9.10 
3927895 3855277 = 8.98 
3984387 3855277 = 8.56 
3905582 3855277 = 8.50 
3935776 3855277 = 8.49 
3983937 3855277 = 8.26 
3901587 3855277 = 8.21 
85606 3855277 = 8.19 
3967683 3855277 = 8.11 
3935776 3855277 = 8.03 
3913062 3855277 = 7.75 
3958494 3855277 = 7.60 
3958494 3855277 = 7.55 
3901211 3855277 = 7.38 
3927895 3855277 = 7.14 
3913062 3855277 = 6.10 
3984387 3855278 = 6.93 
3905582 3855278 = 6.89 
3955505 3855278 = 6.65 
3935776 3855278 = 6.51 
3935776 3855278 = 6.50 
3896638 3855278 = 6.48 
3927895 3855278 = 6.48 
3950540 3855278 = 6.46 
85606 3855278 < 6.31 
3958494 3855278 = 6.29 
3946901 3855278 = 6.28 
3967683 3855278 = 6.20 
3901211 3855278 = 6.15 
3983937 3855278 = 6.10 
3913062 3855278 = 6.03 
3901587 3855278 = 6.01 
3958494 3855278 = 6.00 
3927895 3855278 = 5.36 
3913062 3855278 = 4.77 
3950540 3855279 > 7.00 
3896638 3855279 > 7.00 
3984387 3855279 = 6.95 
3946901 3855279 = 6.70 
3946901 3855279 = 6.68 
3935776 3855279 = 6.60 
3901587 3855279 = 6.35 
3955505 3855279 = 6.28 
85606 3855279 = 6.17 
3927895 3855279 = 6.16 
3983937 3855279 = 5.54 
3901211 3855279 = 5.44 
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input_compound_id input_assay_id standard_qualifier  standard_value 
3958494 3855279 = 5.40 
3913062 3855279 = 5.33 
3905582 3855279 < 5.00 
3901587 3855298 = 1.30 
3955505 3855298 = 2.03 
3941818 3855298 = 2.55 
3901587 9999998 = 1 
85606 9999998 = -1 
3967683 9999998 = 1 
3935776 9999998 = 1 
3913062 9999998 = -1 
3958494 9999998 = -1 
3905582 9999998 = 1 
3901211 9999998 = -1 
3927895 9999998 = -1 
3913062 9999998 = -1 
3935776 9999999 = -4.18 
3958494 9999999 = -1.60 
3927895 9999999 = -1.29 
3913062 9999999 = -0.95 
85606 9999999 = -0.88 
3901587 9999999 = -0.78 
3905582 9999999 = -0.21 
3896638 9999999 = 0.10 
3901211 9999999 = 0.65 
3946901 9999999 = 0.76 
3955505 9999999 = 1.05 
3984387 9999999 = 1.68 
3983937 9999999 = 2.26 
3950540 9999999 = 2.67 
3967683 9999999 = 2.89 

Table 7: Example Data: Input activity data (T1 as in Figure 1: General data preparation workflow. The labels T0 to T11 in 
this figure refer to example data tables. ), with unit scale and transformations applied 

			
The following columns need to be present: 

• input_compound_id: refers to input_compound_id in T2 

• Input_assay_id: refers to input_assay_id in T0 

• standard_qualifier: The modifiers for censored data are to be written into this column and are limited 
to ['<', '<=', '<<', '>', '>=', '>>', '=', '~'].  Empty values in the activity modifier column are interpreted as 
equals. In MELLODDY-Tuner the qualifiers will be mapped to <, =, or >.  

• standard_value: the numeric value of the observation, scaled according to §3.2.3. For task that are 
declared as binary tasks using the is_binary flags in the T0 file, the values need to be either 1 or -1, 
all other values are treated as an error. 1 should correspond to the (typically minority) class for which 
the area under the precision recall curve is determined. 

The T1 format is used for all assays and tasks, including auxiliary data. If desired MELLODDY-Tuner can read 
in multiple T1 files which will then be concatenated. 
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3.8.3 Structure File (T2) 

This table contains the chemical structures for all compounds covered by the activity data file, including 
compounds having only auxiliary data. The following columns are expected to be present: 

• Input_compound_id: a unique identifier as integer for each compound sample 

• smiles: smiles representation of the chemical structure associated with the sample as present in the 
company data warehouse without additional standardization 

	
input_compound_id smiles 
3896638 Cn1c(SCCCN2CC[C@]3(C[C@@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5ccsc5 
3901211 Cc1ncoc1c2nnc(SCCCN3CC[C@@]4(C[C@@H]4c5ccccc5)C3)n2C 
3905582 Cn1c(SCCCN2CC[C@]3(C[C@@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5csnn5 
3913062 Cc1ncoc1c2nnc(SCCCN3CC[C@]4(C[C@@H]4c5ccccc5)C3)n2C 
3941818 Cn1c(SCCCN2CC[C@]3(C[C@@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5ccc(cc5)c6occn6 
3946901 Cn1c(SCCCN2CC[C@]3(C[C@@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5ccccn5 
3950540 Cn1c(SCCCN2CC[C@]3(C[C@@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5ccc(cc5)C#N 
3958494 Cc1ncoc1c2nnc(SCCCN3CC[C@]4(C[C@H]4c5ccccc5)C3)n2C 
3967683 Cn1c(SCCCN2CC[C@]3(C[C@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5ccccn5 
3983937 Cc1ncoc1c2nnc(SCCCN3CC[C@@]4(C[C@H]4c5ccccc5)C3)n2C 
3984387 Cn1c(SCCCN2CC[C@]3(C[C@H]3c4ccc(cc4)C(F)(F)F)C2)nnc1c5csnn5 
3901587 Cc1ncoc1c2nnc(SCCCN3CC[C@@]4(C[C@@H]4c5ccc(cc5F)C(F)(F)F)C3)n2C 
3927895 Cc1ncoc1c2nnc(SCCCN3CC[C@]4(C[C@@H]4c5ccc(cc5F)C(F)(F)F)C3)n2C 
3935776 Cc1ncoc1c2nnc(SCCCN3CC[C@]4(C[C@H]4c5ccc(cc5F)C(F)(F)F)C3)n2C 
3955505 Cc1ncoc1c2nnc(SCCCN3CC[C@@]4(C[C@H]4c5ccc(cc5F)C(F)(F)F)C3)n2C 
85606 O=C(N[C@@H]1CC[C@@H](CCN2CCc3cc(ccc3C2)C#N)CC1)c4ccnc5ccccc45 

Table 8: Example Data: Input  smiles data (T2 as in Figure 1: General data preparation workflow. The labels T0 to T11 in 
this figure refer to example data tables. ) 
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Figure 3: Structure depictions for example structures from Table 8 (T2 example)  

 

The T2 structure file may contain more compounds than actually referenced in the T1 file(s). Non-reference 
structures will be dropped. This enables to use the same comprehensive structure file as input for the 
MELLODDY-Tuner run with and without auxiliary data. 

3.9 Generation of auxiliary pseudo-labels from high content data 
The overall process has been described in 2.1.2. In order to execute this, code to perform the necessary 
steps has been provided by Iktos as a code package separate from MELLODDY-Tuner. This code expects 
the following as input: 

1. A feature matrix file from the high content experiment. The feature matrix must be of the form of a csv 
file, with the left most index column containing the input_compound_id used in the structure file 
followed by a column for each feature. The header of the column is ignored. See also the example in 
Figure 4. 

2. A structure file in T2 format (see 3.8.3) containing the structure for each entry in the feature matrix 
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3. The readily computed MELLODDY-Tuner output from the main-task data only.  

While some overlap is needed between the input_compound_IDs of the feature matrix and the 
input_compound_IDs in the input used to generated the main task MELLODDY-Tuner output, additional 
compounds may be contained in the feature matrix. The output of the pseudolabel generation code is an 
incremental T0, T1 and T2 file for the pseudolabel data. 

