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Abstract: 17 

By combining machine learning with design of experiments, so-called active machine learning, 18 

more efficient and cheaper research can be conducted. Machine learning algorithms are more 19 

flexible, and are better at investigating the processes spanning all length scales of chemical 20 

engineering. While the active machine learning algorithms are maturing, its applications are 21 

lacking behind. Three types of challenges faced by active machine learning are identified and 22 

ways to overcome them are discussed: the convincing of the experimental researcher, the 23 

flexibility of data creation, and the robustness of the active machine learning algorithms. A 24 

bright future lies ahead for active machine learning in chemical engineering thanks to increasing 25 

automation and more efficient algorithms to drive novel discoveries.   26 
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1. Introduction 27 

Performing experiments at well-defined conditions and first-principles based calculations 28 

constitute the basis of engineering research. In chemical engineering, these activities are aimed 29 

at e.g. the development and optimization of catalysts, reaction conditions and reactor 30 

configurations. In the chemical industry, 51 billion USD was spent in 2017 on research and 31 

development [1]. This illustrates the importance of high quality data, however, obtaining 32 

accurate data is tedious and error prone. Design of experiments (DoE) can help by extracting 33 

maximal information with a minimum of effort [2, 3], making sure that the time and resources 34 

are spent efficiently. By integrating machine learning with DoE, a more flexible and efficient 35 

DoE is achieved. This so-called “active machine learning” allows, in particular for high-36 

dimensional and highly-nonlinear phenomena, a more effective selection of experimental 37 

conditions [4]. 38 

In this “Perspective”, we discuss the potential of combining DoE and machine learning, i.e. 39 

active machine learning. Olsson defines active machine learning as a supervised machine 40 

learning technique in which the learner, being the machine learning model, is in control of the 41 

data from which it learns [5]. With active machine learning, machine learning algorithms are 42 

used to iteratively determine new experimental data, so-called training data, based on 43 

uncertainty criteria. Note that “experimental” can also refer to computationally expensive high-44 

level simulations e.g. high level ab initio calculations of molecular properties or large eddy 45 

simulations of reactive flow with Computational Fluid Dynamics (CFD) codes [6]. Active 46 

machine learning consists of two branches with two different purposes: active learning and 47 

Bayesian optimization. Active learning aims to explore and model a process with a minimum 48 

of “experiments” to ensure accurate predictions over the entire design space [7]. Bayesian 49 
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optimization is essentially a machine learning-based optimization strategy, where iteratively 50 

new experimental data is selected to find the experiment which optimizes the objective [8].  51 

1.1. The Basic Principles of Active Machine Learning  52 

 

Figure 1. Overview of the general active machine learning workflow, depicting the 

initialization and the iterative query selection (based on [9]). 

 53 

Figure 1 illustrates the general workflow of active machine learning algorithms with first the 54 

initialization followed by an iterative loop consisting of three phases. The critical first step of 55 

initialization consists of clearly defining the research problem as either the modeling of an 56 

output (active learning) or the optimization of an objective (Bayesian optimization). An 57 

example of active learning is the investigation of the effect of reaction conditions, such as 58 

temperature and pressure, on the conversion, whereas with Bayesian optimization the goal is to 59 

find the optimal reaction conditions to maximize this conversion. In both cases a design space 60 

is set up which defines the ranges of the studied variables by considering the objectives and the 61 
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intrinsic limitations of the experimental tools. A machine learning model is then initialized and 62 

trained using a small sample of labeled data, being experiments of which the outcome is known, 63 

stemming from literature, previous experiments, or newly performed experiments. Generally, 64 

the amount of preliminary labeled data is very low.  65 

After initial training, the machine learning model is able to make rudimentary predictions in the 66 

design space. The model can vaguely estimate where an optimum could be situated for Bayesian 67 

optimization or which experiment, the so-called query, is most informative for active learning. 68 

While the definition and initialization of both active learning and Bayesian optimization is 69 

essentially the same, and not even too different from a classic experimental campaign, the main 70 

differences and advantages are found in the model training.  71 

Active learning is purely based on exploration to enable as accurate as possible predictions of 72 

the design space. Oppositely, Bayesian optimization balances both exploration and exploitation 73 

for finding the optimum in the design space and treats every iteration as the potentially final 74 

one. Exploitation investigates areas with a high objective value to find an optimum nearby 75 

whereas exploration discovers areas on which the predictions are unknown and therefore 76 

uncertain. Exploration requires a measure of uncertainty on the predictions to identify which 77 

areas of the design space remain unexplored [10]. Therefore, popular machine learning models 78 

for active machine learning are Gaussian processes [11-14] and Bayesian neural networks [15-79 

