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Abstract 
Body 
Federated multi-partner machine learning can be an appealing and efficient method to increase the 
effective training data volume and thereby the predictivity of models, particularly when the generation of 
training data is resource intensive. In the landmark MELLODDY project, each of ten pharmaceutical 
companies realized aggregated improvements on its own classification and/or regression models through 
federated learning. To this end, they leveraged a novel implementation extending multi-task learning 
across partners, on a platform audited for privacy and security. The experiments involved an 
unprecedented cross-pharma dataset of 2.6+ billion confidential experimental activity data points, 
documenting 21+ million physical small molecules and 40+ thousand assays in on-target and secondary 
pharmacodynamics and pharmacokinetics. Appropriate complementary metrics were developed to 
evaluate predictive performance in the federated setting. In addition to predictive performance increases 
in labeled space, the results point towards an extended applicability domain in federated learning. 
Increases in collective training data volume, including by means of auxiliary data resulting from single 
concentration high-throughput and imaging assays, continued to boost predictive performances, albeit 
with saturating return. Markedly higher improvements were observed for pharmacokinetics and safety 
panel assay-based task subsets. 

Graphical abstract 

 

Synopsis  
MELLODDY extends multi-task learning across massive private discovery data warehouses of ten 
pharmaceutical companies. Each partner’s aggregated classification and/or regression performance 
improves. 
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Introduction 
Already for six decades,1,2 the pharmaceutical field has been training Quantitative Structure Activity 
Relationship (QSAR) models, that relate the chemical structure of compounds or a descriptor 
representative of structure to their categorical (active or not) or quantitative (how active) readout in 
pharmacological assays.3 Classical QSAR modelling is a textbook example of supervised learning in that 
models are trained on given structure-activity example pairs, and evaluated on distinct, unseen pairs. For 
well over five decades, QSAR models were nearly exclusively trained on a single task or target. While both 
descriptor and fitting approaches have gradually improved over time, the best option for single-task 
model improvement has remained generating more training pairs, requiring the experimental testing of 
more compounds in the corresponding assay.  

Multi-task modelling was first tentatively introduced to QSAR modelling about 25 years ago,4 but rose to 
prominence about a decade ago.5,6 The aim of multi-task modelling is model improvement by information 
transfer across tasks, which is often embodied as a joint representation. Conceptually, multi-task learning 
explores the same low-level relationships as single-task learning. But in contrast to single-task learning, 
multi-task learning can prioritize those relationships that support multiple tasks, which tend to generalize 
better for individual tasks. Because compound coverage typically differs between assays, multi-task 
models are usually also exposed to more compounds. As a result, when carefully applied, multi-task 
models tend to match or outperform single-task models.7–12 Also, net benefits were shown to increase 
further as additional data and tasks were added, albeit less than linear.13 

Federated learning enables machine learning across distributed datasets.14,15 Federated learning goes 
beyond applying conventional machine learning to federated data, i.e. distributed data that is somehow 
made accessible as a consolidated dataset. In federated learning, the training process itself is distributed, 
often accommodating additional constraints, for example, a requirement to protect the confidentiality of 
datasets. Distributed QSAR datasets can be compound-wise or endpoint-wise partitioned or show a mixed 
partition pattern. In the QSAR case, compound-wise partitioned datasets would document different sets 
of compounds with activity labels for the same assays and endpoint-wise partitioned datasets would 
document a compound space with activity labels for different sets of endpoints or tasks (Figure 1). Existing 
federated learning solutions for QSAR modelling (and corresponding ones in other applications fields) 
have largely focused on the cross-compound federation of compound-wise partitioned datasets.16 Cross-
compound federation can pose challenges. The identification of endpoints from different sources that are 
similar enough to be matched is non-trivial and requires endpoint disclosure; endpoint-specific 
standardization may rely on data samples. From a usage right perspective, equal entitlement to resulting 
common task models may be hard to reconcile with asymmetrical data contribution, in other words 
owners of bigger data volumes may be discouraged from maximal data commitment. 

Here, we report the implementation and industrial application of a new and alternative approach to 
federated learning: one that in essence extends multi-task learning across multiple parties, while 
protecting the confidentiality of the underlying data. Conceptually, this approach proposes cross-endpoint 
federation across endpoint-wise partitioned datasets. Beyond generic standardized formatting, there is 
no attempt to endpoint or task matching, so the approach does not require the disclosure of endpoints. 
It also imparts more symmetry to usage rights: the party contributing data for some task becomes 
exclusively entitled to the model components specific to that task, encouraging maximal commitment of 
confidential datasets. Like in other multi-task settings, a joint representation acts as the conduit of 
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information. This joint representation is shared among the data participants, but not with the operator of 
the system.  