	
Figure 4: Example of feature matrix file 

	
Due to the dependency of the pseudolabel generation on the main-task MELLODDY-Tuner output the overall 
process needs to be as follows: 

1. Prepare the main-task data in order to obtain the main task T0 and T1  files. Prepare a 
comprehensive T2 file including all structure from main tasks, auxiliary HTS tasks, and auxiliary 
feature matrices. Process the main task data with MELLODDY-Tuner 

2. Run the pseudo-label generation code. If there are multiple feature matrices to be included, this 
needs to be done separately for each feature matrix to be included 

3. Run MELLODDY-Tuner on the T0, T1, and T2 input with auxiliary data, sing the option of MELLODDY 
Tuner to accept multiple files for T0 and T1 

4 Processing through MELLODDY-Tuner 

4.1 Structure processing 

4.1.1 Standardization of Input Structures 

In order to ensure a consistent representation of the chemical structures, the input structures read in from T2 
are standardized. 

The following operations are included: 

§ Stripping counterions of salts 

§ Removing stereo information 

§ Neutralizing the molecule 

§ Tautomer canonization 
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This process is done using the MolStandardize module from RDkit (https://www.rdkit.org/) in its default 
settings unless specified otherwise: 

from  rdkit.Chem.MolStandardize.rdMolStandardize import 
CleanupParameters, TautomerEnumerator 
 
 
my_standardizer = MolStandardize.standardize.Standardizer() 
mol = my_standardizer.charge_parent(mol)  # standardize molecules using  
mol = my_standardizer.isotope_parent(mol) 
mol = my_standardizer.stereo_parent(mol) 
mol = my_standardizer.tautomer_parent(mol) 
mol_clean = my_standardizer.standardize(mol) 

 

Depending on the parameter settings, generation of the stereo parent can be switched off in the code to retain 
stereoinformation, which may be desirable in subsequent years. As in the year one run, however 
stereoinformation will be stripped, as achiral fingerprints will be used. The tautomer standardizer follows 
largely the rules described by Sitzmann et al.11  From the 2020_09 version onwards RDkit has the option to 
preserve steoreochemistry on sp3 carbons undergoing tautomerism. This option is used. 

Structures having > 100 non-H atoms are treated as failed, saved in a separated file and will be removed from 
the data set. A table of failing structures is written out for inspection. 

In order to avoid excessive time spent on the standardization of individual structures, the enumeration of 
tautomers is limited to 1000 and to treat molecules exceeding this enumeration limit as failed and, therefore, 
to exclude them.  

The resulting standardized structures are saved in two file formats (csv and numpy file (.npy)) in order to allow 
re-using already standardized structures, as this is the most time-consuming step. 

4.1.2 Scaffold based Fold Assignment 

Compounds are assigned to folds using their scaffold. The general process is as follows 

1. Prune all terminal sidechains to obtain the Murcko scaffold12 

2. Decompose the Murcko scaffold into subscaffolds by breaking linker bonds, but without decomposing 
fused or bridged ring systems13 

3. From the so obtained scaffold, extract the most representative scaffold using the following 
precedence rules: 

a. The number of rings is closest to 3 (minimize abs(numrings – 3) ) 

b. Scaffold precedence rules according to Scaffold Tree14 

c. Alphabetic sorting order of the scaffold’s canonical smiles 

4. The canonical smiles of the scaffold identified in 3. is then hashed together with the secret key. The 
digest of this hashing procedure seeds a random number generator used to generate a random 
integer to indicate the fold. As the desired number of folds is 5, integers in range from 0-4 will be 
generated.  

For acyclic molecules the scaffold is empty, and an empty string is passed as the scaffold smiles to the 
hashing algorithm. Consequently, all acyclic structures will end up in the same fold. 
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4.1.3 Calculation of ECFP Fingerprints 

For each chemical structure an Extended Connectivity Fingerprint (ECFP)15,16 is calculated as input for the ML 
algorithm. The original structures will not be presented to the ML algorithm. To calculate these fingerprints the 
RDKit implementation of ECFPs called “Morgan Fingerprint” will be used.  

The following parameters must be defined when using Extended Connectivity Fingerprints 

§ Type (Bit or Count): Whether to use only the binary information of fragment presence or absence, or 
the fragment count 

§ Size (Radius): The maximal radius around the central atom of the encoded fragments 

§ Modification (Length reduction options): 
§ Folding: Reduction of the fingerprint length by hashing each fingerprint bit to an integer in the 

range of the desired length 

§ Low Frequency Truncation: Retain only the L most frequent fingerprint bits with L being the 
desired length.  

§ Tail compression: Compression of the low frequently occurring fingerprint bits (e.g. taking 2000 
neurons for the 2000 most frequent features, and much less neurons for the remaining features). 

§ Length: length of the resulting output  

§ Chirality: Whether to include chirality or not 

Both Low Frequency Truncation and tail compression require the estimation of bit frequencies across the 
compound space of all partners. These steps therefore need to be incorporated into the federated ML code 
and cannot be done by each partner individually at the data preparation stage. In contrast to this, fingerprint 
folding will be executed at each partner side within the data processing stage. 

The final fingerprint setup is described in Table 9 

Parameter		 Setup	A	
	

Type		 Bit		
Size	(Radius)		 ECFP6	(3)		
Modification		 Folded		

Length		 32000	
Chirality		 No		

Bit	
permutation		 Yes		
Table 9: ECFP Setup 

Structures which fail in the generation of the fingerprint or produce an empty fingerprint will be considered as 
failed and will be removed from the dataset. The processing script will write a file of those structures failing 
processing either at the standardization or the descriptor generation stage.  

The fingerprints will be subsequently scrambled. In order to do this, a bit permutation map is generated which 
contains a permutation of the possible bit indices in the range from 0 to the specified fingerprint length. This 
map is then used to map the original bit indices into the permuted bit index space. 

4.1.4 Assignment of a Unique Descriptor ID 

For those compound structures, which passed the steps so far, a unique identifier is generated for each 
unique ECFP descriptor / fold_id combination. The decriptor_vector / fold_id combination is used, as in very 
rare cases molecules with two different scaffolds can result in the same descriptor and any ambiguity about 
the fold allocation can in such cases be avoided. This descriptor_id will be used for replicate aggregation on 
descriptor level. A mapping table is written, that maps input_structure_id to descriptor_ids and fold_ids.  
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input_compound_id fold_id descriptor_vector_id 
3901587 0 1 
3927895 0 1 
3935776 0 1 
3955505 0 1 
3950540 0 2 
3905582 0 3 
3984387 0 3 
3941818 0 4 
3946901 0 5 
3967683 0 5 
3896638 0 6 
3901211 0 7 
3913062 0 7 
3958494 0 7 
3983937 0 7 
85606 2 8 

Table 10: Example Data: Mapping between input compound identifiers and descriptor_vector_ids (corresponds to T5 in 
Figure 1: General data preparation workflow. The labels T0 to T11 in this figure refer to example data tables.  ).  

Likewise, a table containing the unique descriptor_id alongside with the permuted ECFP and the fold ID is 
written. This table contains one row per unique descriptor_id. The fingerprint is provided as list of bits 
encoded as json string.  

descriptor_vector_id fold_id fp_on_bits 

1 0 

[754, 841, 926, 1039, 1515, 1673, 1787, 1804, 2000, 2226, 
2947, 3534, 3881, 4444, 4708, 5247, 5548, 5969, 6009, 6695, 
7326, 8094, 8272, 8428, 8438, 8648, 8737, 8833, 9231, 9383, 
9639, 9768, 10507, 10819, 11361, 11605, 11607, 12122, 12260, 
12418, 12559, 13043, 14721, 14723, 14847, 15498, 15560, 
15663, 15880, 15984, 16164, 16278, 16756, 17044, 17083, 
17293, 17552, 17850, 18297, 18304, 19569, 20206, 20329, 
20410, 20528, 21099, 22068, 22156, 22789, 23169, 23394, 
23469, 24273, 24326, 24351, 26070, 26490, 26624, 26919, 
27003, 27066, 27207, 27645, 28908, 29119, 29303, 29539, 
29609, 29810, 29955, 30140, 30456, 31097, 31112, 31795] 

