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Abstract:

Dealing with a small Experimental dataset using a generative model produces a model with
underfitting and reduces its ability to generate a new valid compound. Even in the presence of
free available chemical databases SMILES string has to use a complex and computationally
intensive  model  to  solve  validation  problems.  SELFIES solve  all  validation problems but
further activity optimization is  needed with the  absence of  an app that  records molecules
generated. In this study, the author uses a predictive model to provide a dataset by a virtual
screen of 3 million compounds from a chemical online database in addition to experimental
active dataset. Data feed to a different model of one layer Recurrent Neural Network model
using both SELFIES and SMILES for about 2-4 epochs. Structure-based drug design was
used  and  Src  Kinase  as  a  target  to  validate  both  the  predictive  model  and  compounds
produced  by  Recurrent  Neural  Network  and  further  filtration  happens  using  Molecular
Dynamics  Simulation.  SELFIES outperform SMILES in  producing  valid  molecules  in  all
types of Recurrent Neural Network simple structures. Recurrent Neural Network can produce
active compounds using the GRU layer without any activity optimization from just 4 runs 100
molecules  each.  The  novelty  of  the  result  can  be  compared  to  the  result  coming  from
predictive  model  virtual  screen  data.  Recurrent  Neural  Network  can  produce  novel
compounds with key interaction residue with the target protein. All Predictive Models were
deployed and ExplainableAI is used to guide generated molecules. MERN stack app SaveMol
is used to save molecules produced with substructure research ability and apps links provide
here(https://github.com/phalem/Src).

Introduction :

For about the last two decades kinase gain popularity as a drug target[1]. It has an important 
role in the cell vitality process, differentiation, and survival[2]. It was named due to its ability 
to catalyze the phosphorylation reaction that the phosphoryl group transferred from ATP (in 
the presence of Divalent cation such as ) to the protein substrate. Imatinib discovery 
opens the door to a kinase-selective target [3]. 518 total human genes were identified by 
Manning et al. including 478 typical and 40 atypical protein kinase genesl[2]. Src is a non-
receptor protein-tyrosine kinase that associates with oncogenesis the result that came after the 
Rous sarcoma virus was discovered in 1911[4]. The binding of ASP407 to  has a role in 
the coordinates of the - and -Phosphates group of ATP. After binding the rest of the loop 
becomes in an extended conformation and position away from the catalytic center and thus C-
terminal(in activation segment) portion provides a place for protein substrate binding. 
ASP407 is part of DFG[5] that is crucial in the activation of what is called DFG-in and then 
get out and called DFG-out. Other residues make important interactions like the Salt bridge 
between Lys298 and Glu313, and some interaction in the hinge residue Glu342 has been 
reported[6]. 
Drug discovery is a very long and cost-effective journey with a long feedback loop and a 
multi-parameter optimization challenge[7]. The process can be accelerated using Artificial 
Intelligence and its subsets like Machine learning, Deep learning, and Reinforcement learning 
[8]. It is used in some aspects like QSAR/QSPR and multi-parameter optimization [8], [9].
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Supervise machine learning is a type of machine learning that works under supervise or on 
label data. Ensemble model was developed to apply machine learning universally like: 
(1)Random forest (RF)[10] that takes the average over the t predictions given [10], [11] 
(2)Support vector machines (SVM) [12], [13] map data into higher dimensions. (3)An artificial 
Neural network(ANN)[14] is a layer of neurons that imitates the way synapses work in the 
biological brain and work well in classification tasks.
Unsupervised machine learning(which can work on unlabeled data)like clustering was widely
used to solve the problem of compound classification[15] without any supervision like Butina
Clustering[16].  Butina  algorithm  can  identify  homogeneous  clusters  corresponding  to  a
threshold. It uses SMILES string and encoded as molecular fingerprints, then distance matrix
calculated  using  Tanimoto  coefficient  within  a  given  threshold.  Another  commonly  used
clustering algorithm is K-nearest neighbor(KNN)[15].
The defect of the machine to deal with non-number values lead to covert the structure feature 
of the molecules to molecular descriptors[17]. There are many widely used descriptors like 
Molecular ACCess System key(MACCS) which used a binary array to the presence or absence
of certain substructure[18] and extended connectivity fingerprints[19](ECFPs) or a modified 
version(morgan fingerprint). The later was used to encoding atom-centered radial 
substructures and the former used to encode predefined substructures respectively[18], [19] and
both descriptors are implemented in RDKit[20]. 
Deep learning is another branch of artificial intelligence that consists of artificial neural 
networks with several hidden processing layers[14], [21]. Neural Networks is a powerful 
method that can give us answers that don't rely on molecular descriptor[17] due to its ability to
perform extract features from non-feature data and deals with misleading data[22] that can be 
with low featuring. Deep learning uses some learning functions like stochastic gradient-descent
optimization[23] and techniques for hyperparameter optimization like early stopping provided
by Deep Learning library like TensorFlow[24]. Graph convolution network[55]: is a type of 
Neural network that deals with graphs and is used in property prediction[25]–[27]. It used a 
fixed convolution and an aggregation function that can aggregate information from 
neighbors. One famous implementation of the Graph convolution network is found in the 
deepchem library[28], [29].
Exploring chemical space is a very challenging process due to the increased amount of drug-
like search space.  It  is  estimate to be about   -   [30],  [31] which could be possibly
synthetically accessible[32]. AI can play a key role in exploring a chemical space through a
generative model. In the context of drug discovery molecular structure validity, drug-likeness
[33] and Synthetic accessibility(SAS) [34] are important parameters that have a computational
implementation like what found in RDKit and sascore.py scriptt[35].
SMILES(Simplified  Molecular  Input  Line  Entry  Systems)[36] string  is  a  molecular
representation that has many applications in chemoinformatics and de novo molecular design
[37]–[39].  Although  the  popularity  of  SMILES  string  and  its  usability,  it  comes  with
limitations like (1) Any small mistakes in the string(closed and open parenthesis) can give non-
valid molecules. (2) String can have more than one structure and thus give more than one
molecule structure. The ability to solve these problems can impact the performance of the
model  and give  more attention to learning SMILES string rule itself[40]–[42].  Some work
tends to make a new representation[43] like the development of DEEP SMILES by O'Boyle et
al.  The  final  trip  of  modification  reaches  its  goal  with  the  SELFIES  molecular
representation[44].
Modern deep learning approaches like GAN(Generated Adversarial Networks)[45], [46], 
Graph Convulation[33], [47] and VAE (Variational AutoEncoder) [48],[49]has been reported. 
One of the VAE examples that deals directly with the text is Aspuru-Guzik autoencoder[49] 
from the Aspuru-Guzik group. It takes an input of SMILES and converts it into space and 
recreates by sampling from the space. Molecule produced isn't valid and increasing training 
produces molecules with carbon atoms only and complex structure[49] in the opposite of 
Junction tree VAE has 100% molecule validity from a different group[50].