While, conceptually, cross-endpoint federation thus avoids some of the challenges of more established 
cross-compound federation, it may well pose questions of its own. For instance, the information transfer 
in multi-task learning requires some level of commonality across assays and compounds; without it, no 
predictive benefits can be expected from a joint representation.17 In our privacy context, data composition 
cannot be shared, encumbering any direct attempt to optimize data composition across partners for 
information transfer during the modelling. Also, each task is not only defined but ultimately also evaluated 
by the data points of its (single) contributor, raising questions whether that contributor-biased evaluation 
base can adequately assess the benefits of potential information inflow from other contributors. And to 
what extent would these and other constraints erode potential gains? The three-year MELLODDY project 
set out to study these questions in the context of a first-in-kind experiment in federated and privacy-
preserving machine learning on sensitive industrial data at the relevant, data warehouse scale. 

 

Figure 1. Conceptual representation of the federated setup with two partners of different size, illustrating 
cross-endpoint and cross-compound federation. In practice, the number of endpoints amenable to cross-
compound federation is far lower than to cross-endpoint federation, due to challenges in reconciliation 
across partners. Identical structures at different partners get identically represented allowing implicit 
mapping through the machine learning algorithm without exchanging any sensitive information. 
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Methods  
Data and data preparation  
 
Combining pharmacological and toxicological assay data of 10 pharma partners (i.e. Amgen, Astellas, 
AstraZeneca, Bayer, Boehringer Ingelheim, GSK, Janssen, Merck KGaA, Novartis, and Servier) in the multi-
partner learning, the data volume amounted to 2.6+ billion confidential experimental activity data points, 
documenting 21+ million chemical compounds and 40+ thousand assays. This corresponded to the vast 
majority of the partners data warehouses. The dataset included both alive assays (where data are 
currently being generated) and historical assays (which have been discontinued). In addition, data from 
publicly available sources18 were included.  

Pharmacological and toxicological assay data can roughly be divided into three types: on-target activity, 
off-target activity, and ADME (Absorption, Distribution, Metabolism, and Excretion; describing the effect 
of the body on a drug). The categorization in this work follows these lines. Project specific assays typically 
covering on-target activity are designated by ‘Other’ and include also phenotypic toxicity. The ‘ADME’ 
category, in addition to ADME assays, includes physical chemistry assays given their importance to ADME 
properties. The ‘Panel’ category includes assays used across discovery projects, typically for undesired off-
target effects , such as from a generic safety panel.19   

On- and off-target assay data will typically result from multiple measurements over a range of different 
concentrations, resulting in a single number summarizing the overall response. When that number falls 
outside of the concentration range, it cannot be quantified exactly, and is reported as censored data 
points (qualified by  ‘>’ or ‘<’). A significant fraction of the data is composed of censored data (i.e., 20% to 
80% depending on the partner).  

Before measuring over a range of concentrations, a promising activity has typically first been observed in 
single-concentration high-throughput screening (HTS).20 Imaging data typically result from plate-based 
imaging screens, where images are acquired by an automated microscope and then processed 
automatically by image analysis software to generate dense fingerprints of cellular profiles. 

All data preparation steps that are independent of a partner’s specific data warehouse setup were 
performed with MELLODDY Tuner21 according to a common protocol, including compound 
standardization and featurization. This ensured that identical structures get identically represented by all 
partners allowing implicit mapping through the machine learning algorithm without explicitly mapping 
the structures upfront. 

 

Modelling 
 
Two main modelling modalities can be distinguished. Regression, where a continuous value (assay 
measurement) was predicted directly, and binary classification where a label (active/inactive) was 
predicted relative to a threshold on the assay measurements. Hybrid applies to the case where both 
classification and regression tasks were present (Figure 2).  
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Following the assumption that more data integration leads towards more comprehensive and superior 
predictivity, partners maximized their data contributions to maximize the likelihood of cross company 
learning synergies. As such, some data participated in the training of the model but were disregarded for 
performance evaluation. For classification, this included so-called auxiliary tasks based on HTS, and image-
based pseudolabel data. For regression it was observed that regression-focused hybrid models including 
auxiliary classification tasks, were superior to classification-focused or balanced hybrid models (Figure S5). 
It is hypothesized that, since regression tasks were subject to stricter data volume and quality quora (SI 
Table 1), new and useful information was brought in from adding classification tasks to regression tasks, 
but not vice versa.  