2 0 

[841, 870, 906, 926, 1515, 1673, 1787, 1791, 1804, 2000, 2640, 
3881, 3894, 4708, 5247, 5387, 5778, 5969, 6009, 7248, 7326, 
8094, 8272, 8610, 8648, 8737, 8871, 9064, 9353, 9383, 9450, 
9639, 10182, 11605, 11607, 12122, 12260, 12418, 12962, 
13043, 14561, 14567, 14721, 14723, 14847, 14897, 14958, 
15232, 15498, 15663, 15880, 16164, 16756, 17044, 17293, 
18297, 20410, 22068, 22156, 22399, 22641, 22789, 23169, 
23394, 23469, 23920, 24200, 24351, 26070, 26490, 26582, 
26624, 27003, 27158, 27170, 27207, 27645, 28251, 28908, 
29023, 29303, 29539, 29605, 29609, 29810, 30456, 31097, 
31112, 31453] 

3 0 <on bit list as json string> 
4 0 <on bit list as json string> 
5 0 <on bit list as json string> 
6 0 <on bit list as json string> 
7 0 <on bit list as json string> 
8 2 <on bit list as json string> 

Table 11: Example Data: Unique descriptor vector ids (corresponds to T6 in Figure 1: General data preparation workflow. 
The labels T0 to T11 in this figure refer to example data tables. ). The fold_id is a mock_up only, and the descriptor bits 
shown here are not permuted  



813472 – MELLODDY – D1.3  

33 
 

4.2 Processing of Activity Data 

4.2.1 Validation of the Assay Metadata (T0) File 

The Assay Metadata file T0 is read and validated to confirm that the input complies with the file specifications 
described in §3.8.1. A Boolean column “is_auxiliary” is created that contains the information whether an assay 
(or later on derived task) is auxiliary. This column is initialized with False for all assay_types except 
“AUX_HTS” and “AUX_PL”.   

4.2.2 Remove values out of credible value range 

For each assay type credibility ranges can be defined in the parameter file. Observations outside of the 
credibility ranges are removed from the T1 file. For assays presented as binary tasks (flag is_binary in T0 
equal True) this credibility range check is executed in the way, that only values of 1 and -1 are accepted.    

4.2.3 Replicate Aggregation on Descriptor Level 

The T5 table mapping input_compound_id to descriptor ID is joined to the table with the activity values (T1). 
This allows now the identification of replicate measurements on the descriptor_id level and their aggregation. 

The aggregation rules depend on the assay type: 

assay_type Aggregation Rule 
NON-CATALOG-
PANEL 
CATALOG-PANEL 
OTHER 

Retain the value corresponding to the highest activity 
• If there are observations without an < qualifier, use the observation with the 

highest numerical value from those observations 
• Otherwise simply use the observation with the highest numerical value  

ADME Retain the median result 
AUX_HTS • If the direction is “high” retain the largest value 

• If the direction is “low” retain the smallest value 
• If no direction is given retain the observation with the maximal absolute value 

AUX_PL These tasks will be exclusive presented as binary tasks, so that aggregation rules for 
binary tasks apply. 

Table 12: Aggregation rules 

Irrespective of the assay_type, for assays marked as binary (is_binary = True in the T0 file) the following rules 
apply: 

• The most common class label is retained.  

• In case of ties, where -1 and +1 are equally common, +1 is retained, as +1 is assumed to be the 
minority class. 

An example of the resulting T4r table can be found below (Table 13)  
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input_assay_id descriptor
_id 

fold_
id 

input_compound_
id 

  standard
_qualifier 

standard_
value 

3855277 1 0 

3927895 = 7.14 

= 9.38 

3935776 = 8.03 
3901587 = 8.21 
3935776 = 8.49 
3927895 = 8.98 
3955505 = 9.38 

3855277 2 0 3950540 = 9.58 = 9.58 

3855277 3 0 
3905582 = 8.50 

= 8.56 3984387 = 8.56 

3855277 5 0 
3967683 = 8.11 

= 9.10 3946901 = 9.10 
3855277 6 0 3896638 = 9.24 = 9.24 

 
 
 
 
 
3855277 

 
 
 
 
 

7 

 
 
 
 
 

0 

3913062 = 6.10 

= 8.26 

3901211 = 7.38 
3958494 = 7.55 
3958494 = 7.60 
3913062 = 7.75 
3983937 = 8.26 

3855277 8 2 85606 = 8.19 = 8.19 

 
 
 
 
 
3855278 

 
 
 
 
 

1 

 
 
 
 
 

0 

3927895 = 5.36 

= 6.65 

3901587 = 6.01 
3927895 = 6.48 
3935776 = 6.50 
3935776 = 6.51 
3955505 = 6.65 

3855278 2 0 3950540 = 6.46 = 6.46 
 
3855278 

 
3 

 
0 

3905582 = 6.89 
= 6.93 3984387 = 6.93 

 
3855278 

 
5 

 
0 

3967683 = 6.20 
= 6.28 3946901 = 6.28 

3855278 6 0 3896638 = 6.48 = 6.48 

 
 
 
 
 
3855278 

 
 
 
 
 

7 

 
 
 
 
 

0 

3913062 = 4.77 

= 6.29 

3958494 = 6.00 
3913062 = 6.03 
3983937 = 6.10 
3901211 = 6.15 
3958494 = 6.29 

3855278 8 2 85606 < 6.31 < 6.31 

 
 
 
3855279 

 
 
 

1 

 
 
 

0 

3927895 = 6.16 

= 6.60 

3955505 = 6.28 
3901587 = 6.35 
3935776 = 6.60 

3855279 2 0 3950540 > 7.00 > 7.00 
 
3855279 

 
3 

 
0 

3905582 < 5.00 
= 6.95 3984387 = 6.95 

 
3855279 

 
5 

 
0 

3946901 = 6.68 
= 6.70 3946901 = 6.70 

3855279 6 0 3896638 > 7.00 > 7.00 

 
 
 

 
 
 

 
 
 

3913062 = 5.33 

= 5.54 
3958494 = 5.40 
3901211 = 5.44 
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3855279 7 0 3983937 = 5.54 
3855279 8 2 85606 = 6.17 = 6.17 
 
3855298 

 
1 

 
0 

3901587 = 1.30 
= 

 
3955505 = 2.03 1.67 

3855298 4 0 3941818 = 2.55 = 2.55 

9999998 1 0 

3901587 = 1 

= 1 
3935776 = 1 
3927895 = -1 

9999998 3 0 3905582 = -1 = -1 
9999998 5 0 3967683 = 1 = 1 

9999998 7 0 

3913062 = -1 

= -1 

3958494 = -1 
3913062 = -1 
3901211 = -1 

9999998 8 2 85606 = -1 = -1 

 
 
 
9999999 

 
 
 

1 

 
 
 

0 

3935776 = -4.18 

= -4.18 

3927895 = -1.29 
3901587 = -0.78 
3955505 = 1.05 

9999999 2 0 3950540 = 2.67 = 2.67 
 
9999999 

 
3 

 
0 

3905582 = -0.21 
= 1.68 3984387 = 1.68 

 
9999999 

 
5 

 
0 

3946901 = 0.76 
= 2.89 3967683 = 2.89 

9999999 6 0 3896638 = 0.10 = 0.10 

 
 
 
9999999 

 
 
 

7 

 
 
 

0 

3958494 = -1.60 

 
= 

 
2.26 

3913062 = -0.95 
3901211 = 0.65 
3983937 = 2.26 

9999999 8 2 85606 = -0.88 = -0.88 
Table 13: Example for a T4r table with aggregated activity readouts. Columns in italics are intermediate results only and 
not expected to be present, but shown here for illustration only. 

	
After replicates have been aggregated, the activity data from concentration response assay (type OTHER and 
PANEL) is rounded to two decimal places.  Given that the data is log-scaled (see 3.3.1), this does not lead to 
a loss of accuracy, given the experimental uncertainty of the underlying values. Since ADME assay read-outs 
are less uniform and can be present in either log- or linear-scale they will not be rounded. 

