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Abstract

We present the design and implementation of libkrylov, an open-source library for
solving matrix-free eigenvalue, linear, and shifted linear equations using Krylov sub-
space methods. The primary objectives of libkrylov are flexible API design and mod-
ular structure, which enables integration with specialized matrix–vector evaluation
“engines”. Libkrylov features pluggable preconditioning, orthonormalization, and tun-
able convergence control. Diagonal (conjugate gradient, CG), Davidson, and Jacobi–
Davidson preconditioners are available, along with orthonormal and nonorthonormal
(nKs) schemes. All functionality of libkrylov is exposed via Fortran and C application
programming interfaces (APIs). We illustrate the performance of libkrylov for eigen-
value calculations arising in the time-dependent density functional theory (TDDFT)
in the Tamm–Dancoff approximation (TDA) and discuss the convergence behavior as
a function of preconditioning and orthonormalization methods.
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Libkrylov implements iterative Krylov subspace algorithms for eigenvalue, linear, and shifted
linear equations within an unified flexible application programming interface (API). The
modular structure of libkrylov empowers the users of the library to find the algorithmic
features such as preconditioning (conjugate gradient, Davidson, and Jacobi–Davidson) and
orthonormalization (orthonormal, nonorthonormal) that best suit their specific use case.
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INTRODUCTION

Linear equations and eigenvalue problems with large dimensionality, on the order of > 106 de-

grees of freedom, and no special structure or sparsity arise in many scientific and engineering

applications, for example, quantum chemical and materials science simulations, partial differ-

ential equation solvers, signal reconstruction, and machine learning applications.1–3 Density

functional calculations of light-induced processes in organic and semiconductor nanostruc-

tures have pushed the limit of quantum chemical studies to systems with 1000 or more atoms.

Molecular and material property calculations in these systems amount to solving eigenvalue

problems of dimension one billion or larger.4,5 In many critical applications, the coefficient

matrices are extremely large, dense, and full rank (due to strong coupling/interaction), pre-

cluding the use of specialized techniques such as sparse solvers or factorizations.

Matrix-free iterative methods eliminate the bottleneck of explicitly computing and stor-

ing extremely large and dense coefficient matrices; instead, products of the coefficient matrix

with trial vectors are computed “on the fly”. These solvers are based on Krylov subspace

methods and solve the linear problems such as eigenvalue problems, linear equations, or

related problems involving the coefficient matrix A ∈ Rn×n or ∈ Cn×n on the sequence of

Krylov subspaces K(k) of increasing dimension qk, k = 1, 2, . . ..6–12 For many linear problems

the iteration converges after K iterations with qK � n and is very economic in its CPU and

memory usage even in the case of very large matrices A. The key component of Krylov sub-

space algorithms is the matrix–vector multiplication “engine”, which is capable of efficiently

computing Av, given a vector v. These engines are highly application-dependent and often

exploit special intermediate representations and/or domain-specific physical properties.13–22

Matrix-free methods are particularly attractive on massively parallel computing architec-

tures, where (re)computing matrix elements is preferable to the storage and communication

of the full coefficient matrix A.

While the theory and algorithms of Krylov subspace methods have a wealth of litera-

ture6–12,23,24, the corresponding matrix-free implementations are scattered over many soft-

ware packages and are often narrowly tailored to the solution of a specific problem. That

the central object of these algorithms, the coefficient matrix A, is not available in an explicit
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form complicates the decoupling of the domain-specific code components from the linear al-

gebra algorithm and narrows the focus of existing implementations. The seminal ARPACK

library25 has not seen significant development in many years. The open-source BLOPEX

library, which is popular in machine learning and other applications, can solve ordinary and

generalized eigenvalue problems using the LOBPCG algorithm.26,27 The SLEPc library for

sparse matrix computations can accept matrix–vector operations28,29 instead of explicit ma-

trices. The PETSc library also provides this functionality in the context of solving large

partial differential equations.30

The second complicating factor is that the speed of convergence of iterative methods

depends on specific properties of the coefficient matrix, in particular diagonal dominance

and the distribution of its eigenvalues. Suitably chosen preconditioning techniques can thus

drastically improve convergence of Krylov subspace methods by taking advantage of these

properties. In addition, the non-orthonormal Krylov subspace (nKs) approach5 can exploit

the decreasing norms of the vectors added to Krylov subspaces as the iteration progresses

to further reduce the computational cost of evaluating matrix–vector products. A related

“balancing” approach for the Krylov subspace methods has been proposed.31 Because the

performance characteristics of Krylov subspace methods are structure-dependent, it is de-

sirable to provide the user code with the flexibility to choose the preconditioning and or-

thonormalization methods best suited for the specific numerical problem.

In this contribution, we describe libkrylov 32, an extensible software library for orthogo-

nal and non-orthogonal matrix-free Krylov subspace methods, which features flexible APIs

and enables pluggable preconditioning, orthonormalization, and tunable convergence con-

trol. Libkrylov is designed as a framework, which inverts the control flow compared to that

of typical libraries. While library functions are designed to be called from a driver proce-

dure, the libkrylov solver function is responsible for executing the control flow, calling the

user-provided matrix–vector product function in each iteration via a fixed application pro-

gramming interface (API). This approach ensures the necessary flexibility of the libkrylov

components without compromising the efficiency of the implementation, while the user code

is only responsible for implementing a matrix–vector multiplication function and can focus

on domain-specific optimizations. The libkrylov library is implemented in portable For-

4



tran 2003/C99 and aims to be an off-the-shelf library component for large-scale scientific

and engineering applications. To this end, libkrylov is designed with maximal modularity,

structured Fortran and C interfaces, and integration with platform-optimized BLAS33–35 and

LAPACK36 linear algebra primitives in mind. Libkrylov is distributed under the open source

3-clause BSD license.