Furthermore, the automatic multi-thresholding approach resulted in multiple tasks per assay, of which 
only one was considered for performance evaluation. Likewise, tasks not meeting the data volume quora, 
and all censored data, contribute to the model training but were equally disregarded for performance 
evaluation. Both types of tasks were not considered as auxiliary tasks. 

Given the challenges posed by the high-volume, high-dimensional, and sparse nature of the input (ECFP6 
chemical fingerprints,22 folded to 32k bits) and target matrices, SparseChem23 was well suited for 
modelling through feedforward neural networks. In the federated setting the SparseChem models were 
conceptually split into a private head for every partner containing the output layers for the partner’s 
distinct tasks, and a shared trunk part common to all partners (Figure 2).24,25 On the platform, the weights 
of the common trunk could be trained in a federated way by applying secure aggregation26 of the 
individual gradients from each minibatch of the contributing partners. 
 
 

 

Figure 2. Overview of the different training modalities with layer sizes commonly optimal for partners 
for the federated setting (see SI for extensive optimal hyperparameters).  

 

Evaluation 
Metrics in labeled space 
 
Machine learning models are typically evaluated by comparing their predictions with the ground truth on 
a labeled test set not used for training. For classification models the area under the receiver operator 
characteristic curve (AUC-ROC) or precision recall curve (AUC-PR) is typically used.27 AUC-ROC values 
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range between 0 and 1 for systematically wrong and perfect predictors, respectively, with 0.5 being the 
value of a random predictor. AUC-ROC is symmetric, meaning it is identical for the prediction of active 
compounds (typically the minority class) and inactive compounds. AUC-PR is considered more informative 
when the prediction of the minority class (the ‘actives’) in a highly unbalanced data set is of interest.28 
AUC-PR has however the disadvantage that it depends on the class ratio, and therefore AUC-PR values 
cannot easily be compared across datasets or tasks in a multi-task setting.  

For regression models the Pearson correlation between ground truth and predicted values, the root mean 
square error of the prediction (RMSE), and the coefficient of determination (R2) are common performance 
metrics.29,30 R2 describes the fraction of variance in the ground truth that is explained by the model. It has 
1.0 as upper bound for a perfect model, but no lower bound. Negative values are observed if the model 
does worse than predicting constantly the mean of the ground truth.  

The above metrics have each their individual scale, and the performance of a random predictor is not 
always well defined. This can be addressed by calculating for each task the performance difference on a 
relative scale describing to what extent the task’s performance gap between the baseline model and a 
perfect model is closed by the model of interest (RIPtoP – Relative Improvement of Proximity to 
Perfection):  

𝑅𝐼𝑃𝑡𝑜𝑃(𝑚𝑒𝑡𝑟𝑖𝑐) =
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡)(𝑚𝑒𝑡𝑟𝑖𝑐) − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)(𝑚𝑒𝑡𝑟𝑖𝑐)

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑝𝑒𝑟𝑓𝑒𝑐𝑡)(𝑚𝑒𝑡𝑟𝑖𝑐) − 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)(𝑚𝑒𝑡𝑟𝑖𝑐)
 

This benefits from the fact that the performance of a perfect model is well defined in all metrics. In our 
case the baseline model was a model trained with data of a single partner only, whereas the model of 
interest was the federated, multi-partner model. The performance metrics depend on the test set used 
to calculate them.31 In drug discovery, the ability of models to extrapolate outside of the space of their 
training data to novel chemical compound classes is desirable, and to evaluate this, the train-test fold split 
needs to be designed accordingly. One way to achieve this is to assign complete chemical classes to a fold. 
In federated machine learning this has to be done consistently across all data owners in a privacy-
preserving way. For this purpose, a deterministic fold splitting procedure using rule-based scaffold 
assignment32 has been developed that can be executed independently by the partners with MELLODDY-
TUNER.21 This led to more conservative performance assessments compared with a random split. 