4.2.4 Generation of Classification tasks 

As a first step, the main thresholds and possible auxiliary thresholds need to be defined. How this is done 
depends on the assay type: 

• OTHER, NON-CATALOG-PANEL: If no expert threshold has been defined, the main threshold will be 
determined as follows: 

1. Loop over range of log-unit activity values: {8.0, 7.0 ,6.0, 5.0, 4.7 ,4.4} 

2. Select the largest threshold where the fraction of actives is >= 20 % and the quorum of 25 
actives and 25 inactives is met. 

3. If no threshold can be identified that way, the median is used as fall-back option 
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Two auxiliary “sandwich” thresholds will be added to the edges of the value range (0.5 log-unit above 
the largest threshold and 0.5 log-unit below the smallest thresholds) if not more than three main 
thresholds are defined. If there are more than three main thresholds defined, no auxiliary thresholds 
are created.  

• CATALOG-PANEL: For this assay type a reference table is consulted that contains for each 
permitted catalog_assay_id a list of the thresholds to be used alongside with the associated 
catalog_task_ids. 

• ADME: If there are no expert threshold defined, then the median and a quantile threshold will be used 
as main threshold. For assays with direction “high” the 75th percentile will be added, for assay with the 
direction “low” the 25th percentile will be added 

• AUX_HTS: As these are auxiliary assays only, only one auxiliary threshold is defined at a fixed R-
score cut-off which is defined in the parameter file 

	
catalog_assay_id Is_auxiliary threshold threshold_method catalog_task_id 
12 False 5.0 expert 101 
12 False 6.0 expert 102 
12 False 7.0 expert 103 
12 True 4.5 aux_low 104 
12 True 7.5 aux_high 105 

Table 14: Example for a Tcat table listing the unique catalogue task IDs for all permitted comibnations of catalog assay_id 
and threshold. All catalog assays will use the same thresholds. 

For determining threshold locations, the censored data are converted with an offset in order to calculate 
quantiles. The result of this is a T3c table specifying the classification thresholds. Classification tasks inherit 
the relevant metadata attributes of their assays as specified in T0. 

For tasks specified in T0 as binary (is_binary = True) this step is skipped, and each of those tasks is directly 
treated as classification task. 



	 	

	

 

Classification_ 
task_id 

input_ 
assay_id assay_type use_In_ 

regression 
is_binary Is_ 

auxiliary threshold threshold_ 
method direction catalog_ 

assay_id 
catalog_ 
task_id 

1 3855277 OTHER True False False 9.0 fixed_ 
adapative    

2 3855277 OTHER True False True 8.5 aux_low    
3 3855277 OTHER True False True 9.5 aux_high    

4 3855278 OTHER True False False 6.0 fixed_ 
adaptive    

5 3855278 OTHER True False True 6.5 aux_high    
6 3855279 CATALOG-PANEL True False False 5.0 expert  12 101 
7 3855279 CATALOG-PANEL True False False 6.0 expert  12 102 
8 3855279 CATALOG-PANEL True False False 7.0 expert  12 103 
9 3855279 CATALOG-PANEL True False True 4.5 aux_low  12 104 
10 3855279 CATALOG-PANEL True False True 7.5 aux_high  12 105 
11 3855298 ADME True False False 2.0 expert high   
12 9999998 AUX_PL False True True      
13 9999999 AUX_HTS False False True 3.0 fixed    

Table 15: Table with classification thresholds defining the classification tasks (T3c) 



	 	

	

	
In a second step these thresholds are applied to the activity data from the T4r table. The following rules apply: 

• If a threshold is for an assay of type OTHER, NON-CATALOG-PANE, or CATALOG-PANEL, or the 
assay direction is “high”: 	

o all observations having a numerical value ≥ threshold and do not have a qualifier < get class 
label +1 (“active”) 

o all observations having a numerical value < threshold get class label -1 (“inactive”) 

o all observations having a numerical value ≥ threshold and have a qualifier < cannot be 
decided unambiguously and will be removed 

• If the assay direction is “low”:  

o all observations having a numerical value ≤ threshold and do not have a qualifier > get class 
label +1 (“active”) 

o all observations having a numerical value > threshold get class label -1 (“inactive”) 

o all observations having a numerical value ≤ threshold and have a qualifier > cannot be 
decided unambiguously and will be removed 

• If a threshold is for an assay of type AUX_HTS and no direction is given: 

o All observations with an absolute numerical value ≥ threshold get the class label +1 (“active”) 

o All observations with an absolute numerical value < threshold get the class label -1 
(“inactive”) 

This results in a classified activity value table T4c as exemplified below.  

classifi 
cation_ 
task_id 

descrip 
tor_id 

fold 
_id input_assay_id standard_qualifier 

standard_value threshold class_ 
label 

1 1 0 3855277 = 9.38 9.00 1 
1 2 0 3855277 = 9.58 9.00 1 
1 3 0 3855277 = 8.56 9.00 -1 
1 5 0 3855277 = 9.10 9.00 1 
1 6 0 3855277 = 9.24 9.00 1 
1 7 0 3855277 = 8.26 9.00 -1 
1 8 2 3855277 = 8.19 9.00 -1 
2 1 0 3855277 = 9.38 8.50 1 
2 2 0 3855277 = 9.58 8.50 1 
2 3 0 3855277 = 8.56 8.50 1 
2 5 0 3855277 = 9.10 8.50 1 
2 6 0 3855277 = 9.24 8.50 1 
2 7 0 3855277 = 8.26 8.50 -1 
2 8 2 3855277 = 8.19 8.50 -1 
3 1 0 3855277 = 9.38 9.50 -1 
3 2 0 3855277 = 9.58 9.50 1 
3 3 0 3855277 = 8.56 9.50 -1 
3 5 0 3855277 = 9.10 9.50 -1 
3 6 0 3855277 = 9.24 9.50 -1 
3 7 0 3855277 = 8.26 9.50 -1 
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classifi 
cation_ 
task_id 

descrip 
tor_id 

fold 
_id input_assay_id standard_qualifier 

standard_value threshold class_ 
label 

3 8 2 3855277 = 8.19 9.50 -1 
4 1 0 3855278 = 6.65 6.00 1 
4 2 0 3855278 = 6.46 6.00 1 
4 3 0 3855278 = 6.93 6.00 1 
4 5 0 3855278 = 6.28 6.00 1 
4 6 0 3855278 = 6.48 6.00 1 
4 7 0 3855278 = 6.29 6.00 1 
4 8 2 3855278 < 6.31 6.00 * 
5 1 0 3855278 = 6.65 6.50 1 
5 2 0 3855278 = 6.46 6.50 -1 
5 3 0 3855278 = 6.93 6.50 1 
5 5 0 3855278 = 6.28 6.50 -1 
5 6 0 3855278 = 6.48 6.50 -1 
5 7 0 3855278 = 6.29 6.50 -1 
5 8 2 3855278 < 6.31 6.50 -1 
6 1 0 3855279 = 6.60 5.00 1 
6 2 0 3855279 > 7.00 5.00 1 
6 3 0 3855279 = 6.95 5.00 1 
6 5 0 3855279 = 6.70 5.00 1 
6 6 0 3855279 > 7.00 5.00 1 
6 7 0 3855279 < 5.54 5.00 1 
6 8 2 3855279 = 6.17 5.00 1 
7 1 0 3855279 = 6.60 6.00 1 
7 2 0 3855279 > 7.00 6.00 1 
7 3 0 3855279 = 6.95 6.00 1 
7 5 0 3855279 = 6.70 6.00 1 
7 6 0 3855279 > 7.00 6.00 1 
7 7 0 3855279 = 5.54 6.00 -1 
7 8 2 3855279 = 6.17 6.00 1 
8 1 0 3855279 = 6.60 7.00 -1 
8 2 0 3855279 > 7.00 7.00 1 
8 3 0 3855279 = 6.95 7.00 -1 
8 5 0 3855279 = 6.70 7.00 -1 
8 6 0 3855279 > 7.00 7.00 1 
8 7 0 3855279 = 5.54 7.00 -1 
8 8 2 3855279 = 6.17 7.00 -1 
9 1 0 3855279 = 6.60 4.50 1 
9 2 0 3855279 > 7.00 4.50 1 
9 3 0 3855279 = 6.95 4.50 1 
9 5 0 3855279 = 6.70 4.50 1 
9 6 0 3855279 > 7.00 4.50 1 
9 7 0 3855279 = 5.54 4.50 1 
9 8 2 3855279 = 6.17 4.50 1 