Recurrent Neural Network is a branch of deep learning with one layer for embedding[51] that 
deals with text data or sequence [52]. It has the ability to memorize the previous text and learn 
from the back forward which is a defect in other Deep learning architecture. The use of RNN 
in De novo drug discovery has taken its place[37] with the ability to generate valid and novel 
molecules  [48], [53]–[55]. The main challenge in this field is the ability to synthesize novel 
molecules[56]–[58]. It uses SMILES string[36] to produce molecules with some limitations like 
the need to start learning smiles representation syntax first, and molecular optimization that 
can be done using Reinforcement Learning [59]–[61] . Other architecture  LSTM[53] and 
GRU[62] was added in recent years due to problems of memorization and vanishing gradient 
problem. The difference between the two architectures is in using Tanh and sigmoid[57],[67] in
a different way and a state gate. LSTM[53] shows better at difficult sequences and GRU[63] is 
more simple and faster with some nearby results. The use of RNN with selfies[44] can give 
valid molecule due to RNN ability to generate text and since SELFIES was in a grammar any 
text can be valid. Other problems of using SELFIES are raised like the ability of RDKit[35] to
sanitize the molecules produced and unwanted properties that can give molecules with no drug
properties.
RNN has the ability to take a text character by character or an element by element if being in
one hot encoding or embedding vectors like  . RNN has a layer function
which is binary and takes input a character or which in our case a vector of the element  and
takes the output from the previous layer function or :
       (eq.1)
In RNN a hidden state which call h, which is all these intermediate outputs from the layer
function. It named hidden due to its connection with Markov State.

The initial hidden state here assuming to be ` , with ability to train. Here the same weights
and function  is used. Weights can be reused and thus the choice of parameter number does
not depend on the input length,  and this  also is needed to make RNN accommodate  the
arbitrary length of input sequences. With a note that length of   may be a function of the
input length, so if there is increase in length  in each step it will enable increase the length of
the output of .
RNN can also be used in an unsupervised manner like in generative models. Here the task is
to try making a prediction of new examples and thus try to learn  [37]. It can happen
through conditioning on a growing sequence, which can predict the sequence of one symbol
each time or whats called Autoregressive generation:

  (eq.2)
Model  output  the  probability  for  the  next  character  and  a  sequence  is  taken  as  input.
Conditional probability here will be the model by training the network :  

     
But there are a problem of  which solves by determining what the first character is, or
making one ourselves as a starting point, so it can be a marker for our starting point.
This training can happen by choosing a split point   and trying to train to those proceeding
sequence elements (that come from the arbitrary sequence ), like what happens in multi-class
classification, but here characters are the classes and the model give the probability of each
class through all classes, and loss is the cross entropy.

Figure 1:show photo of RNN and hidden state  and the 

intial hidden state  and the output 



Besides all these parameters, it was supposed to use RNN with SELFIES[44]. There is a need 
to sample from a logit probability or a Temperature to get the first token. This process can 
give the ability to control the size of a structure that can be produced and thus control some 
properties like Molecular Weight of the molecules generated. The minimum value of T 
(Temperature) gives (maximum sampling) and (according to logits sampling) or T=1 and 
(finally sampling randomly) or T = infinity. 
High throughput screening is a process to test a very large set of molecules that can reach 100k
compounds in the lab. This process increases drug discovery costs [64] with a limited amount 
of discovery. Computational tools come in handy to test and prioritize compounds library like
in Virtual screening that able to screen million to billion of compounds [65]. Tools used like 
Molecular Docking [66], Protein-ligand interaction and Molecular Dynamics simulation [67]. 
Molecular Docking is an important step in any drug discovery pipeline that use to determine 
how active molecules bind to a given protein target through sampling algorithms to 
understand ligand conformation inside the target binding pocket[68]. Protein-ligand 
interaction is an important point due to the role of important interactions like the Hydrogen 
bond that can change the protein binding affinities of the molecule and thus make it difficult 
for another compound to interact with the target[69]. PLIP[70] is a famous open source tool 
that gives a protein interaction insight and residue involved in the interaction with the python 
library[71] included. Molecular Dynamics simulation[67] is one of the simulations that 
simulate the protein-ligand interaction according to the newton law of motion. 
Parameterization like Force field describes what atomic forces contribute what govern and 
happen in Molecular Dynamics like in GROMOS[72],  CHARMM[73], AMBER[74], [75]. 
Libraries provide a forcefield like OpenMM Forcefields[76]. Molecular Dynamics(MD) gives 
a piece of detailed and accurate information about what happens inside the system and the 
reason behind the compound activity and augments the result of molecular docking[68]. 
OpenMM[77] provides MD simulation with GPU support and a python module that makes it 
easy to perform a molecular dynamics simulation with less time and cheap results.
Due to  the  black-box  character  of  the  machine  learning model  and the  unknown reason
behind taking prediction decisions  [78],  Explainable  Ai[79] comes in  handy to provide  an
interpretation  of  the  decision-making of  the  model[79],  [80].  Many methodologies  involve
ExplainableAI like uncertainty estimation[80] and feature attribution[81] and instance-based
molecular counterfactual explanation has been reported[82].
MERN stack: is using technologies based on Javascript[83] to make a full stack website. It
uses ReactJS framework[84] to make a Front-end part and ExpressJS framework[85] for the
backend part with NoSQL database MongoDB[86]  non-relational database. It can produce
easy and scalable applications and make it the choice of dealing with a scalable application
that is fast and reliable. In this study, the author combined all modern AI techniques to get
data that can be fed into a simple RNN model. A comparison between using SELFIES and
SMILES  was  performed  in  a  simple  and  less  computational  environment.  RNN  with
SELFIES produced valid compounds and in the case of GRU produce a valid and active
result. Models deployed as a real-time web app give the user ability to discover, virtual screen
and generate molecules using this approach. ExplainableAI(Explain) part in the app can guide
the  user  by  explaining  the  prediction  provided  by  the  model.  Generate  and  Explain  can
generate  molecules  and give  user  insight  into  further  modification  or  explanation  of  why
compounds generated were inactive. The author provides a place to store molecules that were
generated and retrieve it anytime with substructure searching. Ability to produce an active
compound that can inhibit  target protein with less  computational  effort open the door to
replicating  the  process  for  all  kinase.  Provides  an  easy  road  to  Reinforcement  Learning
without any concern about a valid part and the user's sight to optimize compound according
to that explanation.  The work makes a new way of model  validation ability by exploring
which residues can be reached by each model. This is an initial step to the discovery of a novel
drug for Src kinase and further investigation of Synthetic accessibility needs with the shortage
of using a predictive synthetic model with no cost. Exploring the chemical space of the drug-



like molecules can be an easy task with the hope to make a KLIFSAI that makes the same
iterative approach to all protein kinases.