 

Applicability domain metrics  
 
Performance metrics such as AUC-ROC, AUC-PR and R2 require a labeled test set. In the context of 
federated learning, this implies that each partner can only apply such metrics to one’s own tasks and 
compounds. Given the limited overlap of chemical libraries between partners, one might expect federated 
learning to inform the model particularly in those regions of chemical space from other partners, where 
no labels are available. Using labeled metrics, the best estimate of the predictive performance in such 
unlabeled spaces, is to assume that the values for the labeled test set will be representative for the 
unlabeled data, regardless of its characteristics. This highlights the need for complementary metrics not 
requiring labeled data.  

For classification, confidence estimates such as the task-level conformal efficiency (CE) can be applied to 
labeled and unlabeled data alike. This metric correlates theoretically and empirically with labeled metrics, 
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providing an assessment of the expectable predictive performance in unlabeled space.33 Confidence 
metrics in general are useful for the study of the applicability domain (AD) of models, i.e., the chemical 
space in which the model makes predictions with sufficient reliability.34–36 

For regression, the confidence metric of the spread in predicted values from an ensemble model37 was 
explored but dropped after only a very limited relationship with performance metrics could be 
established.  

 

Results  
 
In the following, the main results of the MELLODDY project are presented by comparing the performance 
of multi-task single-partner models trained locally, to multi-task multi-partner models trained in the 
distributed federated setup, using a variety of visualizations that highlight different aspects of the 
performance differences. All results are presented on a relative scale to facilitate comparison across 
different partners and metrics employing RIPtoP as described above. 

Figure 3 presents an overview of the results for the MELLODDY project performance differences across-
companies between optimal multi- and single-partner models (i.e., with/without auxiliary data). Results 
clearly demonstrate the benefit for the federated run over the single-partner run in almost all cases, as 
highlighted by the positive delta values (y-axis) for the classification metric (AUC-PR) and regression (R2), 
respectively, and for the applicability domain (conformal efficiency). Figure S13 highlights that the 
evidence of federated superiority was robust regardless of the alternative to the RIPtoP that was selected.  

The next sections will present a detailed breakdown of the federated performance gains starting with an 
analysis of the classification models in terms of predictive performance and applicability domain metrics, 
followed by a comparison to the regression model performance. 
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Figure 3. Performance deltas (between multi-and single-partner runs) across-companies for their 
respective optimal model (i.e., with/without auxiliary data). 

 

 

 

Classification 
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Figure 4. Classification performance results from the federated run. (A) The effect of multi-partner (MP) 
and auxiliary data (*) on the median AUC-PR task performance, for 5 smaller (dashed lines) and 5 larger 
(solid lines) partners. (B) Distribution of median AUC-PR task performance (RIPtoP(AUC-PR)) over 
partners. (C-F) Difference between the empirical cumulative distribution functions (CDF) from single- and 
multi-partner models for different assay types based on AUC-ROC. The difference between the cumulative 
proportion of tasks in the multi- versus single-partner models (y-axis) is shown for the binned performance 
(x-axis). The line plots indicate the median probability difference for that bin over all partners. The 
interquartile ranges are indicated with the shaded envelope. Mind that AUC-ROC is shown here due to its 
stable baseline of 0.5 for a random classifier.  

 

Figure 3 outlines a clear trend towards a positive effect of federated learning on the models’ classification 
metric. 8 partners reported a RIPtoP(AUC-PR) of more than 2.5%, with 1 partner over 7.5%, whilst all 
partners reported some positive influence of the federated learning. The performance of the classification 
models is further explored in Figure 4.  

Figure 4A analyses the influence of collective training data volume on the single- and multi-partner models 
(and how this influences the choice of the optimal model shown in Figure 3). The figure outlines a positive 
effect for increases in collective training data volume from the single-partner (SP), single-partner with 
auxiliary data (SP*), multi-partner (MP) and multi-partner with auxiliary data (MP*) models. Each model 
performance is normalized to the single-partner baseline, and shows a general concordance between 
partners for the benefit of the inclusion of auxiliary data, and also for other partners’ data through 
federated learning. 9/10 partners had both SP* and MP* preference. A further breakdown of the effect 
of auxiliary data on performance is included in Figure S8, suggesting that auxiliary data does not 
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consistently additionally enable a model to leverage the federated training (MP*-SP* performance is not 
consistently greater than MP-SP performance).  

Taken together, this indicates that increases in collective training data volume, including by means of 
auxiliary data resulting from single concentration high-throughput and imaging assays, boosted predictive 
performances. However, the improvements resulting from the multi-partner federation and the 
introduction of auxiliary data are not linearly additive, but rather indicate saturation effects.   