The version 1.1.0 of libkrylov treats symmetric eigenvalue problems, linear equations, and

shifted linear equations. Diagonal (conjugate-gradient, CG) preconditioning, Davidson pre-

conditioner37–39, and Jacobi–Davidson preconditioning due to Sleijpen and van der Vorst40,41

can be selected for convergence acceleration. Both the most commonly used orthonormal

Krylov subspace algorithm and the computationally efficient nKs approach of Furche and

co-workers5 are available. Moreover, libkrylov supports blocked algorithms for simultane-

ous iteration of multiple equations with a shared coefficient matrix for linear problems with

block-diagonal structure. A posteriori error bounds and dynamic restart capability cover

the most common application scenarios.

This paper describes the design strategy of libkrylov and outlines its approach to solving

a wide range of matrix-free linear problems via a common function-based interface. The

structure of the paper is as follows. We first introduce the notation and give a brief overview

of Krylov subspace algorithms implemented in libkrylov. After that, we describe the design

and implementation of libkrylov. Finally, using an illustrative set of linear problems related

to molecular property calculations, we review the suite of preconditioning and orthonormal-

ization techniques available in libkrylov and give examples of their convergence.

KRYLOV SUBSPACE METHODS

Background and Notation

In this section we establish our notation for Krylov subspace methods for eigenvalue prob-

lems, linear equations, and shifted linear equations for symmetric coefficient matrices A ∈

Rn×n or Hermitian matrices in Cn×n. Since many applications seek p ≥ 1 simultaneous

solutions involving the same coefficient matrix A, for example, the p lowest eigenvalues,
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right-hand sides (RHS) and/or shifts, we present the Krylov subspace algorithms in their

blocked form and use matrix notation throughout. Table 1 gives an overview of the linear

problems treated here. X denotes the n× p matrix having solution vectors as columns. For

eigenvalue problems, X is the matrix of eigenvectors. The corresponding eigenvalues are

represented by the diagonal matrix Ω = diag(Ω1, . . . ,Ωp). The RHS of the (shifted) linear

equations are combined into the n×p matrix P. Shifted linear equations additionally contain

a matrix of diagonal shifts ω = diag(ω1, . . . , ωp). These equations can be considered as the

diagonal variant of the Sylvester equations.42

In Krylov subspace methods, the k-th iterates (k ≥ 1) are written as vectors in the

Krylov subspace K(k) of dimension qk,

X(k) = V(k)x(k), (1)

where V(k) is the matrix of basis vectors of K(k) and x(k) are the expansion coefficients. The

residual (error) vectors of the k-th iterates are collected in the matrix R(k), see Table 1 for

definitions. The k-th iterates are chosen according to the Ritz–Galerkin condition, that is,

the residual vectors are required to be orthogonal to the Krylov subspace K(k),

V(k)†R(k) = 0. (2)

Note that superscript † indicates the matrix transpose for real matrices and the Hermitian

conjugate in the complex case. In this case, X(k) are the Ritz vectors, and the corresponding

expansion coefficients x(k) follow from solving the projected linear problem on K(k), as shown

in Table 1. The nKs method5 uses a nonorthonormal subspace basis, in which case the Gram

(overlap) matrix of the subspace basis is given by

s(k) = V(k)†V(k) (3)

The Rayleigh matrix

a(k) = V(k)†AV(k) (4)

is the projection of the matrix A onto the Krylov subspace. In eigenvalue problems, the

diagonal matrix Ω(k) contains the k-th eigenvalue iterates. The projection of the RHS

matrix P of (shifted) linear equations is denoted as

p(k) = V(k)†P (5)
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The columns of the residual matrix R(k) are used to construct the basis of the subsequent

Krylov subspace K(k+1) of dimension qk+1 = qk + p. The basic Krylov subspace iteration

in libkrylov (no preconditioner) adds the residuals to the Krylov subspace basis, similar to

Arnoldi iteration.43 However, most applications apply a suitably chosen invertible n × n

matrix preconditioning matrix K(k) to the residuals,

R̃(k) =
(
K(k)

)−1
R(k) , (6)

prior to expanding the Krylov subspace. Preconditioning techniques are crucial to the per-

formance of Krylov subspace methods for linear equations.6,11,44–47 In eigenvalue problems,

Davidson37,39 and Jacobi–Davidson (JD) preconditioning40,41 are widely used convergence

acceleration techniques.

Krylov Subspace Algorithm

Given the q1 × n matrix of starting vectors V(1) and matrix–vector multiplication function

f(V) = AV, the Krylov subspace algorithm takes the steps outlined in Fig. 1. Note that

matrix–vector products and other quantities involving the columns V(k) can be reused from

previous iterations so that f(V) is only evaluated for new vectors. The step denoted by (*)

is only needed for nonorthonormal subspace bases, see below. In the orthonormal case, the

modified Gram–Schmidt (MGS) method42 is applied in the step (‡). The projection (†) is

performed for (shifted) linear equations only.