10 1 0 3855279 = 6.60 7.50 -1 
10 2 0 3855279 > 7.00 7.50 1 
10 3 0 3855279 = 6.95 7.50 -1 
10 5 0 3855279 = 6.70 7.50 -1 
10 6 0 3855279 > 7.00 7.50 1 
10 7 0 3855279 = 5.54 7.50 -1 
10 8 2 3855279 = 6.17 7.50 -1 
11 1 0 3855298 = 1.67 2.00 -1 
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classifi 
cation_ 
task_id 

descrip 
tor_id 

fold 
_id input_assay_id standard_qualifier 

standard_value threshold class_ 
label 

11 4 0 3855298 = 2.55 2.00 1 
12 1 0 9999998 = 1  1 
12 3 0 9999998 = -1  -1 
12 5 0 9999998 = 1  1 
12 7 0 9999998 = -1  -1 
12 8 2 9999998 = -1  -1 
13 1 0 9999999 = -4.18 3.00 1 
13 2 0 9999999 = 2.67 3.00 -1 
13 3 0 9999999 = 1.68 3.00 -1 
13 5 0 9999999 = 2.89 3.00 -1 
13 6 0 9999999 = 0.10 3.00 -1 
13 7 0 9999999 = 2.26 3.00 -1 
13 8 2 9999999 = -0.88 3.00 -1 

Table 16: Example for a T4c table with classified activity data. Columns in italic are intermediary results for illustration 
purposes only and are not part of the actual table. * This row could not be classified unambiguously and is therefore 
removed 

4.2.5 Classification Task Filtering and Weighting 

The distribution of class labels for each task is analysed across the whole dataset and per fold. Based on this, 
the training and evaluation data volume quorum is evaluated for each classification task. The quorum limits 
are read from the configuration file. The outcome is recorded in the columns training_quorum_OK and 
evaluation_quorum_OK which are added to the T3c table. 

The data belonging to tasks that do not pass the training quorum are removed from the T4c table.  

For assays of the type CATALOG-PANEL at this stage the agreed upon data volume quorum for catalogue 
assays is evaluated. If an assay does not meet the training quorum, then the assay type is switched to NON-
CATALOG-PANEL, and the training quorum for this assay type is evaluated. If the task does not pass here, it 
is removed. If the assay passes as NON-CATALOG-PANEL assay it is retained as such, but the catalog_id 
and catalog_task_id reference is removed. 

The number n of classifications tasks per input_assay_id that pass the training quorum is determined. A 
column weight is added to the T3c table. It contains, for each task passing the training quorum, the value 
initial_weight/n, where n represents the number of tasks passing the training quorum, and intial_weight is per 
default 1.0. If, for example, two task for an assay pass the training quorum, then each of the tasks will have 
weight 0.5. For tasks that are of the type AUX_HTS or AUX_PL the weight will be multiplied with a down 
weighting factor specified in the parameter file. 

In addition, a column aggregation_weight is added to the T3c table that will be used to determine the weight 
of the task in the calculation of the aggregated performance metric. This column will be populated according 
to these rules: 

• If column is_auxiliary is True aggregation_weight becomes 0.0 

• If column evaluation_quorum_OK is False aggregation weight becomes 0 

• In all other cases an aggregation_weight of 1.0 is used 
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4.2.6 Regression Task filtering and weighting 

The total number of observations and the number of uncensored observations for each regression task are 
determined both in the whole dataset as well as per fold. Based on this the training and evaluation data 
volume quorum is evaluated for each regression task. The quorum limits are read from the parameter file. The 
outcome is recorded in the columns training_quorum_OK and evaluation_quorum_OK which are added to 
the T3r table. 

Since catalogue fusion is not applied to regression, tasks of the type CATALOG-PANEL will for the regression 
arm be treated as NON-CATALOG-PANEL and be evaluated according to the data quorum rules for that 
assay type. 

The data belonging to tasks fulfilling at least one of the criteria below is removed from the T4r table: 

1. Tasks with training_quorum_OK = False 

2. Tasks with use_in_regression = False 

In addition, a column aggregation_weight is added to the T3r table that will be used to determine the weight of 
the task in the calculation of the aggregated performance metric. This column will be populated according to 
these rules: 

• If column is_auxiliary is True aggregation_weight becomes 0.0 

• If column evaluation_quorum_OK is False aggregation weight becomes 0 

• In all other cases an aggregation_weight of 1.0 is used 

 

A column weight is added to T3r and initialized with 1.0 for assays, except auxiliary data, where the auxiliary 
task weight from the configuration file is used. (Remark: auxiliary data is not used in regression for this year, 
but this is done already in preparation for later usage and to support the single partner studies preparing for 
this).  

A column censored_weight is added in T3r which is the weight used for all censored datapoints of a task. 
This weight will be initialized based on the fraction of censored datapoints.  

An example is shown in Table 18: Example for a T8r table. The toyset is too small to evaluate quorums 
realistically, so this part is fictitious and for illustration purposes only. The table may also include the count of 
observations and the count of uncensored observations in total and per fold.  A copy of this table where only 
the rows and columns marked in blue are retained forms the T9r table, which is passed to SparseChem. 
Please note the conversion of the task derived from input_assay_id . 

4.2.7 Filtering of descriptor data  

As a consequence of the removal of rows in both T4r and T4c as described above, there might be rows in the 
descriptor table T6 for which neither activity data in T4r nor in T4c is present. These rows are now identified 
and removed.  

4.3 Assignment of continuous indexes 

Background 

The federated machine learning software expects the X matrix consisting of compound descriptors and the Y 
matrix of the assay values to be represented as a column sparse row matrix (scipy csr matrix). While the data 
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processing so far has been working with data frames allowing arbitrary column and row indexes now the 
transition to the matrix with continuous integer indexes needs to be made. The X and the Yreg as well as the 
Yclass must have an identical number of rows, with matching row indexes. Likewise, the indexes of fold numpy 
array must match the row indexes of X. The number of columns in X corresponds to the bitsize of the 
fingerprints and must be consistently assigned across all partners. Likewise, the rows of the task weight (wreg 
and wclass) file need to correspond to the column indices of Yreg and Yclass, respectively.  

There will be cases where a descriptor vector has either only classification task data or regression task data. 
In this case either Yreg or Yclass will have an empty row. 

 

 

Figure 5: Input data for SparseChem. The type array used in performance evaluation. 

	

4.3.1 Reindexing of tasks 

To all entries in T3c which have met the training quorum, a unique cont_classification_task_id is assigned 
as a continuous range of integers starting at 0. This results in table T8c, which is written out. This T8c table 
still contains all the meta data carried through from the T0 table and is thus the reference for each partner to 
decode the prediction results. An example is shown in Table 17. A copy of T8c without the metadata that are 
not needed during ML and without all rows not having a cont_classification_task_id is written out as T9c.  

To all entries in T3r, which have met the training quorum and are not marked with use_in_regression = 
False, a unique cont_regression_task_id is assigned as a continuous range of integers starting from 0. This 
results in table T8r, which is written out. This T8r table still contains all the meta data carried through from the 
T0 table and is thus the reference for each partner to decode the prediction results. An example is shown in 
Table 18. 