Figure 4B shows the median task performance distribution aggregated across companies and split by assay 
type including assays that are alive (see SI for exact assay type definitions). Results showed a higher 
RIPtoP(AUC-PR) for both panel and ADME tasks than for the remaining (other), suggesting that the 
occurrence of similar panel and ADME assays at a number of pharma companies, causing task correlations 
across partners, was beneficial for the predictive performance.17 In the category ‘All’, the higher 
improvements for the alive assays compared to the general picture can be ascribed to the fact that the 
alive assays had a higher proportion of panel and ADME assays.  

We further postulate a different compound exposure for panel and ADME assays versus other assays. 
Other assays are often project specific on-target assays, exposed to compounds from the chemical series 
that a given medicinal chemistry project is exploring. Panel and ADME assays on the other hand observe 
broad chemistry from across multiple projects, and often competitor compounds resynthesized for 
characterization. This potential commonality in chemistry with other partners could contribute to the 
observed federated benefit.  

Figure 4C presents the delta between the cumulative distribution functions (CDFs) of the tasks between 
the single- and multi-partner models (i.e., a delta between the two single- and multi-partner CDFs). That 
is, the figure enables visualizing the difference between the cumulative proportion of tasks for increasing 
performance (x-axis), and how this density differentially appears between the single- and multi-partner 
model CDFs (y-axis). There was clear benefit for the multi-partner model as indicated by the positive 
values above the 0 line, which indicates a shift toward a larger proportion of tasks being assigned to a 
higher performance. Overall, the benefits in federated learning applied to tasks over the full AUC-ROC 
range, as outlined by the broad spread of the lines above zero across the bins. They were most apparent 
for tasks in useful, intermediate performance regions.  

These findings are important demonstrations of the usefulness of the federated learning approach since 
it is most impactful to improve tasks in this intermediate performance range: moderately improving tasks 
with a low baseline performance still makes the model unusable while improving tasks with a baseline 
close to perfection might not have significant impact on the prediction results. 
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Figure 5. Classification applicability domain results from the federated run. (A) The effect of multi-partner 
(MP) and auxiliary data (*) on the median task performance, for 5 smaller (dashed lines) and 5 larger (solid 
lines) partners.  (B) Distribution of median task performance (RIPtoP(CE)) over partners.  (C-F) Difference 
between the empirical cumulative distribution functions (CDF) from single- and multi-partner models for 
different assay types based on CE. The difference between the cumulative proportion of tasks in the multi- 
versus single-partner models (y-axis) is shown for the binned performance (x-axis). The line plots indicate 
the median probability difference for a bin over partners. The interquartile ranges are indicated with the 
shaded envelope.  

 

Figure 3 shows a clear trend towards a positive effect of federated learning on the models’ applicability 
domain. As outlined previously,33 conformal efficiency is related to a model’s predictivity and can be 
considered a proxy for the size of the applicability domain of that model. 6 partners reported a RIPtoP(CE) 
of more than 10%, with 1 at ~20%, and 4 partners reported between 0% and 10%. In Figure 5A, contrary 
to the RIPtoP(AUC-PR), no clearly positive effect can be observed upon inclusion of auxiliary data: MP* 
was not consistently higher than MP for all partners, and neither was SP* compared to SP. This suggests 
that the main boost to the applicability domain was caused by the inclusion of the others’ data in the 
training, and that addition of auxiliary data was less important. Neither smaller nor larger partners show 
a consistently higher improvement, suggesting that the volume of a partner’s training data was not 
determining, and larger partners too have the potential to extend the applicability domain. Regarding 
assay types, Figure 5B shows similar patterns to the results on the RIPtoP(AUC-PR). Panel and ADME tasks 
showed a relatively high RIPtoP(CE), as do the alive assays compared to the remaining (other).   
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Figure 5C illustrates that the benefits apply to tasks over the full range of the conformal efficiency. The 
peaks in the delta CDF for panel and ADME assays occurred at higher values (0.6) than the peaks for the 
other assays (0.4), mirroring the equivalent plot on RIPtoP(AUC-PR) and reflecting the better overall 
performance of the panel and ADME assays. Interestingly, for the other assays, a consistent dip across 
partners towards negative delta CDF values at 0.85 and higher conformal efficiencies could be observed, 
which was not present for ADME and panel assays. The effect can be explained by the observation that, 
on one hand SP models have top efficiencies much closer to perfection, and typically, such tasks predict 
almost all compounds confidently negative (inactive). Considering the historical hit rates of these tasks, 
this is considered an instance of overconfidence. MP models on the other hand have more information to 
support positive predictions, resulting in more predictions with both class labels but also confident (single 
class label) positive predictions. Since the predictions with both class labels will not contribute to the 
efficiency, this results in lower values in the MP case, reflected in negative delta CDF values. Finally, Figure 
S12 shows detailed results confirming previous findings.33 Examples include higher gains in unlabeled 
space compared to labeled space.  