Preconditioning

The convergence of the basic Krylov subspace iteration is often unsatisfactory for practi-

cal calculations. The choice of the preconditioning matrix K can significantly affect the

speed of convergence.6–8,10,11,23,24 The diagonal approximation D = diag(A11, . . . , Ann) to

the coefficient matrix,

K
(k)
CG = D , (7)
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is often used in the preconditioned CG algorithm.6,7,11 For eigenvalue problems, the Davidson

algorithm corresponds to choosing the preconditioner as

K
(k)
D = D−Ω(k) , (8)

where Ω(k) are the k-th eigenvalue iterates.37,39 For shifted linear equations, the equivalent

of the Davidson preconditioner includes the diagonal shifts ω instead of eigenvalues.

The JD algorithm ensures by projection that the preconditioned residuals are orthogonal

to the solution,40,41

K
(k)
JD = (1− Π(k))K

(k)
D (1− Π(k)) , (9)

where Π(k) is the projector onto the set of k-th iterates. By imposing orthogonality con-

straints, the preconditioned residuals are computed as

R̃(k) =
(
K

(k)
D

)−1
R(k) − ε(k)

(
K

(k)
D

)−1
X(k) with ε(k) =

X(k)†
(
K

(k)
D

)−1
R(k)

X(k)†
(
K

(k)
D

)−1
X(k)

. (10)

In the case of p > 1, two variants of the JD preconditioner can be formulated. Each residual

vector can be preconditioned by projecting out only the corresponding solution (JD variant

1) or all solutions (JD variant 2).

Nonorthonormal Subspace Bases

The nKs method takes advantage of the fact that the residual norms R(k) usually decrease as

the approximate solutions X(k) converge to the true solution X. If the function f(V) = AV

can be made to execute more efficiently for small ‖V‖, for example, by prescreening the

matrix elements of A, then the cost of each iteration may be reduced by up to 80%5. In

order to preserve the decreasing residual norms, the orthonormalization step (‡) is omitted

in the nKs method, and instead the projected equations are solved in their generalized form

with a Gram matrix s(k) 6= 1 (Table 1).

The projected equations are solved in two steps. First, the equation is scaled by the

diagonal d of s(k),

d = diag(s
(k)
11 , . . . , s

(k)
qkqk

) (11)
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to reduce the condition number of s. Using the Cholesky decomposition of the scaled Gram

matrix

LL† = d−1/2s(k)d−1/2 (12)

the following substitutions can be made

ã(k) = L−1d−1/2a(k)d−1/2(L−1)†,

x̃(k) = L†d1/2x(k),

p̃(k) = L−1d−1/2p(k).

(13)

The resulting linear problem can be then solved using standard methods. For more details,

see Ref.5.

If p > 1 equations are simultaneously iterated, the (preconditioned) residuals correspond-

ing to different solutions may become linearly dependent. To improve the condition of the

Gram matrix while maintaining the advantage of decreasing residual norms of the nKs ap-

proach, we test a variant of the nKs approach. In this semiorthonormal variant, instead

of the full orthonormalization (‡) in Fig. 1, we limit ourselves to enforcing orthogonality

between the columns of R̃(k) using a singular-value decomposition (SVD),

u(k)†σ(k)v(k) =
(
K(k)

)−1
R(k) ,

R̃(k) = σ(k)v(k) .
(14)

For p = 1, the semiorthonormal variant is identical to the nKs method.5

Error Bounds and Convergence of the Algorithm

The norm of the residual matrix R(k) provides a strict upper bound for the error of the

approximate eigenvalues in the k-th iteration42,

|Ωi − Ω
(k)
i | ≤

√
2‖R(k)‖2 for 1 ≤ i ≤ qk , (15)

where the 2-norm of the residual matrix is used. Because

‖R(k)‖2 ≤ ‖R(k)‖F ≤ p r(k)max with r(k)max = max1≤i≤p|R(k)
i | , (16)

the maximum residual norm yields a convenient convergence criterion, r
(k)
max ≤ τ , where τ is

the convergence threshold.
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An alternative convergence measure for Krylov subspace algorithms monitors the change

in the corresponding Lagrangian functional F . The latter is a quadratic form whose station-

ary points are the solutions of the linear problem.5 For eigenvalue problems, the Lagrangian

takes the form

F [X,Ω] =
〈
X†AX−Ω

(
X†X− 1

)〉
, (17)

where 〈·〉 denotes the trace operation. The minimum of F [X,Ω] over all n × p matrices

is given by the matrix containing the lowest p eigenvectors as columns. The Lagrangian

functional for (shifted) linear equations is given by

F [X] =
〈
X†AX− ω

(
X†X− 1

)
−X†P−P†X

〉
, (18)

in which linear equation is obtained by settings the shifts to zero, ω = 0. If all shifts are

smaller than lowest eigenvalue of A, the quadratic form is convex, and the stationary point

is a minimum.