Result and Discussion:

1. Recurrent Neural Network:
1.1.Model evaluation: figure(2) show the logit probability of the different models including
GRU, LSTM(4 epochs training for both), Bidirectional LSTM(2 epochs training).Same model
used for both SELFIES and SMILES string model(All mode have an embedding layer and
RNN layer). The model used for further investigation is model (1. a) which uses a layer of
GRU and SELFIES as a language. GRU SELFIES was the only model that produce drug-
like molecules. SMILES token is 45 due to the exchange of 2 characters atoms with one with
the ability to reverse after evaluation.

(1.a)RNN SELFIES GRU layer logit
(1.b)RNN SELFIES LSTM layer logit (1.c)RNN  SELFIES  Bidirectional  LSTM

layer logit

(2.a)RNN SMILES GRU layer logit (2.b)RNN SMILES LSTM layer logit (2.c)RNN  SMILES  Bidirectional  LSTM
layer logit

Figure(2) show logit odds of different simple one layer RNN (a,b,c) using both SELFIES(1) and SMILES(2), Novel compounds comes from 
the layer of figure (1.a) GRU layer that used SELFIES

1.2.Model  scoring:  table(1.a,b)  show  each  distribution  for  different  models  structure  and
corresponding Temperature used, with no details about SMILES as no valid molecules were
generated. SMILES models found in supplementary. Drug QED mean, drug score range, SAS
score, docking range and protein interaction were used to evaluate model generation.
The result  shows that  in the  case of using GRU model  compound generated is  valid and
produces novel molecules. Other structure of RNN produce only valid compound with a very
long chain carbon or doesn't obey QED rule and consist of compounds that have atoms rather
than  carbon  like  S,  N,  I  and  Br.  Models  and  compounds  produced  are  found  in  the
supplementary  for  further  activity  investigation  and  reproducibility.  A  model  like  LSTM
comes  with just  4-5  compounds  of  small  molecules(4-5  from 400 compounds),  with some
temperature tunning. The amount of training is 4 epochs for (LSTM, GRU) and 2 epochs for
Bidirectional  LSTM.  In  SMILES string  all  model  with  the  same  structure  and  the  same
amount of training doesn't produce valid compound due to syntax error of SMILES produced
and less  computational  effort.  Study doesn't  consider  other  complex and computationally
intensive result, the study investigates a way that can be done on a normal computer or on free
cloud storage provided as the process can be produced easily for another target or reproduced
without a lack of cost. A model with GRU deployed on the web app and other models and
SMILES produced will be provided in the supplementary material with a notebook to load
and reuse to check the result.
In the case of GRU that uses SELFIES most compound produced from RNN needs to have a
multi-objective optimization, no molecules show an outlier, and most compounds are under
1000  molecular  weight.  The  multi-objective  approach  will  make  it  better,  however
temperature  tunning can produce a compound with less  molecular  weight and size.  Some
molecules  give  high docking score  but  it  appears  to have two molecules  together like  the
outlier that appears in the table(-13.4 score). The only way to recognize molecules like that is
by viewing in NGL view as it hasn’t a valid structure in the NGL. In the context of RNN



temperature number when increase temperature a simple molecule is produced and decreased
it gives a very complex and big structure.

Table(1.a): Evaluation of RNN models using SELFIES as a representation. Compounds generated resulting from 100 molecule 
generation for each model temperature. Count indicate a valid compound produced and QED and SAS range value. Docking and 
protein interaction result on protein(PDB_ID:7NG7) pocket center of (-17.300,-2.055,-5.938) and pocket size of (28.0,28.0,28.0).

Temperature Layer type Source Valid
Count

Docking 
affinity 
range[kcal/mol]

Docking affinity 
mean[kcal/mol]

QED
range

QED
mean

SAS
range

RNN T=0.15 GRU SELFEIS 99 -1.0 - -12.8 -7.89 0.02-0.82 0.36 1-7.32

RNN T=0.25 GRU SELFEIS 96 -1.0 - -13.4 -7.34 0.04-0.87 0.42 1.05-7.36

RNN T=0.5 GRU SELFEIS 82 -0.7 - -12 -6.8 0.07-0.88 0.4 1.49-8.47

RNN T=0.75 GRU SELFEIS 85 -2.0 - -10.7 -6.87 0.03-0.76 0.38 1.5-8.4

RNN T=0.15 LSTM SELFEIS 100 None None 0.02-0.54 0.13 1-7.8

RNN T=0.25 LSTM SELFEIS 99 None None 0.01-0.54 0.16 1.5-8.4

RNN T=0.5 LSTM SELFEIS 99 None None 0.00-0.55 0.19 1.6-8.4

RNN T=0.75 LSTM SELFEIS 99 None None 0.00-0.67 0.21 2.2-8.4

RNN T=0.15 Bidirectional 
LSTM

SELFEIS 99 None None 0.02-0.5 0.22 3.4-8.4

RNN T=0.25 Bidirectional 
LSTM

SELFEIS 97 None None 0.01-0.46 0.19 3.6-8.4

RNN T=0.5 Bidirectional 
LSTM

SELFEIS 100 None None 0.00-0.54 0.20 4-8.4

RNN T=0.75 Bidirectional 
LSTM

SELFEIS 99 None None 0.01-0.56 0.24 3.7-8.4

Table(1.b): show protein ligand for RNN GRU SELFIES model using PLIP with same pocket and protein id of table (1.a),
count of each temperature found in table(1.a).

 Temperature H_bond 
range

H_bond 
mean

hydrophobic 
range

hydrophobic 
mean

SALT_
BRIDGE 
range

PI_
STACKIG 
range

PI_
CATION 
range

HALOGEN
range

RNN GRU T=0.15 0-9 2 0-18 8 0-3 0-1 0-2 0

RNN GRU T=0.25 0-7 2 0-19 6 0-2 0-1 0-2 0-1

RNN GRU T=0.5 0-7 2 0-16 6 0-2 0-1 0-2 0-1

RNN GRU T=0.75 0-9 3 0-14 5 0-4 0-1 0-2 0-2

2-Predictive model:
2.1.Data  preparation:  the  author  finalized  8753  (3253  active  compounds  and  5500  inactive
compounds) and 4919 compounds with a pIC50 data point. The data was big but some compounds
are not included in the data because it is unspecific and lack of information about their mode of
action and concentration.
2.2.Model Evaluation:
2.2.1.Machine learning:  Figures  (3.  a,b)  shows the AUC(Area under  the ROC Curve)  of  using
MACCS key and morgan fingerprint respectively. Figure(3.c,d) shows evaluation of Random forest
regression for pIC50 predicted versus actual value using both MACCS key and morgan fingerprint
respectively. From data and figures and table(2.a,b) the author concludes that:
1. Using maccs or morgan fingerprint is not enough in the case of feature numbering, however
using a descriptor like modellar and Padel that can provide a large number of features was time-
consuming and affect model deployment and the rate of model prediction per molecule.
2. Using a combination of models that use the same fingerprint(like SVM, ANN, RF or RF_2,
ANN_2) gives  an Excellent  prediction and increases  the ability  of the model  to  get  the active
compound accurately. There is a lack of molecules that have a high prediction of activity according
to all models and thus making it difficult to provide evidence for all model and model combinations
(please, see HOW_TO_VS notebooks in the supplementary).  The problem of understanding the
result that comes from the model combination can be solved with a virtual screen of big amount of