17] as these allow an uncertainty estimation of their predictions. Neural networks can also be 80 

employed for active machine learning purposes, but approximative methods such as Monte 81 

Carlo dropout or model ensembling are required to estimate the model uncertainty [18-20].  82 

After initialization, the active machine learning procedure consists of three phases being the 83 

training of the machine learning model, the selection of new experiments, and the execution 84 

and annotation of these experiments (Figure 1). The active machine learning query (phase 2) is 85 
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determined by a so-called acquisition function which is a measure of potential informativeness 86 

or optimality. The model needs the most informative next data point, and thus the point where 87 

the acquisition function is maximal for the selected query. The query is performed and new data 88 

is gathered (phase 3) after which the machine learning model is retrained (phase 1) and now 89 

can make improved predictions. This loop is sequentially iterated until an optimum (Bayesian 90 

optimization) is found or a sufficiently accurate model (active learning) is obtained. 91 

1.2. Active Machine Learning in Chemical Engineering 92 

The applications of active machine learning span all length scales of chemical engineering from 93 

ab initio calculations [12, 13, 21], material, molecule and catalyst design [22-31], reaction 94 

design [32-39] up to reactor design [40-42]. For example, the design of catalysts is an important 95 

asset in achieving carbon neutrality as catalysts can enable more sustainable processes, and 96 

increase the energy efficiency of chemical processes in general. However, nowadays their 97 

design is still deemed an art, mainly relying on high-throughput screening and limited 98 

theoretical relations such as the Sabatier principle and linear scaling relations [43-46]. This 99 

makes catalyst design prone to human bias as researchers tend to exploit catalyst designs which 100 

are known to work but this hampers real breakthroughs [47, 48]. With active machine learning, 101 

this human bias is removed and a substantially larger fraction of the catalyst space can be 102 

studied. Currently, the applications of active machine learning in catalysis only consider a 103 

limited design space varying only the catalyst composition while maintaining the catalyst 104 

structure. E.g., Zhong et al. performed Bayesian optimization on DFT calculations to identify 105 

and synthesize promising electrocatalysts for the reduction of CO2 [49], whereas Nugraha et al. 106 

determined the optimal composition of the most active Pt/Pd/Au-catalyst to electrocatalytically 107 

oxidize methanol [50].  108 
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In reaction or process design, the goal with Bayesian optimization is to determine the optimal 109 

operating conditions to maximize the product yields, minimize the emissions per product, 110 

achieve the highest energy efficiency, etc. Optimization of reaction conditions has been 111 

demonstrated multiple times, from multi-objective reaction optimization with both discrete and 112 

continuous variables which makes it probably the most well-developed field of active machine 113 

learning in chemical engineering [33-35]. Shields et al. applied Bayesian optimization to 114 

optimize the reaction conditions for a Mitsunobu reaction, and found an optimal yield (>99%) 115 

for several non-intuitive reaction conditions after 40 experiments, beating the standard reaction 116 

yield of 60% [37]. With active learning the goal is to acquire reaction knowledge which can be 117 

used for reactor and catalyst design, process control or retrosynthesis. Eyke et al. demonstrated 118 

the potential of active learning for DoE in reaction design by predicting reaction yields for 119 

combinations of catalysts and solvents with a minimum of available data [20]. Recently, a DoE-120 

tool for the study of chemical reactions has been developed and validated on the catalytic 121 

pyrolysis of plastic waste by Ureel et al [9]. 122 

Computational fluid dynamics (CFD) has become an important tool for reactor, optimization 123 

and trouble shooting. Bayesian optimization allows to find an optimal reactor configuration 124 

with a minimum of computationally intensive CFD simulations. Park et al. demonstrated the 125 

power of multi-objective Bayesian optimization by maximizing the gas-holdup and minimizing 126 

the power consumption of a stirred tank reactor [41]. Clearly integrating active machine 127 

learning in CFD allows for a faster and more efficient reactor design. 128 

This survey shows that chemical engineering is a broad and diverse research field with a whole 129 

spectrum of possible active machine learning applications. Nevertheless its use is not yet 130 

widespread and there are some hurdles to overcome before it is a trusted asset in the chemical 131 

engineer’s toolkit. 132 
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In this “Perspective” we focus on active machine learning as a DoE technique for an 133 

experimentalist and how to popularize it. We identify three types of thresholds: the convincing 134 

of the experimental researcher, the flexibility of data creation, and the robustness of the active 135 

machine learning algorithms (Figure 2). In the following sections we will discuss each of these 136 

challenges and how they can be overcome.  137 

 

Figure 2. Three different types of thresholds for the breakthrough of active machine learning 

(AML). 