LIBKRYLOV DESIGN AND IMPLEMENTATION

The principal objective of libkrylov is serving as a flexible computational framework, which

supports a wide variety of matrix-free linear problems including eigenvalue problems, lin-

ear equations, and shifted linear equations via a simple, uniform API. The user should be

empowered to evaluate different preconditioning and orthonormalization techniques and ex-

periment with hybrid approaches as demanded by the application domain. Composability is

thus a central consideration. Since scientific software development is split between Fortran

and C/C++ ecosystems, libkrylov aims to be interoperable with both language families and

to provide for simple cross-platform build and installation procedures.

To make good on these promises, libkrylov uses a layered architecture, in which an object-

oriented core is wrapped in a function-based interface layer, which allows calling from both

Fortran and C/C++ (Fig. 2). The library is implemented in portable Fortran 2003 and takes

advantage of the runtime polymorphism capabilities afforded by this standard. However, in

the design of libkrylov, composition is preferred over inheritance as it induces looser coupling

between components and allows for better composability. The simplified class diagram of
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libkrylov is shown in Fig. 3. The central component of libkrylov is the space t abstract class,

which represents a general Krylov subspace and provides an interface to the steps of the iter-

ative algorithm of Fig. 1. The implementations of the Krylov subspace algorithm for the real

symmetric and complex Hermitian cases largely follow analogous paths. It would thus be

desirable to use generic programming techniques to abstract over the underlying arithmetic.

However, due to the lack of support for generic programming in Fortran 2003, one has to

emulate generic classes by polymorphic types such as real space t and complex space t

inheriting from space t. Such ad hoc polymorphism might seem an unappealing alternative

because it requires a significant amount of code duplication. But polymorphic classes also

offer several advantages as they make extensions to other cases easy, for example for struc-

tured problems. For simplicity, we focus on the function of the real space t class and its

components in the following. However, the details apply analogously to the complex case.

The generalization of the libkrylov code to different floating-point precisions (single, dou-

ble, and potentially quadruple) is implemented using code preprocessing, which is not part

of the Fortran 2003 standard but is nevertheless almost universally supported by Fortran

compilers.

The internal structure of the real space t class is designed to maximize the separation

of concerns between the equation type, orthonormalization, preconditioning, and conver-

gence control. Therefore, the real space t class contains polymorphic components for the

equation type, orthonormalizer, and preconditioner, see Fig. 3. The current implemen-

tation supports eigenvalue problems, linear equations, and shifted linear equations. The

orthonormal Krylov subspace method, the nKs method, and the semiorthonormal variant

are implemented via a common orthonormalizer interface. The preconditioning choices in-

clude the null preconditioner (no preconditioning, analogous to Arnoldi iteration), diagonal

preconditioning (CG preconditioner), Davidson and Jacobi–Davidson (JD) preconditioning

techniques.

This design of the real space t class allows the user to freely mix and match the com-

ponents of the Krylov subspace algorithm when constructing a new Krylov subspace object.

Flexible convergence control and transparent error handling enable experimentation to de-

termine the best setup depending on the properties of the specific problem. The convergence
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control object tracks the norm of the residual matrix, the condition number of the overlap

matrix (for a nonorthonormal basis), and the Lagrangian of the linear problem over the

course of the iterative process. Different combinations of convergence and restart criteria

can thus be specified by configuration, while sensible default settings are provided by the

library.

The requirement of interoperability with both Fortran and C/C++ code bases signifi-

cantly constrains the structure of the libkrylov interface. A simple function-based API was

chosen for user interaction from both Fortran and C/C++. All space t objects are created

as global module variables inside the libkrylov library and addressed using numerical indices.

Data exchange between user code and library code is done incrementally with separate func-

tion calls, for example, for starting vectors, RHS, or diagonal shifts. This approach has the

advantage that new equation types can be added without breaking backwards compatibility.

Examples of libkrylov calls from Fortran and C are shown in Figs. 4 and 5. For ease of in-

stallation, distribution, and testing, libkrylov uses the CMake cross-platform build system48.

The library is released under the open-source 3-clause BSD license.

NUMERICAL TESTS

The computational cost and the speed of convergence of Krylov subspace algorithms may

strongly depend on the numerical properties of the coefficient matrix A and the details of

the iterative procedure, in particular, on the choice of the preconditioning and orthonor-

malization methods. The evaluation of matrix–vector products in each iteration is the most

computationally expensive step, scaling as O(n2) for general dense matrices, as long as the

number of iterations K � n. A large literature is devoted to specialized matrix–vector

multiplication “engines”, which can achieve significant computational cost reductions per

iteration by implementing domain-specific intermediate representations, prescreening of ma-

trix elements of A, and other structure-dependent techniques.5,13–22,31 In this section, we

give selected examples of usage of libkrylov in calculations of molecular property calcula-

tions by time-dependent Hartree–Fock (TDHF)49,50 and time-dependent density functional

theory (TDDFT) methods.51–55 For illustration purposes, we limit ourselves to calculations
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of size n = 103..104, in which the properties of the coefficient matrix A can be computed in

advance and correlated with the performance characteristics of Krylov subspace algorithms.

We focus on the convergence behavior of the iterative algorithm as a function of the pre-

conditioning and orthonormalization techniques. We consider the structural characteristics

contributing to the efficiency of the Davidson preconditioner and related methods. The effi-

ciency of iterative algorithms for solving the linear and eigenvalue equations of TDHF and

TDDFT is compared in Ref.56.

