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Abstract

Background: Spectral library searching is currently the most common approach for compound
annotation in untargeted metabolomics. Spectral libraries applicable to liquid chromatography
mass spectrometry have grown in size over the past decade to include hundreds of thousands
to millions of mass spectra and tens of thousands of compounds, forming an essential
knowledge base for the interpretation of metabolomics experiments.
Aim of Review: We describe existing spectral library resources, highlight different strategies for
compiling spectral libraries, and discuss quality considerations that should be taken into account
when interpreting spectral library searching results. Finally, we describe how spectral libraries
are empowering the next generation of machine learning tools in computational metabolomics,
and discuss several opportunities for using increasingly accessible large spectral libraries.
Key Scientific Concepts of Review: This review focuses on the current state of spectral
libraries for untargeted LC-MS/MS based metabolomics. We show how the number of entries in
publicly accessible spectral libraries has increased more than 60-fold in the past eight years to
aid molecular interpretation and we discuss how the role of spectral libraries in untargeted
metabolomics will evolve in the near future.
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Introduction

Spectral library searching is currently the most common approach for compound identification in
untargeted metabolomics, with the earliest historical spectral libraries that can be traced back to
the 1950s (Zemany, 1950). Metabolite annotation using spectral library searching is based on
the concept that molecules undergo fragmentation that creates a reproducible “fingerprint.”
Matching against a spectral library of ground truth MS/MS spectra collected with chemical
standards of known molecules can then be used to narrow down structural hypotheses. During
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library searching, experimental MS/MS spectra are annotated by matching against the library
MS/MS spectra and transferring compound labels from library to experimental spectra when a
high-scoring match is achieved. This is the gold standard for metabolite annotation from MS/MS
data only, and it forms a level 2 or level 3 annotation based on the guidelines of the
Metabolomics Standards Initiative (Sumner et al., 2007). A level 2 annotation corresponds to
library searching resulting in a structural hypothesis for a specific molecule, while a level 3
annotation is a match hypothesis to a molecular family. Especially isomeric compounds with
identical precursor mass may result in more than one structural match. For example, it is
impossible to distinguish between various stereoisomers of hexenoylcarnitine by MS/MS
matching only (Figure 1). To promote such a level 3 match to a level 1 identification,
complementary analytical approaches, such as nuclear magnetic resonance (NMR), are
needed, or all possible isomers in the molecular family have to be tested under the same mass
spectrometry conditions to best determine MS/MS spectrum similarity, in addition to liquid
chromatography (LC) co-migration of the compound of interest with the chemical standards to
validate whether it elutes with the same peak shape and retention time.
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Figure 1: Representative example of a molecular family level annotation from spectral library
searching that matches to hexenoylcarnitine. The MS/MS spectrum contains several
diagnostic fragments and neutral losses that make it possible to assign it to the acylcarnitines
molecular family, as indicated on the molecular structures (Yan et al., 2020). However, routine
spectral library matching cannot distinguish between the 14 potential stereo- and
regioisomers, resulting in a level 3 annotation. This highlights the need for new strategies to
communicate the results from spectral library searching, as narrowing down to the molecular
family, even when the exact molecular identity is unknown, can often already be valuable for
biological interpretation. Top is the experimental observed MS/MS spectrum, with a precursor
m/z deviation of 11.6 ppm compared to the calculated m/z of the protonated ions.

Although in proteomics, sequence database searching is the dominant strategy to annotate
MS/MS spectra (Eng et al., 2011), the usage of spectral libraries has become increasingly
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popular for the analysis of peptide MS/MS data as well in recent years (Griss, 2016; Shao &
Lam, 2017; Deutsch et al., 2018). Spectral library searching is more sensitive than sequence
database searching, achieving a higher rate of spectrum identifications (Zhang et al., 2011), and
results from spectral library searching and sequence database searching can be combined to
maximize the number of identified MS/MS spectra (Shteynberg et al., 2013). This increased
sensitivity is especially relevant for the analysis of data-independent acquisition (DIA)
experiments, where mixtures of analytes within large, pre-specified mass ranges are measured,
in contrast to data-dependent acquisition (DDA), which attempts to isolate and measure
individual analytes (Hu et al., 2016). The resulting complex DIA spectra contain signals from
multiple peptides, and most DIA analysis tools require detailed MS/MS fragmentation patterns
from reference spectral libraries to annotate peptides.