 

Regression 
 

 

Figure 6. Regression performance results from the federated run. (A) The effect of multi-partner (MP) and 
auxiliary data (*) on the median task performance, for 5 smaller (dashed lines) and 5 larger (solid lines) 
partners. (B) Distribution of median task performance RIPtoP(R2)) over partners. (C-F) Difference between 
the empirical cumulative distribution functions (CDF) from single- and multi-partner models for different 
assay types based on R2. The difference between the cumulative proportion of tasks in the multi- versus 
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single-partner models (y-axis) is shown for the binned performance (x-axis). The line plots indicate the 
median probability difference for a bin over partners. The interquartile ranges are indicated with the 
shaded envelope.  

 

The general trends observed for the regression models were mostly in line with the classification results, 
however, subtle differences existed. For all but one partner the multi-partner models exceeded single-
partner performance measured by RIPtoP on the regression metric, R2 (see Figure 3) albeit with smaller 
magnitude compared to the classification metric AUC-PR. MP gains on the correlation coefficient 
regression metric are positive for all partners (see Figure S20). The magnitude of the relative performance 
gains was directly related to the location of the baseline performance on the metric scale. While average 
SP baseline AUC-PR values typically ranged between 0.6 and 0.8 on a scale of 0.0 to 1.0, average R2 values 
were at lower values (around 0.3 to 0.4) on a scale of -∞ to 1.0 (SI Figures 9-11). As demonstrated in Figure 
S19, relative performance improvements closer to the end of the scale (observed in typical classification 
models performance measured in AUC-PR) were emphasized by the RIPtoP metric, rightfully accounting 
for the increasing difficulty to improve an already good baseline. Upon switching RIPtoP to relative 
improvement or absolute delta, the ordering of the classification and regression federated gains were 
comparable or flipped, suggesting that both classification and regression models benefited equally from 
federated learning (Figure S18). An additional aspect that is shared between both model types is that they 
both benefited from extended data volume in the form of auxiliary data.  

Figure 6A shows that the hybrid approach was mainly benefiting the federated setup. Only for three 
partners it improved the SP model, while for 8/10 partners hybrid was the optimal model on the MP side. 
Auxiliary data improved classification models in 9/10 cases for both SP and MP models, respectively. 
Aggregated over all partners, the median RIPtoP(R2) performance increases by 1.8% on MP level when 
replacing a plain regression model by the hybrid approach. 

Trends in performance gains across assay categories were reproduced in regression with the exception of 
the ADME tasks that showed the largest improvements in classification but dropped to being comparable 
to the panel tasks in regression (see Figure 6B). A potential reason for the lower multi-partner benefit on 
ADME data in regression could be the increased heterogeneity of ADME endpoints compared to the 
standardized dose-response data for non-ADME assays (panel and other). Despite unit standardization of 
comparable assays across partners, scale normalization (see SI), and a strong overlap across partners, 
diversity of the data units and scales might still pose a challenge for training federated regression models 
as opposed to classification models which are less sensitive since they are trained on binary binned data. 

As observed for the classification models, also in regression the benefit of the federation was most 
apparent for tasks in useful performance regions (see Figure 6C-F). These tasks had already an acceptable 
baseline performance which was boosted further by federated learning. As described above, the 
regression performance scale was shifted to smaller values for the regression metric (R2) compared to the 
classification metric (AUC-PR). 