Within the Tamm–Dancoff approximation (TDA)57–59 to TDDFT and the configuration

interaction singles (CIS) method,60 which may be considered the equivalent approximation

to TDHF, electronic excitation energies and intensities are obtained from the solutions of a

real symmetric eigenvalue equation,

AXi = ΩiXi , (19)

where the coefficient matrix A is positive definite. In most cases, only the i = 1, ..., p lowest

eigenvalues are of interest. Static polarizabilities in TDHF and TDDFT are computed by

solving the real symmetric linear equation

(A + B) (X + Y)α = (P + Q)α , (20)

for the Cartesian components α = x, y, z. The RHS vectors (P + Q)α contains matrix

elements of the dipole moment operator.

Table 2 summarizes the structural characteristics of the coefficient matrices and the

speed of convergence of eigenvalue problems for selected medium-size inorganic and organic

molecules with TDDFT using the PBE exchange–correlation functional61 and the resolution-

of-the-identity (RI-J) approximation for the Coulomb interaction.17,62 The basis sets used

in the calculations were of split-valence quality (def2-SVP) and triple-zeta valence qual-

ity (def2-TZVP),63 including diffuse augmentation (def2-SVPD).64 p = 1, 2, and 10 lowest

eigenvalues were determined simultaneously. The residual norm convergence criterion was

τ = 10−7. The coefficient matrices and RHS vectors were generated by a modified version

of the Turbomole65 escf program.

For each coefficient matrix A, selected numerical characteristics relevant to the conver-

gence and numerical stability of Krylov subspace algorithms are shown. Specifically, Table 2
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includes the inverse 2-norm condition number κ−12 ,

κ2 = ‖A‖2‖A−1‖2 , (21)

which serves as a general measure of numerical stability in operations involving A. The ratio

ρp of the highest requested eigenvalue and the next-higher eigenvalue controls the convergence

of iterative algorithms for the p lowest eigenvalues in the absence of preconditioning,9,66

ρp = Ωp+1/Ωp . (22)

To illustrate the performance of preconditioners based on the diagonal approximation to A,

Table 2 shows the average eigenvalue shift of the p lowest eigenvalues δΩp of A (in a.u.),

which characterizes the the closeness of the spectra of A and its diagonal approximation D,

δΩp =
1

p

p∑
i=1

minnj=1|Ωi − Ajj| . (23)

The average of the p lowest eigenvalues Ωp (in a.u.) is included in for comparison. Lastly, Ta-

ble 2 lists iteration counts K of the orthonormal Krylov subspace algorithm until convergence

(within maximum residual norm threshold τ = 10−7) using q0 = p starting vectors. Results

are given for the CG preconditioner, Davidson (D) preconditioner, and Jacobi–Davidson pre-

conditioner, variants 1 (JD1) and 2 (JD2). Without preconditioning, the Krylov subspace

algorithm does not convergence within 50 iterations and is thus of little use for the eigenvalue

problems considered here.

As Table 2 shows, the coefficient matrices are well-conditioned with κ−12 = 10−4..10−2,

even with relatively flexible and diffuse basis sets. The spectral radius of A increases slowly

with basis set size, as excitations at the high end of the spectrum are progressively added

due to the greater flexibility of the basis set. At the same time, the low end of the spec-

trum is relatively dense, as shown by the eigenvalue ratios ρp close to 1. In some cases,

for example, S8 (p = 10) and C20 (p = 2), the p-th lowest eigenvalue is part of a generate

set due to point group symmetry, which results in the eigenvalue ratio ρp being exactly 1.

The small eigenvalue gap explains the slow convergence in the absence of preconditioning.

However, the preconditioning techniques based on the matrix diagonal lead to fast conver-

gence in all cases. Notably, the Davidson preconditioner and the JD1 and JD2 variants
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of the Jacobi–Davidson preconditioner show nearly identical iteration counts and are supe-

rior to the CG preconditioning. Fig. 6 illustrates the convergence of the maximum residual

norms in trans-thioindigo for p = 1, 2, and 10 lowest excitations. As expected from the

small eigenvalue gap, the unpreconditioned Krylov subspace algorithm, which is equivalent

to Arnoldi iteration, converges very slowly, managing to only reduce the maximum residual

norm by only about one order of magnitude after 50 iterations. Diagonal (CG) precondi-

tioning achieves convergence in 34 iterations for the lowest eigenvalue, 27 iterations for the

p = 2 lowest eigenvalues, and 23 iterations for p = 10 lowest eigenvalues. With the David-

son and Jacobi–Davidson preconditioners, the algorithm converges in 23 iterations for the

lowest eigenvalue, 19 iterations for the p = 2 lowest eigenvalues, and 14 iterations for the

p = 10 lowest eigenvalue. Alternatively, the convergence of the Krylov subspace algorithm

can be assessed using the corresponding Lagrangian functional F , as shown in Fig. 7. Once

a sufficiently large subspace is constructed, the Lagrangian converges very rapidly towards

its stationary value F0.

Fig. 8 compares the convergence of the orthonormal Krylov subspace algorithm with

the nKs and the semiorthonormal methods for the lowest excitations in trans-thioindigo.