data and evaluated using a structure-based approach and thus can provide evidence for all model
ability, however it has a computational cost.
2.2.2.Neural Networks: figure (3. e,f) shows the predicted versus actual value plot of using
MACCS key and Morgan fingerprint respectively. From data and figures and table(2.a,b) the
author concludes that Neural Networks have a great deal in the case of data, but it is not
compared when using a combination(RF, SVM, ANN) together or using GCN.
2.2.3.Graph Convolution Network: Figures (3. g,h) show classification model evaluation via
accuracy metrics using SMILES and canonical SMILES respectively. (3. i,j) show predicted
versus actual using GCN regression in both SMILES and canonical SMILES respectively.
Canonical  smiles  show  evidence  of  increasing  prediction  accuracy.  Using  SMILES  in
regression tasks makes a good prediction than canonical SMILES. The author doesn’t know
why this might happen is that due to randomness or due to a different amount of training in
each case( number of epochs is the same in each case).  Regardless, Canonical SMILES as
input show a better result than the use of SMILES alone.

a. Machine-Learing using MACCS Key b. Machine-Learing using Morgan Fingerprint

c. RF using MACCS d. RF using Morgan e. DNN MACCS f. DNN Morgan

g. GCN SMILES h. GCN Canonical i. GCN SMILES j. GCN Canonical

Figure 3: Show predictive model on bioactivity data (a,b) show Machine learning  classification task evaluation based on 
MACCS Key, Morgan Fingerprint respectively. (c,d) Random Forrest predictive pIC50 regression task based on MACCS 
Key, Morgan Fingerprint respectively.(e,f) Deep Neural Network(DNN) model pIC50 prediction model based on MACCS 
Key, Morgan Fingerprint respectively(g,h) Graph Neural Network classification based on SMILES and Canonical SMILES 
respectively via accuracy as evaluation parameter. (i,j) Graph Neural Network pIC50 regression predicted versus actual 
pIC50 based on SMILES and Canonical SMILES respectively 

2.3.Model validation and scoring:
2.3.1.Prediction:  There  are  5788  compounds  predicted  as  active  according  to  all  models.
Clustering was performed and redundant data was removed after clustering. Compounds were



reduced to 3512 compounds. Due to the time-consuming and resource of docking and protein-
ligand interaction a virtual screening of a large database of 2.7 million compound make it
difficult  to  happen.  Providing a small  dataset  gives  an accurate  prediction of  each model
capability and residues reached by each model.
2.3.2.Scoring: table(2) show every model name according to Src kinase app and model docking
range and residues reached by molecular docking according to PDB id (7NG7). Detailed protein-
ligand interaction found in Github or with supplementary. The user can determine which model
shows the best model prediction and ability to get the active compound by looking at validation and
residues reached by each model( a guide for the user). Using a combination of models is better.
Here, the author can’t provide details about using a combination scenario because of the limited
amount of data which is 39k only. The author provides a Jupyter notebook of HOW_TWO_VS and
provides a way to make a virtual screening for your data that comes from Src app and also very
detailed information about every model and each residues reached in model_validation, Predictive
in Github or in supplementary. Molecules can be found active according to different models, so total
count is more than total amount mentioned above.
Table(2.a): show every model produced using a model name in the app and virtual screening result of using it on 50k ZINC 
data(reduced to less than 5k). Result based on docking and protein interaction on protein(PDB_ID:7NG7) pocket center of(-
17.300,-2.055,-5.938) and pocket size of(28.0,28.0,28.0) same as table(1.a).

Model Name Model type Task Threshold Fingerprint Count Docking 
affinity range
[kcal/mol]

docking 
affinity
mean
[kcal/mol]

RF_is_active_1 Random Forrest Classification - Maccs 
Key

520 -2.3 - -11.2 -9  

SVM_isactive_1 Support Vector 
Machine

Classification - Maccs 
Key

34 -3.9 - -11.1 -8.94

ANN_isactive_1 Artificial Neural 
Network

Classification - Maccs 
Key

988 -2 - -11.6 -9 

RF_isactive_2 Random Forrest Classification - Morgan 
Fingerprint

109 -7.3 - 11.7 -9

ANN_isactive_2 Artificial Neural 
Network

Classification - Morgan 
Fingerprint

937 -2 - -11.2 -8.9 

RF_pic50_1 Random Forrest Regression 7 Maccs 
Key

329 -5.9 - -11.1 -9

RF_pic50_2 Random Forrest Regression 7 Morgan 
Fingerprint

34 -3.6 - -11.1 -8.9 

NN_predicted_pIC50 Deep Neural 
Network

Regression 7 Maccs 
Key

502 -2 - -11.3 -8.96

NN_predicted_pIC50
_2

Deep Neural 
Network

Regression 7 Morgan 
Fingerprint

130 -6.7 - -10.9 -8.88

GCN_Positive Graph 
convolutional 
network

Classification 0.5 Smiles
 string

86 -7.5 - -11.1 -9

dch_pic50 Graph 
convolutional 
network

Regression 7 Smiles
string

62 -5.7 - -10.4 -8.72 

GCN_Positive_2 Graph 
convolutional 
network

Classification 0.5 Canonical
 Smiles

1163 -3 - 11.8 - 9

dch_pic50_2 Graph 
convolutional 
network

Regression 7 Canonical 
Smiles

17 -7.6 - -10.5 -8.94 

Table(2.b) continue from table(2.a) with protein interaction on same protein and pocket of describe on table(2.a) with figure 
id describe each model.

Model Name figure H_bond 
range

H_bond 
mean

hydrophobic 
range

hydropho
bic mean

SALT_
BRIDGE 

PI_STAC
KING 

PI_CATI
ON range

HALOGE
N range



range range

RF_isactive_1 4.a 0-10 3 0-14 6 0-3 0-2 0-2 0-2

SVM_isactive_1 4.a 0-7 3 1-12 6 0-2 0-1 0-1 0

ANN_isactive_1 4.a 0-10 3 0-14 6 0-3 0-2 0-3 0-2

RF_isactive_2 4.b 0-8 3 0-12 6 0-3 0-1 0-2 0-2

ANN_isactive_2 4.b 0-9 3 0-15 6 0-3 0-1 0-3 0-2

RF_pic50_1 4.c 0-9 3 0-12 6 0-4 0-2 0-2 0-2

RF_pic50_2 4.d 0-7 3 1-12 6 0-2 0-1 0-1 0

NN_predicted_p
IC50

4.e 0-10 3 0-14 6 0-3 0-2 0-3 0-2

NN_predicted_p
IC50_2

4.f 0-8 3 0-12 5 0-4 0-2 0-2 0-1

GCN_Positive 4.g 0-7 3 2-13 6 0-2 0-1 0-2 0-1

dch_pic50 4.i 1-8 3 0-10 5 0-2 0-1 0-3 0-1

GCN_Positive_2 4.h 0-11 3 0-14 6 0-4 0-2 0-3 0-2

dch_pic50_2 4.j 0-7 2 1-9 6 0-2 0-1 0-1 0-1

2.3.3.Novels:  table(3)  shows highly active  compounds and docking values,  hydrogen bond
numbers  for  both  the  Predictive  bioactivity  model  and RNN model.  Detailed  interaction
found in GitHub and supplementary.