 

Discussion 
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The topic of federated learning is one that has attracted a lot of visionary discussion and theoretical 
exploration, but much less effort in concrete application on actual datasets at relevant scale. Insofar 
federated learning has already been applied to drug discovery, it has been mostly in the context of cross-
compound federation of compound-wise separated data sets documenting activities in a limited and 
predefined set of generic assays.16,38–40 In that setting, participants must disclose the assays to federate 
over, which rules out the involvement of more sensitive assays. Secondly, in principle participants (and 
often the operator) get access to the same resulting joint model. This may discourage participants to 
involve more than the minimally required data volume – why would bigger data owners contribute more 
than smaller ones for the same return, just because they can? Finally, more than one collaborative effort 
has been marred by underestimating the challenge of reconciling readouts of somewhat to very different 
assays even if those were designed to document the same mechanism or target. Beyond material and 
equipment differences, various extents of divergence of protocols, modality (e.g. biochemical binding 
assays versus cellular functional assays) or activity direction (agonistic versus antagonistic activities on the 
same target) can be at play.19 

Here we propose an alternative approach: cross-endpoint federation of endpoint-wise separated 
datasets. One that was inspired by the predictive benefits of multi-task learning extended across partners 
by federation17,41 and designed to incentivize maximal data involvement by all partners. Generally, a task 
is defined by the labels provided by a given task owner, who also becomes the exclusive owner of the 
head model for that task. This obviates a general need for task disclosure or reconciliation. The prospect 
of receiving more and better private head models encourages participants to involve tasks for many assays 
and maximal data volume per task. Our approach also enabled an increased privacy comfort. In contrast 
to other state-of-the-art-solutions,42,43 the private underlying data and resulting head models never leave 
the respective owner-controlled architectures, in any form. Information is exchanged as trunk model 
updates and secure aggregation26 protects the participants’ privacy, i.e., it prevents the attribution of 
inferred information to the contributing participant(s). In combination with industry standard security 
protocols, this incentivization scheme and increased privacy comfort proved a success: all ten 
pharmaceutical participants involved the vast majority of their SAR data warehouses. To the best of our 
knowledge this is the first federation experiment at actual SAR warehouse scale. The collective data 
volume of 2.6+ billion confidential experimental activity data points, documenting 21+ million physical 
small molecules and 40+ thousand assays exceeds that of individual participants by almost an order of 
magnitude on average; it is several orders of magnitude bigger than any other federated or collaborative 
efforts in drug discovery known to us to date. 

Cross-endpoint federation enabled the improvement of models for tens of thousands of assays, compared 
to the dozens or at best hundreds of commonly used assays that are typically considered to be practically 
compatible with cross-compound federation (under the somewhat tenuous assumption of near-perfect 
reconciliation of readouts across partners). Indeed, for all of the ten partners, the majority of classification 
or regression tasks benefited, and for the majority of those partners, they benefited with a RIPtoP of more 
than 4% in AUC-PR and 2% in R², respectively. This indicates that in practice the information transfer 
occurred generally and broadly across a vast spectrum of assays, many of which would not be amenable 
to cross-compound federation. Notably, a core cross-endpoint federation scheme can in principle be 
extended to enable cross-compound federation by mapping common assays to a shared head model.25 
To secure the benefits of cross-endpoint federation, such cross-compound extension may then best be 
reserved to a limited set of amenable assays, such as some safety panel assays that happen to be 
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outsourced by multiple pharma partners to common contract research organizations.19 Small off-line 
exercises proved promising (Figure S6). However, this promise did not yet materialize in preliminary 
experiments at scale that extended cross-endpoint federation across the full dataset with cross-
compound federation of a few dozen commonly outsourced safety panel assays. The results suggested 
that in contrast to the seemingly robust cross-endpoint modality, a cross-compound extension modality 
may be more dependent on flawless data preparation and vulnerable to the imbalance between fused 
and non-fused tasks. While promising, this avenue requires follow-up studies beyond the scope of the 
original project. 

On the magnitude of the observed predictive improvement, there are a few considerations. Firstly, it is 
important to note that we compare multi-partner and single-partner models that are built using the very 
same multi-task modelling approach. Hence, the baseline is a model that is already a multi-task model 
empowered at the scale of a SAR data warehouse. This is important because single partner studies have 
shown that with a growing number of covered tasks13 or data points44 the predictive performance of multi-
task models increases consistently but sub-linearly, i.e., it gradually slows down. Our results show that 
predictive performance keeps benefiting from adding auxiliary or partner tasks or both beyond single SAR 
data warehouse scale, but it does so at a modest pace. 