As discussed in detail in Ref. 5, the nonorthonormal algorithms do not degrade the speed

of convergence but are helpful in reducing the computational effort per iteration, if the

matrix–vector product function can exploit the reduction in vector norms during the iterative

process. In our tests, the semiorthonormal variant has not shown an improvement over the

nKs method.

The dependence of the speed of convergence on the dimension of the starting subspace

basis is illustrated in Fig. 9 for calculations in trans-thioindigo using the Davidson precon-

ditioner. Larger starting subspace produce faster convergence due to greater overlap with

the desired eigenvectors. With smaller starting subspaces, monotonic convergence is often

achieved only after one or more “jumps”, during which the maximum residual norm is in-

creasing. However, the final subspace dimension qK at convergence is not strongly dependent

on q0: In the example of Fig. 9, the lowest eigenvalue is converged for qK = 23, 24, 21, 25,

and 31 given starting subspace dimensions of q0 = 1, 2, 4, 8, 16, respectively. Similarly, in

the case of p = 2 lowest eigenvalues, the final subspace dimension is qK = 35, 32, 37, 39 for
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q0 = 2, 4, 8, 16, respectively. For p = 10 lowest eigenvalues, the final subspace dimension is

qK = 107, 104, 109 for q0 = 10, 12, and 16, respectively. The optimal choice of the starting

subspace dimension depends on the specifics of the matrix–vector product computation. If

the computational effort for simultaneously computing q matrix–vector products is propor-

tional to q, one should seek to minimize the final subspace dimension qK . In that case,

q0 = p + 2..4 appears to give the best results for the systems considered in this work. If

the computational effort is approximately independent of q, as is the case in integral-direct

TDDFT and TDHF implementations,52,54,55 one prefers to minimize the number of itera-

tions K and should choose a somewhat larger starting subspace. In this work, the choice

of q0 = p + 6..8 yields the smallest number of iterations. However, we should stress that

the choice of the initial subspace may be strongly system-dependent, and a preliminary

study is advisable for picking a suitable initial dimension. Testing different choices for the

initial dimension can also help detect potential “missing” eigenvectors in the presence of

symmetries.

The good performance of the Davidson method and related algorithm is frequently linked

to the diagonal dominance of the coefficient matrix A.39,40 The matrix A is called diagonally

dominant if the following condition is satisfied:42,67

|Aii| ≥ r′i for all i = 1..n, where r′i =
∑
j 6=i

|Aij| . (24)

The Gershgorin circle theorem relates the eigenvalues of A to the magnitude of the off-

diagonal elements,

|Ωi − Ajj| ≤ r′j for some j = 1..n , (25)

that is each eigenvalue of A lies within a circle in the complex plane with the center at Ajj

and the radius r′j for some j. Crucially, the radius of the Gershgorin circle is determined

by the off-diagonal elements. The eigenvalues of diagonally dominant matrices must thus be

close to some diagonal elements. The converse statement, does not need to hold, however,

as we will see shortly.

If we apply the definition of diagonal dominance to the smallest diagonal element of

the matrix A for trans-thioindigo, we observe that this matrix is far from being diagonally

dominant in the sense of Eq. (24). For example, the smallest diagonal value of the matrix A,
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is approximately 0.086 a.u., while the corresponding Gershgorin circle sweeps the sizeable

interval [−0.880, 1.052], indicating large off-diagonal elements by absolute value. While the

Gershgorin disks contain the eigenvalues of A, the corresponding bounds are too loose to

be useful. Similar observations can be made for the other coefficient matrices considered

here. However, Table 2 shows that despite not being diagonally dominant, the coefficient

matrices nevertheless show only relatively small deviations δΩp between the eigenvalues of

the coefficient matrix A and its diagonal values at the low end of the spectrum. With the

exception of C20, the eigenvalue shift δΩp is 20% or less of the average eigenvalue Ωp. The

small eigenvalue shift explains the superior performance of the Davidson method since the

preconditioning matrix K
(k)
D is near-singular and enhances the relevant eigenvector in a way

similar to inverse iteration.42

CONCLUSIONS

Libkrylov strives to unify both battle-tested and more recent algorithmic developments in on-

the-fly matrix computations within an extensible framework that enables simple integration

with user codes and easy experimentation. The scientific software developer does not need

to reinvent the wheel and can focus on the domain-specific aspects of implementing an

efficient matrix–vector product function. The parameters of the Krylov subspace algorithm,

such as orthonormalization and preconditioning methods, can be then optimized for the

specific application. As an open-source library, the continuing development of libkrylov is

driven by the requirements of its users. Due to its modular structure and a flexible API,

implementations of Krylov subspace algorithms for different equation types, intermediate

representations, and preconditioners can be incorporated in an efficient and backwards-

compatible manner. Extensions to new equation types, for example, Sylvester equations,

structured problems, and singular equations are currently in progress.
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14. J. Almlöf, K. Faegri, and K. Korsell, J. Comput. Chem. 3, 385 (1982).
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16. H. Weiss, R. Ahlrichs, and M. Häser, J. Chem. Phys. 99, 1262 (1993).
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Choose q1 ≥ p starting vectors V(1)

for k = 1, 2, . . .