Table(3): Describe Novel compounds docking and protein ligand interaction on the same protein and pocket of table 2 and 
RNN novel compound T indicate Temperature and V indicate virtual screen process number. Novel structure will appear in 
next table(Table(4)

name Produced by Docking 
value

QED hydrogen bond other interactions

UCW ZINC Database -11.4 0.49 344 MET A,341 THR A,407 ASP A,407
ASP A,298 LYS A,342 GLU A

PI_CATION: 
298 LYS A,

ZINC00000
2391833

ZINC Database -10.7 0.54 298 LYS A,407 ASP A,341 THR A,348 
SER A,351 ASP A,341 THR A,

None

ZINC0000
17848357

ZINC Database -11.6 0.64 298 LYS A,341 THR A,407 ASP A,407 
ASP A,

None

ZINC0000
95478729

ZINC Database -10.1 0.59 298 LYS A,341 THR A,280 CYS A,281 
PHE A,394 ASN A,341 THR A,389 
ASP A,393 ALA A,407 ASP A,

SALT_BRIDGE: 407 
ASP A, PI_CATION: 
298 LYS A,

ZINC00000
6900314

ZINC Database -11.1 0.62 341 THR A,348 SER A,298 LYS A,394 
ASN A,407 ASP A,

SALT_BRIDGE: 407 
ASP A, 
PI_STACKING: 408 
PHE A,

T025V12 RNN T=0.25 -11.3 0.32 341 THR A,407 ASP A,407 ASP A, PI_CATION: 
298 LYS A,

T05V56 RNN T =0.5 -10.7 0.76 344 MET A,407 ASP A, None

T05V52 RNN T =0.5 -12 0.32 298 LYS A,351 ASP A, None

T015V10 RNN T =0.15 -12.1 0.34 None PI_CATION: 
298 LYS A,

T015V5 RNN T =0.15 -11.4 0.25 407 ASP A,407 ASP A, PI_CATION:
 298 LYS A,

2.3.4.Molecular Dynamics: After scoring with molecular docking the result from both RNN
and predictive model was evaluated via Molecular Dynamics as an accurate metric to inform
the result and support molecular docking and protein-ligand interaction. Table(4) show each
compound and its interaction energy according to reference ligand(UCW).



Table(4): Continue from Table 3, here the result of Molecular Dynamic simulation of novels compound and filtered 
compound with time indicate in nanosecond and protein-ligand interaction that occur in % of times in Molecular Dynamics 
Simulation. Interaction energy is compared to the original ligand in order to evaluate how potent the compound. Detailed 
interaction information found in the supplementary.

Structure Publish_name Molecular 
Dynamics time

Interaction 
energy

Protein-ligand 
interaction occur 
30%

Protein-ligand 
interaction 
occur 50%

Protein-ligand 
interaction 
occur 90%

UCW 20n -83.13 ± 5.38 
kcal/mol

H_bond:
ASP407.X, 
GLU342.X,
PiStacking:
TYR343.X, 
PiCation:
LYS298.X,
Hydrophobic 
number:24

H_bond:
ASP407.X, 
GLU342.X,
PiStacking:
TYR343.X, 
PiCation:
LYS298.X,
Hydrophobic 
number:23

H_bond:
ASP407.X, 
GLU342.X,
Hydrophobic 
number:19

ZINC
2391833

20n -62.51 ± 4.99 
kcal/mol

H_bond:SER348.
X, THR341.X,
PiStacking:
TYR343.X, 
PHE408.X,
Hydrophobic 
number:19