 138 
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2. Convincing the Researcher 139 

2.1. Big-data Misconception 140 

Currently, there exists a knowledge gap between the experimentalist community and the 141 

machine learning experts [51]. This is at the origin of active machine learning not yet being 142 

systematically applied by the former. First, there is a misconception that for active machine 143 

learning “big data” is mandatory and an enormous experimental campaign is required to make 144 

it feasible. Nugraha et al. found an optimal catalyst composition performing only 47 from a 145 

total of 5151 possible experiments [50]. Similarly, Schweidtmann et al. identified their pareto-146 

front after 68 experiments for a four dimensional reaction optimization [33]. Moreover, Ureel 147 

et al. showed that active learning strategies are already beneficial for experimental campaigns 148 

consisting of as little as 18 experiments [9]. These examples illustrate that both active learning 149 

and Bayesian optimization are already feasible for smaller datasets. 150 

A second issue is less related to the experimental researcher but more to the intrinsic algorithms. 151 

Initially, all active machine learning algorithms explore the entire design space which can result 152 

in counter-intuitive or trivial queries. Consequently, the experimentalist loses confidence in the 153 

machine learning tool. The initial selection of experiments does not rely on any preliminary or 154 

physical knowledge within the machine learning models. Therefore, this issue is related to both 155 

the human bias and the perception of these algorithms by their users, and to the absence of 156 

preliminary knowledge within these models. The incorporation of preliminary knowledge into 157 

active machine learning models will be discussed in section 4.1. 158 
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2.2. Ease-of-use 159 

With active learning strategies, multiple factors are varied at a time whereas regular DoE 160 

strategies often vary a single factor at a time. This makes the post-processing of the experiments 161 

less trivial as the effect of the factors is not isolated. As a result, a statistical analysis is required 162 

to draw conclusions from the experimental campaign [52]. These tools are incorporated in 163 

regular DoE software but not in the active machine learning packages that are available as of 164 

today. This is closely related to another issue that limits the applicability, namely its ease-of-165 

use. The current active machine learning packages require programming skills to be used and 166 

have no graphical user interface (GUI). The absence of a GUI hampers the usage of these 167 

methodologies as programming expertise is required before they can be applied. There is at 168 

present a substantial time investment of the researchers needed to use Active Machine Learning. 169 

This “activation barrier” is for many too high, in particular because of the required ability to 170 

code.  171 

3. Flexibility and Inflexibility of Data Creation 172 

3.1. Constrained Active Machine Learning 173 

The development of active machine learning algorithms is often done on simulated data where 174 

there are no practical limitations on the data creation side [27, 31, 53]. However, in real-life 175 

experimental units or procedures do not allow this flexibility. For example even a completely 176 

automated experimental unit often needs to heat up or cool down or time to stabilize, which 177 

slows down the generation of a new datapoint when different temperatures are selected by the 178 

algorithm. Additionally, experiments are often performed in parallel (e.g. in high-throughput 179 

units) as opposed to the algorithms which assume a sequential selection of experiments. 180 
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Therefore, active machine learning strategies should be constrained to the unit on which they 181 

are used, to allow for an optimal experimental efficiency to make them applicable to “Real 182 

World applications” [54]. In the example above it is often easier to heat up an experimental unit 183 

than to cool it, therefore an extra constraint should be added to the algorithm which prefers to 184 

select experiments which increase in temperature rather than decrease in temperature.  185 

Next to constraints resulting from how the experimental equipment operates, these are also 186 

important for simulations [40, 42]. Consider the case when optimizing a reactor in silico with 187 

CFD. When defining the reactor geometry for CFD it is not trivial that every type of geometry 188 

is feasible to simulate nor that it can be properly meshed or that the results are mesh 189 

independent. When these constraints are non-trivial, a separate machine learning model can be 190 

trained to learn the constraints and enforce the viability of the simulations [40]. 191 