As the authors of this perspective believe that open and transparent science has strong
cascading benefits for the larger scientific community (Wilson et al., 2021) and are most familiar
with the GNPS/MassIVE platform (M. Wang et al., 2016), most of the following discussion is
contextualized in reference to this resource for untargeted metabolomics analysis. In this
context, we discuss the state of spectral libraries for untargeted metabolomics in 2022, describe
the essential role of spectral libraries in the development of computational tools, and highlight
some open challenges and opportunities for the metabolomics community to address in the
coming years.

Impact of  growing and freely accessible spectral libraries

Over the past decade, MS/MS small molecule spectral libraries have steadily increased in size
to include hundreds of thousands to millions of MS/MS spectra and hundreds of thousands of
compounds (Figure 1a). Some of the largest experimental small molecule spectral libraries that
are currently available include both commercial libraries, such as the National Institute of
Standards and Technology (NIST) tandem mass spectral library (https://chemdata.nist.gov/) and
the METLIN Gen2 spectral library (Xue et al., 2020), and open spectral libraries, which also
serve as aggregation sites for third-party community spectral libraries, such as the Global
Natural Products Social Molecular Networking (GNPS) community spectral libraries (M. Wang et
al., 2016) and Massbank of North America (MoNA; https://mona.fiehnlab.ucdavis.edu/).
Additionally, mass spectrometry instrument vendors also provide commercial spectral libraries,
such as mzCloud (https://www.mzcloud.org/). Excitingly, publicly and freely accessible MS/MS
spectral libraries recently saw explosive growth (Figure 2a).

https://www.zotero.org/google-docs/?d2Ectd
https://www.zotero.org/google-docs/?d2Ectd
https://www.zotero.org/google-docs/?UFuNP8
https://www.zotero.org/google-docs/?xn4k0x
https://www.zotero.org/google-docs/?2YfK4B
https://www.zotero.org/google-docs/?LDjRvy
https://www.zotero.org/google-docs/?DFy3gn
https://chemdata.nist.gov/
https://www.zotero.org/google-docs/?Pq4Exj
https://www.zotero.org/google-docs/?a6jCzO
https://www.zotero.org/google-docs/?a6jCzO
https://mona.fiehnlab.ucdavis.edu/
https://www.mzcloud.org/


Figure 2: Advances in spectral libraries for LC-MS/MS based untargeted metabolomics. (a) The
GNPS community spectral libraries (non-commercial only) have grown from 23,790 MS/MS
spectra in 2014 to 586,647 MS/MS spectra in 2022 (September 2022). Concurrently, the
number of library spectra that matched to public data has grown from 4,727 MS/MS spectra in
2014 to 127,405 MS/MS spectra in 2022 (22% of the publicly available library spectra have
matches to experimental MS/MS spectra in public data). (b) Fueled by growing spectral
libraries, the MS/MS spectrum annotation rate for the GNPS continuous identification mode as
part of living data (M. Wang et al., 2016), which periodically reanalyses all public datasets on
GNPS/MassIVE with the latest spectral libraries, has increased from 2% of MS/MS spectra on
average in 2014 to 13% in 2022.

There also exist many other, often subject-specific spectral libraries, including Massbank (Horai
et al., 2010) and Massbank EU (https://massbank.eu/MassBank/), the Human Metabolome
Database (HMDB) (Wishart et al., 2021), the RIKEN tandem mass spectral database (ReSpect)
(Sawada et al., 2012), the monoterpene indole alkaloid database (MIADB) (Fox Ramos et al.,
2019), the Critical Assessment of Small Molecule Identification (CASMI) contest libraries
(Schymanski & Neumann, 2013), European Molecular Biology Laboratory–Metabolomics Core
Facility (EMBL-MCF) (Phapale et al., 2021), the Pacific Northwest National Lab lipids library
(Kyle et al., 2017), the National Institutes of Health natural products library (Huang et al., 2019),
the Lichen Database (LDB) (Olivier-Jimenez et al., 2019), fungal dereplication (El-Elimat et al.,
2013), Chemicalsoft (Dresen et al., 2009), WEIZMASS (Shahaf et al., 2016), MSforID
(Oberacher et al., 2011), the reverse metabolomics libraries (Gentry et al., 2021), and many
others. Barring access restrictions, these spectral libraries are also often integrated into the
previous spectral library aggregation resources, such as GNPS and MoNA. In this case, the
SPLASH (SPectraL hASH) mechanism, which assigns unambiguous, database-independent
hashed identifiers to MS/MS spectra, can be a useful tool for provenance of spectral data and
detection of duplicate spectra that are shared across multiple data resources (Wohlgemuth et
al., 2016), similar to how InChIKeys are used as chemical identifiers.