H_bond: 
THR341.X,
PiStacking:
TYR343.X, 
PHE408.X,
Hydrophobic 
number:16

H_bond: 
THR341.X,
PiStacking: 
PHE408.X,
Hydrophobic 
number:12

ZINC
17848357

20n -65.39 ± 5.10 
kcal/mol

H_bond:
THR341.X,
LYS298.X ,
PiStacking:
PHE408.X,
Hydrophobic 
number:19

H_bond:
LYS298.X ,
PiStacking:
PHE408.X,
Hydrophobic 
number:18

PiStacking:
PHE408.X,
Hydrophobic 
number:18

ZINC
95478729

20n -66.78 ± 5.20 
kcal/mol

H_bond:
LYS298.X,
Hydrophobic 
number:18

H_bond:
LYS298.X,
Hydrophobic 
number:17

Hydrophobic 
number:8

ZINC
6900314

20n -62.43 ± 5.67 
kcal/mol

PiStacking:
PHE408.X,
Hydrophobic 
number:17

PiStacking:
PHE408.X,
Hydrophobic 
number:15

Hydrophobic 
number:11

T025V12 20n -62.43 ± 3.44 
kcal/mol

H_bond:
ASP407.X,
PiStacking:
TYR343.X,
Hydrophobic 
number:19

H_bond:
ASP407.X,
PiStacking:
TYR343.X,
Hydrophobic 
number:18

H_bond:
ASP407.X,
Hydrophobic 
number:13

T05V56 20n -57.28 ± 3.62 
kcal/mol

H_bond:
ASP407.X, 
THR341.X,PiSta
cking:PHE308.X,
Hydrophobic 
number:16

H_bond:ASP40
7.X, 
THR341.X,Hyd
rophobic 
number:15

H_bond:
ASP407.X,
Hydrophobic 
number:12



T05V52 5n -65.59 ± 5.35 
kcal/mol

Hydrophobic 
number:19

Hydrophobic 
number:18

Hydrophobic 
number:14

T015V10 5n -56.91 ± 3.56 
kcal/mol

H_bond:
PHE408.X, 
SER348.X
,PiStacking:
PHE408.X,
Hydrophobic 
number:18

H_bond:
PHE408.X,
PiStacking:
PHE408.X,
Hydrophobic 
number:17

Hydrophobic 
number:11

T015V5 5n -59.73 ± 3.00 
kcal/mol

H_bond:
ASP148.X,
ASP148.X,
Hydrophobic 
number:19

H_bond:
ASP148.X,
Hydrophobic 
number:18

Hydrophobic 
number:11

The ability  to  get  a  ligand potent  like  Experiment  ligand is  very  hard.  Compounds show
activity other than it and protein-ligand interaction more than the ligand, but a ligand still has
the  priority  due  to  its  Experimental  result.  Some  compounds  show activity  better  in  the
docking process, but doesn’t enter MD simulation due to some error in molecular dynamics.
Error raised due to the workflow the author used and RDKit ability of curated compounds.
Most ligands in 5 nanoseconds show decrease in protein-ligand interaction and thus give us an
overview of how weak the result when using docking, nevertheless some interaction happens
in both.
2.3.6.Molecular Dynamics Renumbering: After making MD simulation the author deals with
the problem of renumbering as all residue in the right place x,y,z ,but the only number resets
from 260 to 1.  To solve  the  problem the author  makes a script  to  align atom with same
dimension and place and same residue together and put our reference complex PDB with the
complex PDB that workflow makes before simulation and renumbering residue manually in
the  notebooks.  The  way  author  renumber  is  found  in  the  GitHub  or  in  supplementary.
Reference ligand was provided as an example with the same for all novels, please take a look
at it in the GitHub repo renumbering problem file and or in supplementary. Besides all these
challenges and time-consuming and computational costs the author can't repeat the process,
but for anyone who will use the same protein id, it starts with the number 260 and it is very
important to notice. Author notebook makes renaming very efficient and numbering residue
exactly as it is and an example found in GitHub with reference ligand.

2.4. Novels:
2.4.1.Predictive model novels: figure(4) show the most interaction energy coumpound in the
novels. figure(5) show 30% and 90% novel interactions that occur 30%(1.a, 2.a), 90%(1.b,2.b)
for compounds (ZINC000002391833, ZINC000017848357) respectively, and RMSD and 2D
RMSD(1.c,2.c) and interaction energy(1.d,2.d) and radius of gyrations, detailed information
found in supplementary.
2.4.2.RNN model novels: figure(6) show 30% and 90% novel interactions that occur 30%(3.a,
4.a).  90%(3.b,4.b)  for  compounds  (T025V12,  T05V56)  respectively,  and  RMSD  and  2D
RMSD(3.c,4.c) and interaction energy(3.d,4.d) and radius of gyrations. detailed information
found in supplementary.
Most  compounds  have  an  increasing  number  of  hydrophobic  and  absence  of  other
interactions like Hydrogen bonds, but it can give insights about the 3D structure or the shape
of the ligand and decrease a more steps in the process of fragment-based  drug discovery or
lead optimization. 



All compounds make at least 1 Hydrogen bond and interact with the key residues (ASP407,
LYS298, PHE408).

Figure 4: shows interaction energy of novel compound id: ZINC000095478729

1.a

1.b

2.a

2.b



1.c 2.c

Figure 5: shows novels compounds(1:ZINC000002391833),(2:ZINC000017848357) from ZINC database using predictive model, 
protein-ligand interaction that occur 30% time (1.a,2.a) and 90% of the time (1.b,2.b) respectively and interaction 
energy(1.c,2.c) and 2D RMSD (1.d,2.d).

3.c 4.c

Figure 6: shows novels compounds(3:T025V12), (4:T05V56) from RNN model that used GRU layer and SELFIES, protein-
ligand interaction that occur 30% time (3.a,4.a) and 90% of the time (3.b,4.b) respectively and interaction energy(3.c,4.c) and 
2D RMSD (3.d,4.d).

1.d 2.d

3.a

4.d3.d

4.a

3.b 4.b
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Figure 7: Shows predictive model for docking prediction evaluation (a) RF using MACCS key. (b) RF using Morgan Fingerprint .(c) Deep 
Neural Networks using MACCS key (d) Deep Neural Networks using Morgan Fingerprint. (e) GCN using SMILES string (f) GCN using 
Canonical SMILES

4. Docking prediction models: figure(7.a,b) show the machine learning model(Random Forrest)
and figure(7.c,d)  show Deep learning model  both  using  MACCS Key and Morgan Fingerprint
respectively and figure(7.e,f) show GCN model using both SMILES and Canonical smiles. Docking
was performed on Data  come from 50k ZINC that  was used to  validate  the  predictive model.
Further docking is  recommended as docking data result  coming from a certain pocket size and
center, however this can make the process fast and give some insight to the user if docking cannot
be performed. Mean score of all model can give accurate result.

5.  Experimental:  Another  limitation  of  the  research  is  that  there  isn't  any  experimental
evidence of the result, but the further investigation can be done in the future. The Src web app
provided with de novo molecular generation by the model give a lot of generated molecules
that  can  be  investigated  experimentally.  Provide  a  virtual  screening  ability  can  guide  the
experimental process. The study was done for any cancer institute and any research institute
that  want  to  provide a  cheap and valuable  drug that  can end the  problem of  Src  kinase
targeting and find a final solution for Src kinase.

6. Deployment:
The model deployed on the link provided in GitHub repo (https://github.com/phalem/Src) 
with the Behance link and landing page link. The GitHub link will provide up-to-date 
information if the link has been changed. Links will be provided in supplementary, but links 
can be changed in the future.
6.1. Explainable Ai(XAi): The ability to make a prediction explainable is revolutionary and 
the ability to understand why the model behaves and the reason behind the prediction is a 
great tool to solve the black-boxing of the model. ExplainableAI(exmol[84] here) show some 

https://github.com/phalem/Src


limitation due to its principles and the challenge of the ability to make a prediction outside the
data, so not all model explains the prediction. It is good to mention that results become time-
consuming with a very large descriptors count like modellar(about 15 min. vs 1 min here).

6.2.SaveMol: The website link of SaveMol is found in the GitHub repo 
(https://github.com/phalem/Src). The main app link  and Behance link will be on the Github of
the app. The ability to store compounds without labeling is a good way to prevent it from 
stealing, but dealing with a large compound set is a challenge. ReactJS have a problem when 
dealing with a large list. Some approaches using Windows or other techniques are provided, 
but the challenge of making a personal database without any limitation on speed will be 
another challenge. The absence of a model that can be integrated with a program to provide 
the initial activity prediction of the compound is another limitation, nevertheless it can be 
provided in the future. KekuleJs sketcher has some limitations in that it can't deal with all 
SMILES string but it provides a very useful feature due to its open-source nature and is free to
use. After all these limitations the app can do its job in the case of RNN molecules that are 
generated and Scalability and extendability can happen in the future.