	 	

	

classifi 
cation_ 
task_id  

cont_ 
classifi 
cation_ 
task_id 

input_ 
assay_id 

assay_ 
type 

use_ 
In_ 
reg 
ression 

is_ 
auxilia
ry 

thresho
ld 

threshold
_ 
method 

direc
tion 

training_ 
quorum_ 
OK 

evaluation
_ 
quorum_ 
OK 

weig
ht 

aggrega
tion_ 
weight 

Catalog
_assay_
id 

Catalog
_task_id 

1 1 
3855277 OTHER  

False 9.0 fixed_ 
apaptive  

True True 0.33 1.0   

2 2 3855277 OTHER  True 8.5 aux_low  True True 0.33 0.0   
3 3 3855277 OTHER  True 9.5 aux_high  True False 0.33 0.0   
4 4 

3855278 OTHER  
False 6.0 fixed_ 

apaptive  
True True 1.0 1.0   

5  3855278 OTHER  True 6.5 aux_high  False False     
6 5 

3855279 
CATALOG-
PANEL  

False 5.0 expert 
 

True True 0.2 1.0 12 101 

7 6 
3855279 

CATALOG-
PANEL   

False  6.0 expert 
 

True True 0.2 1.0 12 102 

8 7 
3855279 

CATALOG-
PANEL  

False 7.0 expert 
 

True True 0.2 1.0 12 103 

9 8 
3855279 

CATALOG-
PANEL   

True 4.5 aux_low  
True True 0.2 1.0 12 104 

10 9 
3855279 

CATALOG-
PANEL  

True 6.5 aux_high  
True False 0.2 0.0 12 105 

11  3855298 ADME  False 2.0 expert high False False     
12 10 9999998 AUX_PL  True  fixed  True True 0.1 0.0   
13 11 

9999999 
AUX_ 
HTS  

True 3.0 fixed 
 

True True 0.1 0.0   

Table 17: Example for a T8c table. The toyset is too small to evaluate quorums realistically, so this part is fictitious and for illustration purposes only. The table may also include 
the counts for active (+1) and inactive (-1) per task in the whole set as well as per fold. A copy of this table where only the rows and columns marked in blue are retained forms 
the T9c table, which is passed to SparseChem.  
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input_ 
assay_id 

cont_ 
regression_ 
task_id 

assay_ 
type 

use_ 
In_ 
regressi
on 

is_ 
auxiliary 

directio
n 

Training_ 
quorum_ 
OK 

Evaluation_ 
quorum_OK 

weight aggregation_ 
weight 

fraction_ 
censored 

censored_ 
weight 

3855277 1 OTHER True False  True True 1.0 1.0 0.3 0.7 
3855278 2 OTHER True False  True True 1.0 1.0 0.6 0.4 

3855279 
3 NON-CATALOG-

PANEL True 
False 

 
True False 1.0 0.0 0.8 0.2 

3855298  ADME True False high False False     
Table 18: Example for a T8r table. The toyset is too small to evaluate quorums realistically, so this part is fictitious and for illustration purposes only. The table may also include 
the count of observations and the count of uncensored observations in total and per fold.  A copy of this table where only the rows and columns marked in blue are retained 
forms the T9r table, which is passed to SparseChem. Please note the conversion of the task derived from input_assay_id . 3855279 to a NON-CATALOG-PANEL task. 



	 	

	

	

4.3.2 Reindexing of descriptors 

Due to the drop of activity data because of lacking data volume, there may now be descriptor vectors in T6 for 
which no task data exists. In the T6 table, all rows are identified which have at least one observation left in the 
filtered T4r or T4c table. To these rows a continuous unique cont_descriptor_id as integers starting from 0 is 
added. The T6 table augmented in this way is written out. A copy of T6 without the rows not having a 
cont_descriptor_id and without the descriptor_id column is written is written out as T11.  

 

descriptor_id cont_descriptor_id fold_id fp_on_bits 

1 1 0 

[754, 841, 926, 1039, 1515, 1673, 1787, 
1804, 2000, 2226, 2947, 3534, 3881, 4444, 
4708, 5247, 5548, 5969, 6009, 6695, 7326, 
8094, 8272, 8428, 8438, 8648, 8737, 8833, 
9231, 9383, 9639, 9768, 10507, 10819, 
11361, 11605, 11607, 12122, 12260, 12418, 
12559, 13043, 14721, 14723, 14847, 15498, 
15560, 15663, 15880, 15984, 16164, 16278, 
16756, 17044, 17083, 17293, 17552, 17850, 
18297, 18304, 19569, 20206, 20329, 20410, 
20528, 21099, 22068, 22156, 22789, 23169, 
23394, 23469, 24273, 24326, 24351, 26070, 
26490, 26624, 26919, 27003, 27066, 27207, 
27645, 28908, 29119, 29303, 29539, 29609, 
29810, 29955, 30140, 30456, 31097, 31112, 
31795] 

2 2 0 

[841, 870, 906, 926, 1515, 1673, 1787, 
1791, 1804, 2000, 2640, 3881, 3894, 4708, 
5247, 5387, 5778, 5969, 6009, 7248, 7326, 
8094, 8272, 8610, 8648, 8737, 8871, 9064, 
9353, 9383, 9450, 9639, 10182, 11605, 
11607, 12122, 12260, 12418, 12962, 13043, 
14561, 14567, 14721, 14723, 14847, 14897, 
14958, 15232, 15498, 15663, 15880, 16164, 
16756, 17044, 17293, 18297, 20410, 22068, 
22156, 22399, 22641, 22789, 23169, 23394, 
23469, 23920, 24200, 24351, 26070, 26490, 
26582, 26624, 27003, 27158, 27170, 27207, 
27645, 28251, 28908, 29023, 29303, 29539, 
29605, 29609, 29810, 30456, 31097, 31112, 
31453] 

3 3 0 <on bit list as json string> 
4  0 <on bit list as json string> 
5 4 0 <on bit list as json string> 
6 5 0 <on bit list as json string> 
7 6 0 <on bit list as json string> 
8 7 2 <on bit list as json string> 

Table 19: Example of a T6 table with added cont_descriptor_id. In the example case here, descriptor_id 4 is assumed to 
have no data left any more, as the only assay this descriptor had data for was removed because of the training quorum in 
both regression and classification data set. Consequently, no cont_descriptor_id is assigned to this row. The final T11 
table contains only the rows and columns highlighted in blue. 
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4.3.3 Reindexing of activity data 

The mapping of classification_task_id to cont_classifcation_task_id in T8c is joined to the data table T4c 
using classification_task_id as the join key. Likewise, the mapping from descriptor_id to 
cont_descriptor_id from table T6 is joined using descriptor_id as the join key. The ID columns 
classification_task_id and descriptor_id are now dropped to obtain table T10c.  An example can be found 
in Table 20. 

classification_ 
task_id 

descriptor_id cont_classification_task_id cont_descriptor_id class_ 
label 

1 1 1 1 1 
1 2 1 2 1 
1 3 1 3 -1 
1 5 1 4 1 
1 6 1 5 1 
1 7 1 6 -1 
1 8 1 7 -1 
2 1 2 1 1 
2 2 2 2 1 
2 3 2 3 1 
2 5 2 4 1 
2 6 2 5 1 
2 7 2 6 -1 
2 8 2 7 -1 
3 1 3 1 -1 
3 2 3 2 1 
3 3 3 3 -1 
3 5 3 4 -1 
3 6 3 5 -1 
3 7 3 6 -1 
3 8 3 7 -1 
4 1 4 1 1 
4 2 4 2 1 
4 3 4 3 1 
4 5 4 4 1 
4 6 4 5 1 
4 7 4 6 1 
6 1 5 1 1 
6 2 5 2 1 
6 3 5 3 1 
6 5 5 4 1 
6 6 5 5 1 
6 7 5 6 1 
6 8 5 7 1 
7 1 6 1 1 
7 2 6 2 1 
7 3 6 3 1 
7 5 6 4 1 
7 6 6 5 1 
7 7 6 6 -1 
7 8 6 7 1 
8 1 7 1 -1 
8 2 7 2 1 
8 3 7 3 -1 
8 5 7 4 -1 
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classification_ 
task_id 

descriptor_id cont_classification_task_id cont_descriptor_id class_ 
label 

8 6 7 5 1 
8 7 7 6 -1 
8 8 7 7 -1 
9 1 8 1 1 
9 2 8 2 1 
9 3 8 3 1 
9 5 8 4 1 
9 6 8 5 1 
9 7 8 6 1 
9 8 8 7 1 

10 1 9 1 -1 
10 2 9 2 1 
10 3 9 3 -1 
10 5 9 4 -1 
10 6 9 5 1 
10 7 9 6 -1 
10 8 9 7 -1 
12 1 10 1 1 
12 3 10 3 -1 
12 5 10 4 1 
12 7 10 6 -1 
12 8 10 7 -1 
13 1 11 1 1 
13 2 11 2 -1 
13 3 11 3 -1 
13 5 11 4 -1 
13 6 11 5 -1 
13 7 11 6 -1 
13 8 11 7 -1 

Table 20: Example of a T10c table. The columns in italic are intermediate results shown for illustration purposes, they are 
not kept in the final T10c table. 