Another example of constrained experimental units are high-throughput experimental 192 

campaigns which are for example used to screen different catalytic materials. Within these 193 

units, several experimental variables such as temperature and pressure are often fixed for every 194 

type of experiment per batch. This requires another constraint on the batch selection of these 195 

experiments as variables need to be fixed for all selected queries. To tune the active machine 196 

learning algorithms according to their application, a close collaboration between the machine 197 

learning expert and experimentalist is thus required. In this way, the benefits of applying active 198 

machine learning are also available to less flexible experimental units.  199 

This symbiosis between experimentalist and machine learning scientist will benefit both parties. 200 

First of all, it will extend the fields of application for active machine learning as researchers 201 

become more aware of the benefits of active machine learning. This close collaboration will 202 

help in identifying useful features within these active machine learning algorithms such as 203 

blocking, or automatic post-processing. More practical constraints might be added to the 204 
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experimental selection, such as the time or cost required for a proposed experiment. Lastly, this 205 

collaboration between experimentalist and machine learning expert helps in informing 206 

experimental researchers and remove the currently existing biases on active machine learning.  207 

3.2. Automation 208 

In an ideal case, active machine learning is coupled with a flexible automated experimental unit 209 

or are even equipped by a robot [33, 35, 55]. In this way control and optimization of the 210 

performance of the experiments can become optimal, and thus saving valuable time and effort. 211 

Automated experimental units are being increasingly applied for molecular synthesis and 212 

chemical engineering but these units are not yet commonplace [56-58]. One requirement of 213 

automated robotic units is that they should be reconfigurable [59]. They moreover should have 214 

a broad application range and not be limited to the investigation of a single reaction type or 215 

narrow temperature range. The use of automated units is of course not self-evident as these 216 

often are expensive and currently not well-suited for every problem. For example, despite past 217 

efforts [60] the automated synthesis and testing of catalysts is a challenging task, definitely 218 

when studying a broad design space [61]. By coupling these systems with active machine 219 

learning techniques, a huge time saving is expected for experimental campaigns, which will 220 

speed up reaction and catalyst optimization, and the acquisition of scientific knowledge. A last 221 

threshold of these automated units is of course the question of safety of these units. By 222 

expanding the catalyst or reaction design space, safety concerns rise as this increases the 223 

probability of undesired reactions to occur. Therefore, a good chemical knowledge is still 224 

required when employing these units to identify and incorporate the safety constraints. The 225 

definition of safety constraints again requires a close collaboration between experimental 226 

experts and machine learning scientists. 227 
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4. Robustness of Algorithms 228 

4.1. Data Transfer 229 

When performing experiments, it is advantageous when these experiments are widely 230 

applicable and serve multiple purposes. The information gathered in experiments should be 231 

made available according to the FAIR-principles and can then be of value for other researchers 232 

[62]. However, with active machine learning one objective is chosen which determines the 233 

experimental selection. This hampers the applicability of the experiments as only one 234 

experimental output is well-studied. For example when investigating reactions, the conversion 235 

is typically selected as output of interest but this limits the information on other properties such 236 

as yields or selectivities. In the worst case, the yields are not measured and no information is 237 

gathered, on the other hand when these yields would be measured no guarantee is given that all 238 

trends are considered in this example. As the goal of the active machine learning was to model 239 

conversions, it ignores the behavior of interesting reaction yields which can result in trends to 240 

remain hidden. With Bayesian optimization this does not pose an issue as the goal here is to 241 

optimize an objective, which makes the data per definition less generally applicable. Multi-242 

objective Bayesian optimization techniques exist while for active learning only single objective 243 

strategies are possible, meaning that all interesting outputs should be incorporated within the 244 

single active learning objective [33, 38, 41]. Therefore, to ensure the reusability of the gathered 245 

data, it is important that during experiments not only the modeled output is measured but also 246 

the potential other relevant outputs. 247 

After creating data that is of wide interest, it is also important to be able to incorporate that 248 

knowledge in active machine learning tools. When pretraining an active machine learning 249 

model on literature data, an improved initial experimental selection is achieved which resolves 250 
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the issue of the earlier mentioned suboptimal initial selection [63]. The incorporation of 251 

literature data is trivial when the experimental uncertainty is similar to the newly gathered data. 252 

However, when the literature data is of better or inferior quality than the gathered data, it is 253 

important that the machine learning model can make a distinction between both. 254 

Heteroscedastic machine learning models exist [53], but these do not necessarily allow the 255 

incorporation of two separate noise factors, as the variation in noise is dependent on the variable 256 

in heteroscedastic models. Conversely, multi-fidelity active machine learning strategies allow 257 

to employ widely abundant low-quality data for an accurate pretraining of the active machine 258 

learning model [64, 65]. These methods have been developed based on simulated 259 