Method:

1- Predictive model:
1.1.Data:
1.1.1.Data  preparation:  the  author  collect  the  data  with  the  Uniprot  id(P12931)  from
ChEMBL[89]  using  ChEMBL  web  resource  client[90](version  0.10.7),  PubChem[91] and
DUD-E[92].  Data  split  into  two  different  types:  activity  category  (active,  inactive)  and
Experimental IC50[93],  [94] which is a half maximal inhibitory concentration of a drug or
inhibitor. The author use pIC50 a negative log of the IC50 value when converted to molar
units as a standard of activity due to IC50 small number that can affect the result and make a
balance between active and inactive in case of activity category. DUD-E data was neutralizing
using neutralize script[95] that build using RDKit[35].
1.1.2.Molecular Descriptor [17] : the author use MACCS Key fingerprint[18] and Morgan 
fingerprint[19] as bit vector of 2048 bits integrated into RDKit in both Machine learning 
model and Deep Neural Network model. In the case of Graph Convultion network the author
uses SMILES[36] string and canonical SMILES that are sanitized using RDKit[35] and 
ConvMolFeaturizer[28] function in deepchem[28] as featurizer.
1.1.3.Data splitting: train_test_split function in sklearn[96] was used for splitting, the author
split data into 80% train set and 20% test set in case of machine learning and 70% to 30%
training  set  and  test  set  respectively  in  case  of  Deep  Neural  network.  The  author
RandomSplitter  function  of  deepchem[28] to  split  the  data  in  case  of  Graph  Convultion
Network .
1.2.Model training:
1.2.1.Machine  learning:  the  author  use  MACCS[18] Key  and  Morgan  fingerprints
intergrated[19] in  RDKit[35].  Sklearn[96] library  used  to  perform  a  model  prediction  on
categorical  data  using:  (1)Support  Vector  Machine(SVM)[12],  [13] with  parameter
(kernel="rbf", C=1, gamma=0.1, probability=True). (2)Artificial Neural Network(ANN)[14]
with  parameter  (hidden_layer_sizes=(30,  3)).  (3)Random  Forrest(RF)  Classifier  [11] with
parameter (n_estimators: 100, criterion: entropy). Three-fold cross-validation was performed
for  all  except  (SVM  in  case  of  morgan  fingerprint[19]).  In  case  of  Regression  Random
Forrest(RF) regression (in case of pIC50) with parameter (n_estimators: 10)) was used.
1.2.2.Neural  Network:  Tensorflow library and Keras  [97] was used  [24] to build a Neural
Network with 2 Dense layer size (64, 32 respectively) using relu activation function and 1
output layer using linear activation function for 50 epochs. Mean squeare error(mse) as a loss
function  and  adam  as  optimizer.  MACCS  Key[18] and  morgan[19] was  used  to  make  a
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regression task on our pIC50 data. In case of MACCs Key the author used batch size 128 and
16 in case of Morgan fingerprints. The hyperparameter chosen coming after plotting loss of
every batch size using history technique integrated into Keras and Tensorflow[24].  
1.2.3.Graph Neural Network: deepchem Graph Neural network(GraphConvModel function)
[28] was used to perform classification and regression tasks with a batch size of 128 with the
default parameter in the deepchem model.
1.3.Model Evaluation:
1.3.1.Machine learning: the author calculate sensitivity mean and specificity mean and AUC
was used as model Evaluation.
1.3.2.Neural  Network:  the loss  was calculated with mean square  error and mean absolute
error on a test set. A scatter plot of predicted versus actual value was performed.
1.3.3.Graph  Neural  Network:  Matthews  corrcoef  mean  metric[28] was  used  as  model
evaluation in classification task and Accuracy plot performed. Pearson_r2_score mean used in
prediction  and  Predicted  versus  actual  (in  case  of  regression)  and  training  versus
validation(classification) was plotted using a box plot from the seaborn library[98].
1.4.Model validation and scoring:
1.4.1.Data: The author use a random 50k data from the zinc database[99], remove reactive
structure  using  rd_filter  from  'https://github.com/PatWalters/rd_filters'  and  remove  the
compound with certain reactivity and the remaining data was about 39k molecules.
1.4.2.Prediction: the author use predictive bioactivity models to perform prediction and filter
it according to every model with HOW_TO_VS notebook author used on Github and with
paper.
1.4.3.Clustering  [15]: after performing prediction and filtering active compounds the author
use butina clustering[16] integrated into RDKit[35] to remove redundant data and molecules
with the same cluster using cutoff=0.35 and Morgan Fingerprint 3 as 2048 bits.
1.4.4.Scoring: 
The presence of crystal structure make it possible to perform structure-based drug discovery
using biomolecular simulation and molecular docking[66], the author use the PDB file from
the PDB database  [100]with protein id number (PDB ID: 7NG7) and resolution 1.5 A and
UCW Experimental ligand. The author use SMILES notation[36] as input and open babel
pybel[101] to  convert  SMILES  to  pdbqt  and  prepare  receptor  using  mglstools[102].
CBdock[103] was used to make a blind docking[104] and pocket center of ( -17.300, -2.055, -
5.938) and pocket size of (28.0,28.0,28.0) was given.
After that the author reuse the Volkmer lab[105] helper function that reuse open source tools
in  a  more  scripting  manner  and  performs  docking  using  smina[106],  [107] which  extends
autodock vina[108]. After that the author perform protein-ligand interaction using PLIP[70]
and its python module[71]. The number of interaction and residues calculated then the author
get a mean and max docking for each model and protein residues reached by these model.
1.4.5.Novels: The author choose molecules with high score binding and high hydrogen bond
numbers.
1.4.6.Molecular Dynamics[67]: the author use Molecular Dynamics simulation using Making-
it-rain[109] default  parameter  that  found  in  the  original  GitHub  notebooks.  The  author
provides  the  notebook  in  the  material  as  in  case  of  any  change  happen  to  the  original
notebook.  It  uses  PyPDB  [110],  MDTraj[111],  PDBFixer[112] and  importantly  OpenMM
library[77] and AMBER[74], [75] force field. The author prepare ligand using general AMBER
force  field  (GAFF[113])  and  The  Open  Force  Field  Toolkit[114],  [115].  The  author  uses
GAFF as  a  complete  force  field  as  it  is  compatible  with  the  AMBER force  field  it  has
parameters for almost all the organic molecules made of C, N, O, H, S, P, F, Cl, Br, and I.
LEaP program[116] was  used to build  a  simulation box,  and calculate  interaction energy
according  to  the  complex  with  a  reference  ligand  that  integrated  with  (PDB  id:  UCW).
Because  the  author  don't  use  entropy  contribution  calculation,  but  true  free  energy  was
calculated which can compare similar systems together reference ligand used as a reference to
make a comparison.  Both the MM-PBSA method and MM-GBSA method were  used for
comparison.  ProLif[117] was  used  to  show  the  interaction  between  residue  and  calculate



interaction bonds and how in percent it occurs throughout molecular dynamics. The author
first  make  molecular  dynamics  for  5  nanoseconds  after  that  the  author  extend  to  20
nanoseconds for compounds that make more interaction bonds and more energy. Analysis
was done using MDanalysis[118], [119] and RMSD was calculated and 2D RMSD and radius
of gyrations.