 

The mapping of input_assay_id to cont_regression_task_id in T8r is joined to the data table T4r using 
input_assay_id as the join key. Likewise, the mapping from descriptor_id to cont_descriptor_id from table 
T6 is joined using descriptor_id as the join key. The ID columns input_assay_id and descriptor_id are now 
dropped to obtain table T10r.  An example can be found in Table 21. 

 

input_assay_id descriptor_id 
cont_regression_ 
task_id 

cont_ 
descriptor_id 

standard_ 
qualifier 

standard_ 
value 

3855277 1 1 1 = 9.38 
3855277 2 1 2 = 9.58 
3855277 3 1 3 = 8.56 
3855277 5 1 4 = 9.10 
3855277 6 1 5 = 9.24 
3855277 7 1 6 = 8.26 
3855277 8 1 7 = 8.19 
3855278 1 2 1 = 6.65 
3855278 2 2 2 = 6.46 
3855278 3 2 3 = 6.93 
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3855278 5 2 4 = 6.28 
3855278 6 2 5 = 6.48 
3855278 7 2 6 = 6.29 
3855278 8 2 7 = 6.31 
3855279 1 3 1 = 6.60 
3855279 2 3 2 > 7.00 
3855279 3 3 3 = 6.95 
3855279 5 3 4 = 6.70 
3855279 6 3 5 > 7.00 
3855279 7 3 6 = 5.54 
3855279 8 3 7 = 6.17 

Table 21: Example of a T10r table. Columns in italics are only intermediate results and not kept as part of this table.  

4.3.4 Translation into numpy matrices and arrays  

Data table T11 is used to construct the X scipy csr matrix with cont_descriptor_vector_id as row index and 
the already permuted fingerprint bit index as column index. The numpy fold array is extracted from the fold_id 
column of T11.    
 

From T10c the Yclass scipy csr matrix is constructed using cont_descriptor_vector_id as row index, 
cont_classification_task_id as column index, and the class_label as values.  Yclass is of the integer 
datatype and missing values are represented as 0.  

From T10r the Yreg scipy csr matrix is constructed, using again cont_descriptor_vector_id as row index, the 
cont_regression_task_id as column index, and the standard_value as values.  Yreg is of data type float. In 
the same way the Ycensor csr matrix is constructed this time with standard_qualifier encoded as integer 
values. Equality (=), meaning no censoring is encoded as 0, > is encoded as +1.0, and < is encoded as -1.  

T9c and T9r are passed to SparseChem as csv files directly. 

 

5 Public Data 
In general, the preparation of public data follows the same principles as for the private pharma data. Unless 
stated explicitly below, the same process will be used. However, the different inherent structure of the data 
requires some deviations from this general principle.  

ChEMBL17,18  will be the only public data source used for concentration response data. Like the pharma data, 
the ChEMBL data is limited to concentration-response experiments and added ADME assays. Assays for 
which at least part of the data points have pChEMBL values are considered as concentration-response 
assays. This does, however, not mean that from these assays only data points with a pChEMBL value are 
retained. Compounds with an activity value having qualifiers (such as >), which do not have a pChEMBL 
value, will be kept as well in accordance with the rules applied by pharma (see § 2.1.1). 

One of the differences between the ChEMBL and the pharma data is the disproportional high number of 
assays in ChEMBL (1.1 M assay before applying any data volume quorum). Only a fraction of those assays 
has sufficient data to be included. Where both the assay metadata, and the activity value distribution suggest 
it makes sense to combine several closely analogous assays for the same target in one prediction endpoint, 
this may have been done. 

Auxiliary data from public sources is not used. 

Iktos will prepare the public data until the MELLODDY Tuner ready stage (T0, T1, and T2) and will hand them 
over to Servier for preparation with MELLODDY Tuner and hosting on the federated platform. 
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6 Staging of the Data 

6.1 Verification of Correct Setup 
It is crucial that all partners use the same setup especially for calculating and scrambling the chemical 
fingerprints. Notably, the choice of a wrong scrambling key will lead to a silent failure of the federated run, as it 
is not detectable by another partner that a wrong setup is used. In order to reduce the risk of an erroneous 
key being used, the following strategy is applied: 

1. All parameters influencing the content of the output, with exception of the secret key, are grouped 
together in one parameter file and is distributed together with the MELLODDY-Tuner code. This will 
reduce the risk for copy and paste errors. 

2. The secret key needs to be distributed by secured channels to pharma partners only as it contains 
the private permutation key.  

3. The MELLODDY-Tuner code has an embedded small reference data set consisting of public 
chemical structures. At every execution of the MELLODDY-Tuner code, also this dataset is 
processed. A checksum is generated from the resulting reference output. All partners will compare 
the checksum generated by their pre-processing run with the checksum communicated for the 
correct setup, code release, and the correct secret key. This will protect against using a wrong setup 
file.  

4. Unit tests will be performed by each GitLab commit to the “develop” branch. For each new 
functionality an appropriate unit test is highly recommended.  

5. The release mechanism in GitLab is used to produce well defined releases. 

 

6.2 Validation with Sparsechem Runs 

6.2.1 Verification of machine learning outcome 

The purpose of this is to assert that the data set is fit for learning. The following procedure is recommended: a 
model is trained on the year 3 data as generated by MELLODDY-Tuner, using the optimal hyper-parameters 
from year 2. The overall performance is compared and should not be substantially lower than year 2, given 
that the fold splitting hasn’t been changed. If a lower overall performance has been detected, then a task by 
task comparison should be done, to ensure that at least those tasks that were present in year 2 did not 
perform substantially worse in year 3 compared to the year 2 results.  

6.2.2 Assessment of the GPU memory footprint 

The purpose of this check is to anticipate the memory footprint of the dataset in the federated run, especially 
the GPU memory footprint. In order to do this a Sparsechem version allowing determining the peak memory 
usage is available. Using this the GPU memory usage can be assessed for a given dataset in combination 
with the network architecture and size, and internal batch size used. For each of the data sets used, the 
memory consumption will be determined by running a model for 2 epochs each, using an architecture that 
corresponds to the requirements of the federated run.  
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6.3 Cloud upload and asset registration 
The lineage of the data sets that are considered for year 3 is outlined in Figure 6 below. Two MELLODDY-
Tuner runs are required, one without auxiliary data and one with auxiliary data. Each of these runs produces 
the output for the three different modelling modalities classification (cls), classification-regression hybrid 
(hybrid), and regression (reg), in a separate subfolder per modality. As there are no auxiliary regression 
tasks, the content of with-aux-reg equals the content of no-aux-reg and is therefore not needed, this leaves 
the data sets no-aux-cls, no-aux-hybrid, no-aux-reg, with-aux-cls, and with-aux-hybrid.  

Once the platform is cleared for dataset upload, the operational contacts will upload each of these 5 datasets 
onto the platform. For each dataset there will be three clones created into a subfolder each for the three 
model building phases phase1 (hyper-parameter tuning), phase 2 (performance evaluation on independent 
test set), phase 3 (model trained with all available data). These folders are then used in the data registration, 
upon instruction by the run coordinators from WP6.  