W(k) = f(V(k)) = AV(k)

s(k) = V(k)†V(k) (*)

a(k) = V(k)†W(k)

p(k) = V(k)†P (†)

Compute x(k) from projected equation (see Table 1)

X(k) = V(k)x(k)

Compute residuals R(k) (see Table 1)

if max1≤i≤p|R(k)
i | ≤ τ then quit

R̃(k) = K(k)−1R(k)

Orthogonalize R̃(k) against V(k) (‡)

V(k+1) = [V(k) R̃(k)]

end

Figure (1) Schematic Krylov subspace iteration algorithm including preconditioning and

orthonormalization. f(V(k)) is the matrix–vector product evaluation by the user-supplied

function. The step denoted by (*) is only used in nonorthonormal Krylov subspace algorithm.

The orthonormal case includes the vector orthonormalization step (‡). The projection (†) is

performed for (shifted) linear equations only. τ is the convergence threshold.
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Function-based interface

Object-oriented core
Fortran 2003

Linear algebra primitives

Fortran programs C/C++ programs

BLAS LAPACK

Figure (2) Libkrylov architecture. Invocations are indicated by arrows, composition by

inclusion.
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space_t

convergence_t

real_space_t

real_equation_t

real_orthonormalizer_t

real_preconditioner_t

complex_space_t

complex_equation_t

complex_orthonormalizer_t

complex_preconditioner_t

real_eigenvalue_equation_t

real_shifted_linear_equation_t

real_linear_equation_t

real_null_preconditioner_t

real_jd_preconditioner_t

real_cg_preconditioner_t

real_davidson_preconditioner_t

real_semi_orthonormalizer_t

real_nks_orthonormalizer_t

real_ortho_orthonormalizer_t

Figure (3) Simplified class diagram of libkrylov components. Abstract classes are shown

in gray, concrete classes in white. Inheritance relationships are indicated by arrows.

26



program use_krylov

integer :: err, ind

real :: v(4, 1), s(4, 1), res

err = krylov_initialize()

ind = krylov_add_space(’r’, ’s’, ’e’, 4, 1, 1)

v = reshape([1.0, 0.0, 0.0, 0.0], [4, 1])

err = krylov_set_real_space_vectors(ind, 4, 1, v)

err = krylov_solve_real_equation(ind, multiply)

if (err /= 0) stop 1

err = krylov_get_real_space_solutions(ind, 4, 1, s)

res = krylov_get_space_last_residual_norm(ind)

err = krylov_finalize()

contains

function multiply(n, m, v, p)

integer :: n, m

real :: v(n, m), p(n, m), m(4, 4)

mat = reshape([5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, &

1.0, 1.0, 4.0, 2.0, 1.0, 1.0, 2.0, 4.0], [4, 4])

p = matmul(mat, v)

multiply = 0

end function multiply

end program use_krylov

Figure (4) Example of calling libkrylov from Fortran.
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#include "ckrylov.h"

int main() {

long err, ind;

double v[4] = {1.0, 0.0, 0.0, 0.0}, s[4], res;

err = ckrylov_initialize();

ind = ckrylov_add_space("r", 1, "s", 1, "e", 1, 4, 1, 1);

err = ckrylov_set_real_space_vectors(ind, 4, 1, v);

err = ckrylov_solve_real_equation(ind, multiply);

if (err != CKRYLOV_OK) exit(1);

err = ckrylov_get_real_space_solutions(ind, 1, s);

res = ckrylov_get_space_last_residual_norm(ind);

err = ckrylov_finalize();

exit(0);

}

int multiply(const long *n, const long *m, const double *v, double *p) {

double mat[] = {5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0,

1.0, 1.0, 4.0, 2.0, 1.0, 1.0, 2.0, 4.0};

for (long i = 0; i < *n * *m; ++i) p[i] = 0.0

for (long i = 0; i < *m; ++i) {

for (long j = 0; i < *n; ++j) {

for (long k = 0; k < *n; ++k) {

p[k + *m * i] += mat[k + *n * j] * v[j + *n * i];

}

}

}

return CKRYLOV_OK;

}

Figure (5) Example of calling libkrylov from C.
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Figure (6) Convergence of the maximum residual norms of the orthonormal Krylov sub-

space algorithm for calculations of the p lowest electronic excitations of trans-thioindigo

without preconditioning (None) and with diagonal (conjugate gradient, CG), Davidson (D),

and Jacobi–Davidson preconditioner, variant 1 (JD1). (a) p = 1, (b) p = 2, (c) p = 10.

q0 = p basis vectors are used as starting subspace basis.
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Figure (7) Convergence of the Lagrangian functional F for the p lowest electronic ex-

citations of trans-thioindigo without preconditioning (None) and with diagonal (conjugate

gradient, CG), Davidson (D), and Jacobi–Davidson preconditioner, variant 1 (JD1). (a)

p = 1, (b) p = 2, (c) p = 10. F0 is the stationary value. q0 = p basis vectors are used as

starting subspace basis.
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Figure (8) Convergence of the maximum residual norms of the Krylov subspace algorithm

for the p lowest electronic excitations in trans-thioindigo with Davidson preconditioner us-

ing orthonormal algorithm (Ortho), nonorthonormal Krylov subspace method (nKs), and

semiorthonormal method (Semi). (a) p = 1, (b) p = 2, (c) p = 10. q0 = p basis vectors are

used as starting subspace basis.
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Figure (9) Convergence of the maximum residual norms of the orthonormal Krylov sub-

space algorithm for the p lowest electronic excitations in trans-thioindigo with different start-

ing subspace basis dimensions q0 using Davidson preconditioner. (a) p = 1, q0 = 1, 2, 4, 8, 16,