2- Recurrent Neural Network:
2.1.Data:
2.1.1.Data collection: the author collect about random 2 million compounds and 130k in cells
and  306k  invitro  compounds  from  ZINC[99]database,  about  500k  compounds  from
ChEMBL[89] database after that the author filter it using the same rd filter script used before
in 50k zinc and remove molecules with reactive structures.
2.1.2.Virtual Screening: the author perform virtual screening using the predictive model that
built before and reduce the possibility of active compounds to 500k after that the author get
molecules with the most supposed to be active according to our predictive model(threshold 7
for predicted pIC50 or active for classification model) and reduce the data to about 150k
compounds.  Experimental  active  molecules  that  collected  before  from ChEBML[89],  [90],
PubChem[91], and DUD-E[92] is added to 150k compound the model predict and prepare it
for model training.
2.2.Model training:
2.2.1.Model input: (1)SELFIES[44] was used as the language for model training using the 
selfies library and used the data that comes from a predictive model which was from ZINC. By
training with ZINC, the model training distribution is restricting to molecules that can be 
synthesized. [nop] was initialized in the list to use for padding as it is a NULL token but for 
SELFIES[44] Before that, all possible token in the data was extracted and counted. A 
dictionary was created to make a conversion between string and index and our vocab list. 
After that, the author will use RNN[37], [44], [62]  to predict the whole sequence. A model 
trained in what is called self-supervised, which masks a part of the data or sequence and gives 
it to the model to predict the masked part.
(2)SMILES was used as the language for model training and a compound with 2 characters
was replaced with a foreign letter(outside SMILES language) like X, Q, etc. The process can
be reversed, so 2 character doesn't affect our language and all possible token in the data was
extracted and counted. (!) was used as the same rule of [nop] in selfies and was deleted or
skipped during evaluation. A dictionary was created to make a conversion between string and
index  and  our  vocab  list  and  after  that  the  same  process  and  techniques  were  used  as
SELFIES. After evaluation SMILES generated were curated and 2 characters returned in the
same manner and SMILES produced were exposed to compound sanitization and evaluated.
2.2.2.Model  building:  an embedding layer was used and 1 layer of  RNN model  include 3
different models first one using GRU[62] variant, with return sequences parameter as true and
one dense layer using Tensorflow[24] and Keras[97].  Cross entropy as our loss function using
SparseCategoricalCrossentropy and from logit parameter equal true using Tensorflow[24] the
training was for 4 epochs. Another two models use the same structure but the difference is that
the  author  used  the  LSTM  layer  instead  of  the  GRU  layer,  and  the  third  one  uses
Bidirectional LSTM instead of GRU. Then for every different model weight was passed to a
stateful model to memorize what is fed with the same parameter and the author put its input
batch size equal to 1.
2.2.3.Model evaluation: the author gets logit probability and tries to sample from it using 100
molecules from different temperatures (T= 0.15, 0.25, 0.5, 0.75 respectively) to see which one
can provide the most inhibitor(Total compound for one structure is 400).
2.2.4.Model scoring: the author used the Structure-based approach that was used before to
validate the predictive model, and then calculate the drug score for each molecule using the
Volkamer lab helper function[105].
2.3.Model Evaluation:



2.3.1.Data filteration: the author filter compounds according to validation, drug-like structure
and high-affinity molecules only[66], [69] without protein-ligand interaction consideration[71].
2.3.2.Molecular Dynamics[67]: after that the author start molecular dynamics simulation in
the same steps as in the predictive model  with notebooks default parameter as mentioned
before.
2.4.Docking prediction model:
2.4.1.Data: the author use the data from the model validation stage of the predictive model
and make a regression task for docking values using the same predictive model structures and
parameter used before for regression task.
2.4.2.model validation and evaluation: the author make the same metrics as in the Predictive
model on regression tasks, with different is that here in data and docking value is the target.
2.4.3.model deployment: the author integrate the docking model with RNN as an assist to
make a predictions and scoring with the predictive model.

3. Explainable Ai(XAi)[79]:
3.1.Model  Build:  the  author  used  exmol[87],  [88] to  explain  prediction  to  the  data.  Use
MACCS  key  fingerprint  and  the  Random  forest  bioactivity  classifier  that  the  author
developed early. The author uses sample space function from exmol to make an explanation
and deploy the model to provide a way to iterate to any model based on SMILES string using
streamlit[120] . SMILES input convert to MACCS key and prediction happen on the app.

4. Combine models:
4.1.Explain and predict: the author uses RNN to generate a novel and bioactivity model 
together with a docking model and calculate Synthetic accessibility (SAS)[34] using sascore.py 
script and QED[121] using RDKit[35] and give the user chance to discover a new novel 
molecule, and deployed using stramlit[120].
4.2.Generate and predict and explain: the author combines all things together and generates a
molecule  using  RNN  and  predicts  it  using  predictive  model  RF(Random  Forrest)  and
explains it using exmol and deploy all that togethers to the user to make the process using
streamlit[120].

5. Deployment:
5.1.Models: the author use the streamlit library[120] to develop multi-page app and streamlit
cloud for model web deployment with a limit number of 100 molecules per prediction (now its
10) and 1 molecule per generation and one molecule per explanation due to lack of funds and
limited resources in streamlit[120] with increase number on the future.
5.2.SaveMol:
5.2.1.framework and library: the author used MongoDB[86] as database and Expressjs [85] as 
backend and React framework with a redux toolkit for Front-end (MERN stack 
development)[84] to give a full stack platform that can store molecules and use RDKitJs[35] to
cure molecules that enter the database. The author handle Exception of Invalid SMILES 
string that enter or found in database using RDKitJs. Kekulejs[122] provides as a sketcher on 
the same page to avoid using any outer resource.
5.2.2.Icons and designs: open source 3D icon[123] was used for the main page, but it might
change  in  the  future.  The  author  uses  blender[124] for  building  protein  and  Artificial
intelligence icons.
5.2.3.Front-End: the author use React component[84] and make Src prediction landing page
that serves as a presentation to explain the steps to build the model and page for sketcher page
using kekulejs[122] and one for the main app with substructure search in the front-end using
React[84] and RDKit[35].
5.2.4.Backend: the author use nodeJs[125] and its framework Expressjs[85] and provide a hash
function for the password using JWT[126] which provide a safe way to save password and
mongoose library to deal with MongoDB[86].



5.2.5.Deployment: Heroku app[127] used now to deploy the website on it in case of MERN
stack with the aim to change in the future.

Conclusion:

The ability to generate and predict activity with explanation in a one-page app and store the
compound in another app is a very handful tool. The ability to produce a potent inhibitor
with a small amount of run and valid molecule generation is a new evolution. Using RNN and
SELFIES  with  Reinforcement  learning  in  the  multiobjective  optimization  can  give  us  a
breakthrough in the field without any concern about the validity of the SMILES. Another
aspect is the ability and possibility to make the same process for all kinases and thus make it
easy  to  discover  selective  compounds  by  providing  activity  prediction  to  all.  The  more
automated  manner  is  integrated  into  a  web  app  and  lets  serendipity  takes  place  to  find
selective molecules. Another challenge is to make synthetic accessibility optimization to find
an easily synthesizable molecule. The study made the first step to starting all these dreams
with the ability to be real. It can be a starting point for anyone who looking for Src kinase
inhibitors and to the research institutes that can try those inhibitors experimentally. In the
final aspect, I hope this project can decrease the cost of cancer drugs and discover a novel drug
that can be made with this free for academic app.
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