 

 

	
Figure 6: Lineage of the datasets to be considered for year 3. 
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 Annexes 

Annex 1 

input_compound_id input_assay_id Input activity data 
standard_qualifier 
/ standard_value 

3950540 3855277 Ki = 0.26 nM = 9.58 
3955505 3855277 Ki = 0.42 nM = 9.38 
3896638 3855277 Ki = 0.58 nM = 9.24 
3946901 3855277 Ki = 0.79 nM = 9.10 
3927895 3855277 Ki = 1.05 nM = 8.98 
3984387 3855277 Ki = 2.75 nM = 8.56 
3905582 3855277 Ki = 3.16 nM = 8.50 
3935776 3855277 Ki = 3.24 nM = 8.49 
3983937 3855277 Ki = 5.50 nM = 8.26 
3901587 3855277 Ki = 6.17 nM = 8.21 
85606 3855277 Ki = 6.46 nM = 8.19 
3967683 3855277 Ki = 7.76 nM = 8.11 
3935776 3855277 Ki = 9.33 nM = 8.03 
3913062 3855277 Ki = 17.78 nM = 7.75 
3958494 3855277 Ki = 25.12 nM = 7.60 
3958494 3855277 Ki = 28.18 nM = 7.55 
3901211 3855277 Ki = 41.69 nM = 7.38 
3927895 3855277 Ki = 72.44 nM = 7.14 
3913062 3855277 Ki = 794.33 nM = 6.10 
3984387 3855278 Ki = 117.49 nM = 6.93 
3905582 3855278 Ki = 128.82 nM = 6.89 
3955505 3855278 Ki = 223.87 nM = 6.65 
3935776 3855278 Ki = 309.03 nM = 6.51 
3935776 3855278 Ki = 316.23 nM = 6.50 
3896638 3855278 Ki = 331.13 nM = 6.48 
3927895 3855278 Ki = 331.13 nM = 6.48 
3950540 3855278 Ki = 346.74 nM = 6.46 
85606 3855278 Ki > 489.78 nM < 6.31 
3958494 3855278 Ki = 512.86 nM = 6.29 
3946901 3855278 Ki = 524.81 nM = 6.28 
3967683 3855278 Ki = 630.96 nM = 6.20 
3901211 3855278 Ki = 707.95 nM = 6.15 
3983937 3855278 Ki = 794.33 nM = 6.10 
3913062 3855278 Ki = 933.25 nM = 6.03 
3901587 3855278 Ki = 977.24 nM = 6.01 
3958494 3855278 Ki = 1000.00 nM = 6.00 
3927895 3855278 Ki = 4365.16 nM = 5.36 
3913062 3855278 Ki = 16982.44 nM = 4.77 
3950540 3855279 IC50 < 100.00 nM > 7.00 
3896638 3855279 IC50 < 100.00 nM > 7.00 
3984387 3855279 IC50 = 112.20 nM = 6.95 
3946901 3855279 IC50 = 200.00 nM = 6.70 
3946901 3855279 IC50 = 208.93 nM = 6.68 
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input_compound_id input_assay_id Input activity data 
standard_qualifier 
/ standard_value 

3935776 3855279 IC50 = 251.19 nM = 6.60 
3901587 3855279 IC50 = 446.68 nM = 6.35 
3955505 3855279 IC50 = 524.81 nM = 6.28 
85606 3855279 IC50 = 676.08 nM = 6.17 
3927895 3855279 IC50 = 691.83 nM = 6.16 
3983937 3855279 IC50 = 2884.03 nM = 5.54 
3901211 3855279 IC50 = 3630.78 nM = 5.44 
3958494 3855279 IC50 = 3981.07 nM = 5.40 
3913062 3855279 IC50 = 4677.35 nM = 5.33 
3905582 3855279 IC50 > 10000.00 nM < 5.00 

3901587 3855298 CLInt = 20.00 
mL.min-
1.g-1 = 1.30 

3955505 3855298 CLInt = 107.00 
mL.min-
1.g-1 = 2.03 

3941818 3855298 CLInt = 352.00 
mL.min-
1.g-1 = 2.55 

3935776 9999999 Rscore = -4.18  = -4.18 
3958494 9999999 Rscore = -1.60  = -1.60 
3927895 9999999 Rscore = -1.29  = -1.29 
3913062 9999999 Rscore = -0.95  = -0.95 
85606 9999999 Rscore = -0.88  = -0.88 
3901587 9999999 Rscore = -0.78  = -0.78 
3905582 9999999 Rscore = -0.21  = -0.21 
3896638 9999999 Rscore = 0.10  = 0.10 
3901211 9999999 Rscore = 0.65  = 0.65 
3946901 9999999 Rscore = 0.76  = 0.76 
3955505 9999999 Rscore = 1.05  = 1.05 
3984387 9999999 Rscore = 1.68  = 1.68 
3983937 9999999 Rscore = 2.26  = 2.26 
3950540 9999999 Rscore = 2.67  = 2.67 
3967683 9999999 Rscore = 2.89  = 2.89 

Table 22: Copy of the T1 table example as in 	
input_compound_id input_assay_id standard_qualifier  standard_value 
3950540 3855277 = 9.58 
3955505 3855277 = 9.38 
3896638 3855277 = 9.24 
3946901 3855277 = 9.10 
3927895 3855277 = 8.98 
3984387 3855277 = 8.56 
3905582 3855277 = 8.50 
3935776 3855277 = 8.49 
3983937 3855277 = 8.26 
3901587 3855277 = 8.21 
85606 3855277 = 8.19 
3967683 3855277 = 8.11 
3935776 3855277 = 8.03 
3913062 3855277 = 7.75 
3958494 3855277 = 7.60 
3958494 3855277 = 7.55 
3901211 3855277 = 7.38 
3927895 3855277 = 7.14 
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input_compound_id input_assay_id standard_qualifier  standard_value 
3913062 3855277 = 6.10 
3984387 3855278 = 6.93 
3905582 3855278 = 6.89 
3955505 3855278 = 6.65 
3935776 3855278 = 6.51 
3935776 3855278 = 6.50 
3896638 3855278 = 6.48 
3927895 3855278 = 6.48 
3950540 3855278 = 6.46 
85606 3855278 < 6.31 
3958494 3855278 = 6.29 
3946901 3855278 = 6.28 
3967683 3855278 = 6.20 
3901211 3855278 = 6.15 
3983937 3855278 = 6.10 
3913062 3855278 = 6.03 
3901587 3855278 = 6.01 
3958494 3855278 = 6.00 
3927895 3855278 = 5.36 
3913062 3855278 = 4.77 
3950540 3855279 > 7.00 
3896638 3855279 > 7.00 
3984387 3855279 = 6.95 
3946901 3855279 = 6.70 
3946901 3855279 = 6.68 
3935776 3855279 = 6.60 
3901587 3855279 = 6.35 
3955505 3855279 = 6.28 
85606 3855279 = 6.17 
3927895 3855279 = 6.16 
3983937 3855279 = 5.54 
3901211 3855279 = 5.44 
3958494 3855279 = 5.40 
3913062 3855279 = 5.33 
3905582 3855279 < 5.00 
3901587 3855298 = 1.30 
3955505 3855298 = 2.03 
3941818 3855298 = 2.55 
3901587 9999998 = 1 
85606 9999998 = -1 
3967683 9999998 = 1 
3935776 9999998 = 1 
3913062 9999998 = -1 
3958494 9999998 = -1 
3905582 9999998 = 1 
3901211 9999998 = -1 
3927895 9999998 = -1 
3913062 9999998 = -1 
3935776 9999999 = -4.18 
3958494 9999999 = -1.60 
3927895 9999999 = -1.29 
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input_compound_id input_assay_id standard_qualifier  standard_value 
3913062 9999999 = -0.95 
85606 9999999 = -0.88 
3901587 9999999 = -0.78 
3905582 9999999 = -0.21 
3896638 9999999 = 0.10 
3901211 9999999 = 0.65 
3946901 9999999 = 0.76 
3955505 9999999 = 1.05 
3984387 9999999 = 1.68 
3983937 9999999 = 2.26 
3950540 9999999 = 2.67 
3967683 9999999 = 2.89 

Table 7 additionally containing the original values before conversion 

 