(b) p = 2, q0 = 2, 4, 8, 16, (c) p = 10, q0 = 10, 12, 16.
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Equation Projected Equation Residuals

Eigenvalue problem AX = ΩX a(k)x(k) = s(k)x(k)Ω(k) R(k) = AX(k) −X(k)Ω(k)

X†X = 1 x(k)†s(k)x(k) = 1

Linear equation AX = P a(k)x(k) = p(k) R(k) = AX(k) −P

Shifted linear equation AX−Xω = P a(k)x(k) − s(k)x(k)ω = p(k) R(k) = AX(k) −X(k)ω −P

Table (1) Linear problems solved by libkrylov, the corresponding projected equations on

Krylov subspace K(k), and definitions of the residual matrices. See text for definitions.

Compound Basis n p Coefficient matrix A Iteration count K

κ−12 ρp δΩp Ωp CG D JD1 JD2

Na8 SVP 3344 10 1.13 · 10−3 1.060 0.012 0.053 13 9 9 9

TZVP 9328 10 9.85 · 10−4 1.040 0.012 0.051 15 11 11 11

(H2O)6 SVP 3420 10 1.01 · 10−2 1.005 0.002 0.261 22 10 10 10

SVPD 6120 10 9.32 · 10−3 1.009 0.002 0.243 20 8 8 8

TZVP 6840 10 3.52 · 10−3 1.018 0.001 0.254 21 8 8 8

S8 SVP 5120 10 1.41 · 10−3 1.000 0.006 0.133 38 19 19 19

SVPD 9728 10 1.37 · 10−3 1.000 0.006 0.129 38 18 18 18

TZVP 14848 10 1.16 · 10−3 1.000 0.006 0.131 41 21 21 21

B10C2H12 SVP 7067 10 1.97 · 10−2 1.009 0.006 0.265 34 16 15 15

SVPD 11063 10 1.95 · 10−2 1.005 0.004 0.263 29 14 14 14

TZVP 15059 10 7.68 · 10−3 1.008 0.004 0.263 29 13 13 13

Ag6 SVP 7353 10 1.58 · 10−3 1.024 0.012 0.116 34 14 14 14

TZVP 10431 10 7.89 · 10−4 1.024 0.012 0.115 33 14 17 18

C20 SVP 13200 1 2.83 · 10−3 1.027 0.009 0.037 15 12 12 12

2 1.000 0.010 0.037 11 11 11 11

10 1.052 0.021 0.076 36 23 24 24
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Compound Basis n p Coefficient matrix A Iteration count K

κ−12 ρp δΩp Ωp CG D JD1 JD2

Coumarin SVP 5548 10 5.86 · 10−3 1.033 0.022 0.187 22 14 14 14

SVPD 8968 10 6.02 · 10−3 1.005 0.019 0.185 23 16 16 16

TZVP 12882 10 2.12 · 10−3 1.043 0.022 0.185 21 13 14 14

DMABN SVP 6435 10 8.65 · 10−3 1.003 0.012 0.206 24 13 13 13

SVPD 10179 10 5.41 · 10−3 1.042 0.011 0.162 25 14 14 14

TZVP 14118 10 3.14 · 10−3 1.020 0.012 0.199 25 14 14 14

YP SVP 7095 10 5.67 · 10−3 1.021 0.015 0.179 19 11 11 11

SVPD 11610 10 5.79 · 10−3 1.010 0.013 0.175 21 12 12 12

DPA SVP 8640 10 8.15 · 10−3 1.004 0.027 0.183 22 12 12 12

Anthracene SVP 9353 10 8.63 · 10−3 1.009 0.023 0.172 32 16 16 16

SVPD 14711 10 8.46 · 10−3 1.004 0.018 0.169 31 16 15 15

Luciferin SVP 16416 10 1.32 · 10−3 1.031 0.013 0.148 22 12 12 12

cis-Thioindigo SVP 19152 10 7.27 · 10−4 1.002 0.011 0.111 25 15 15 15

trans-Thioindigo SVP 19152 1 8.99 · 10−4 1.040 0.004 0.082 34 23 23 23

2 1.011 0.005 0.084 27 19 19 19

10 1.024 0.013 0.112 23 14 14 14

Crystal violet SVP 44200 10 5.31 · 10−3 1.045 0.023 0.123 22 15 14 14

Table (2) Characteristics of the coefficient matrix A (of size n, in a.u.) and iteration

counts K of orthonormal Krylov subspace algorithms for computing the p lowest electronic

excitations using TDDFT in the TDA approximation with diagonal (conjugate gradient,

CG), Davidson (D), and Jacobi–Davidson preconditioners, variants 1 (JD1) and 2 (JD2).

κ−12 is the inverse 2-norm condition number of A, δΩp is the average eigenvalue shift, and

ρp is the (p+ 1)/p eigenvalue ratio. The number of starting vectors was q0 = p, convergence

threshold was τ = 10−7. See text for details.

34