Secondly, performance improvement clearly depends on the metric used. Here we introduced RIPtoP 
normalization to mitigate the challenge of differences in distribution of baseline AUC-PR and R² values 
among the pharma partners. Importantly, metrics like AUC-PR are ultimately evaluated using datapoints 
from the same unique data owner who provided the task-defining datapoints, while any benefits of 
federation are driven by datapoints from other data owners. Any owner-specific data biases may 
therefore favor the baseline and disfavor the federated performance, and hence underestimate 
performance improvement from federation. We have elsewhere shown that conformal efficiency33 may 
mitigate such metric biases: a proxy for the size of the applicability domain of a model, i.e., the set of 
compounds for which a model is estimated to return predictions meeting a predefined confirmation rate, 
it correlates with AUC-ROC but is less dependent on the choice of evaluation set. Interestingly, this metric 
shows more pronounced predictive performance gains for classification than AUC-PR, which suggests that 
federated models may generalize better. Prospective experimental validation of this hypothesis will 
require comparative analysis of model robustness over time (see SI for details), and hence remains of out 
scope of this paper. 

Lastly, any benefit assessment should also evaluate cost. The MELLODDY experiment has demonstrated 
that cross-endpoint federation boosts predictive model performance more often than not, and for a 
notable portion of assays prominently so. On the other hand, while a lot of technological progress has 
been realized during the project, federated learning to date comes at non-negligible cost and non-zero 
risk, and it requires building a transparent and reciprocally beneficial case. Opportunity cost is one aspect 
to work into the equation; what is the cost for physical compound availability and testing that would lead 
to a similar and similarly robust increase in predictive performance of assays of interest, which importantly 
requires defining those assays of interests? Another aspect is that of model update planning.  Here a 
minimally required data volume growth may come to mind, which can be realized by adding partners or 
further unlocking alternative data sources, like images, omics readouts, or target structures. 

The MELLODDY project provides a very concrete example of a realistic and economically relevant 
application of privacy-preserving cross-endpoint federation at data warehouse scale, to the best of our 
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knowledge, the first example in the field of drug discovery. It has focused on assessing the predictive 
benefits from cross-partner over single-partner learning. To this end, the project settled early on a robust 
workhorse predictive technology that had been battle-tested in the drug discovery field, namely 
feedforward neural networks processing ECFP-encoded fingerprints. Given their direct compatibility with 
the technology, Gobbi 2D pharmacophore fingerprints45, atom pair46 and topological torsion47 fingerprints 
were explored in off-line simulated partner exercises, but showed no clear advantage over ECFP 
fingerprints. MELLODDY has not explored alternative state-of-the-art SAR modelling approaches like 
graph-convolutional neural networks48,49 or transformers.50 In the absence of a compelling rationale that 
these methods would favor the federation case, the extensive methodological refactoring required for 
their inclusion in a privacy-preserving cross-endpoint federation scheme fell out of scope of the current 
project. Alternatively, the shared trunk of the federated models, which uniquely embeds information from 
multiple companies, could be added to a pool of advanced compound descriptors like CDDD,51 to be 
leveraged by individual partners using more flexible downstream machine learning methods. 

 

Conclusions 
 

The MELLODDY project is the first realization of cross-endpoint federated learning in drug discovery across 
10 pharma partners, at an unprecedented data warehouse scale. The approach extends the benefits of 
multi-task learning, known from single-partner applications, to the multi-partner setting, without 
compromising the confidentiality of the underlying data.  

For all the partners, the majority of classification or regression tasks benefited and for the majority of 
those partners, they benefited with a Relative Improvement of Proximity to Perfection (RIPtoP) of more 
than 4% in AUC-PR and 2% in R², respectively, or of more than 12.5% in AUC-PR and 4.8% in R², 
respectively, for at least one partner. Due to partner-specific biases, these conventional metrics may 
underestimate the predictive benefit from cross-endpoint federation as suggested by a median RIPtoP in 
conformal efficiency of at least 12% for the majority of partners and exceeding 20% for one partner. The 
best overall predictive performance was obtained after adding auxiliary data in the form of HTS or image-
based pseudolabel data.  

Models for ADME and panel assays showed more pronounced predictive performance improvements 
compared to more partner-specific assays, probably driven by the occurrence of similar assays at multiple 
partners. 

As an outlook, we believe that the operational and scientific achievements of the MELLODDY project have 
shown the potential of federated learning in real life. The current and other scientific publications and 
open-source software libraries this project establishes in its wake may inspire future collaborative 
modelling efforts in drug discovery and beyond. 
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