“experimental” data only, but are very promising for improving the performance of active 260 

machine learning tools when applied to real experimental data. 261 

Data that is closely related, but not similar in nature, can also serve as initialization of active 262 

machine learning models [66]. For example, when modeling reactions with one type of catalyst 263 

and literature data on another catalyst is available, this might still contain valuable information 264 

for an active learning model [67]. With active transfer learning, the goal is to leverage this 265 

knowledge from nearly similar data to obtain a machine learning model with an improved 266 

perception of the examined problem. In this way, rudimentary physical knowledge is introduced 267 

in the machine learning model which again improves the initial experimental selection. This 268 

methodology has been proven to work on reaction yield classification of cross-coupling 269 

reactions, by pretraining a machine learning model on reactions with different nucleophiles 270 

[67]. 271 

The reuse of literature data within active machine learning applications will further enhance the 272 

performance of these tools. The first active transfer learning approaches are being developed 273 
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within chemical engineering, but a further development on algorithms is crucial for making it 274 

applicable within all domains of chemical engineering. 275 

4.2. Synthesizability 276 

Active machine learning determines the optimal query for the either optimization or modeling 277 

purposes. However, for certain problems it is not evident that these queries are executable. For 278 

instance in catalyst or molecule design, novel compounds are proposed to synthesize and test 279 

on the property of interest. Here, the representation of the catalyst or molecule is crucial for the 280 

synthesizability of the queries. Synthesizability is defined as the feasibility of the proposed 281 

queries, referring to whether the proposed catalysts or molecules can be synthesized. Often, a 282 

simple representation of a catalyst is a vector containing the catalyst composition [50, 68]. This 283 

guarantees the synthesizability of the catalyst but limits the design space explored by the active 284 

machine learning algorithm as only the composition is varied but no structural or geometrical 285 

properties are considered. Ideally, one considers the complete catalyst space for every problem 286 

by for example considering the complete 3D-geometry as a representation for the catalyst site 287 

or molecule. However, not every imaginable catalyst or molecule 3D-geometry can be 288 

synthesizable, which makes that there is trade-off between the magnitude of the design space, 289 

so-called creativity, and synthesizability.  290 

As illustrated by the problem of synthesizability this essentially boils down to a problem of 291 

representation on which constraints are added. One intuitive approach is to use the synthesis 292 

process of the catalyst or molecule as the machine learning representation. A vector containing 293 

the catalyst composition, calcination temperature and time, presence of ion exchange or 294 

impregnation, can be used to represent a catalyst. In this way, the synthesizability of the queries 295 

is guaranteed, as every proposed recipe is executable. However, this representation does not 296 
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necessarily ensure an easy mapping to the property of interest, which might require an increased 297 

amount of data to model this relation. 298 

Next to this intuitive approach, learned machine learning representations allow to create a 299 

continuous representation which ensures the validity of the proposed queries [69, 70]. By 300 

training recently developed methodologies such as variational auto-encoders or generative 301 

adversarial neural networks on a set of synthesizable molecules or catalysts, a learned machine 302 

learning representation, a so-called latent space, can be developed which guarantees the 303 

synthesizability of the proposed queries [69, 71, 72]. Upon this representation additional 304 

constraints on the catalyst or molecule can be enforced according to the application [26].  305 

Finding an adequate representation is always important in machine learning problems. 306 

Definitely with active machine learning, this representation is essential to harmonize both 307 

synthesizability and creativity.  308 

5. Conclusions and Perspectives 309 

Active machine learning is excellently suited for chemical engineering researchers to speed up 310 

experimental campaigns ranging from molecule and catalyst design, up to reaction and reactor 311 

design. However, among experimental researchers active machine learning is less known and 312 

many active machine learning applications are not user-friendly today. A better collaboration 313 

between machine learning experts and chemical engineers can overcome these barriers. This 314 

interaction also helps to tune active machine learning algorithms depending on the applied 315 

(automated) experimental units and procedures, which improves the performance of these 316 

algorithms. To fully profit from the creativity of active machine learning, improvements on the 317 

machine learning methods related to data transfer and synthesizability are still required. By 318 

harmonizing synthesizability and creativity, active machine learning is bound to make 319 
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significant advances in the fields of molecule and catalyst synthesis. The recent promising 320 

breakthroughs will allow active machine learning to become an essential tool for the chemical 321 

engineer and further facilitate autonomous and efficient scientific discoveries which will 322 

contribute to a more sustainable chemical industry in the future.  323 
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