Several large proteomics spectral libraries exist as well. These include peptide MS/MS spectral
libraries for multiple organisms (human, mouse, rat, yeast, etc.) from NIST
(https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:start), the ProteomeTools project of
synthetic human peptide MS/MS spectra (Zolg et al., 2017), and the MassIVE Knowledge Base
(MassIVE-KB) of the human proteome (M. Wang et al., 2018). Different strategies for compiling
spectral libraries are exemplified by the ProteomeTools (Zolg et al., 2017) and MassIVE-KB
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peptide spectral libraries (M. Wang et al., 2018). On the one hand, ProteomeTools followed the
traditional approach to generate a spectral library by synthesizing unique tryptic peptides from
the human proteome and acquiring MS/MS data on multiple instrument platforms (Zolg et al.,
2017). This was subsequently expanded to include additional tryptic peptides and modified
peptides (Zolg et al., 2018), non-tryptic peptides (Wilhelm et al., 2021), and isobarically labeled
peptides (Gabriel et al., 2022) to currently consist of more than one million unique synthetic
peptides and over 14 million MS/MS spectra. In contrast, MassIVE-KB employed a data-driven
approach towards spectral library creation by re-analyzing hundreds of millions to billions of
public MS/MS spectra on the MassIVE data repository using sequence database searching (M.
Wang et al., 2018). The most confidently identified MS/MS spectra and their peptide labels were
then extracted to create the MassIVE-KB human peptide spectral library, which currently
contains 2.5 million unique peptides and 6 million MS/MS spectra (version 2.0.15). Although an
equivalent strategy to sequence database searching in proteomics currently does not exist for
metabolomics, approaches employed by ProteomeTools and MassIVE-KB demonstrate how
alternative strategies can be used to create valuable collections of reference MS/MS spectra.
Furthermore, as it is not uncommon to observe peptides in metabolomics data, it is conceivable
that proteomics libraries can be repurposed to also inform a subset of metabolomics data
through creative use of algorithms that find analogs of peptides or peptidic molecules.

Similarly, in untargeted metabolomics, each of the libraries provides complementary MS/MS
data and pieces of information. For example, the commercial NIST small molecule spectral
library predominantly contains human and plant metabolites, ReSpect contains plant
metabolites, and the commercial METLIN library historically contained a significant proportion of
lipids and dipeptides (full details on the current composition after its explosive growth (Xue et
al., 2020) are unknown as the library and information on the molecules that are part of the
library have not been released publicly). The GNPS libraries historically focused on natural
products, but they have since grown to include many major publicly available reference libraries,
including lipids, drugs, pesticides, primary metabolites, food derived metabolites, common
contaminants, and microbial metabolites. Furthermore, these libraries are exchanged with
MoNA, MassBank EU, and other resources, such that they are not only leveraged in the GNPS
analysis ecosystem but also by other analysis systems such as MZmine (Pluskal et al., 2010),
MS-DIAL (Tsugawa et al., 2020), and others. This broad sharing of spectral libraries ensures
that untargeted metabolomics analyses can be performed against the largest possible spectral
libraries, irrespective of the analysis platform. It should be noted that some spectral libraries,
such as NIST and METLIN, are exclusively obtained in a single lab under more consistent
experimental conditions, whereas other spectral libraries, such as MoNA and GNPS, are
aggregated from community contributions and contain data that has been acquired in multiple
labs, using different instruments, instrument platforms, and experimental protocols, and thus are
more heterogeneous.

Some metabolomics spectral library resources do not only include direct experimental MS/MS
data from pure reference compounds, but also MS/MS spectra that were obtained using
computational tools. For example, the MoNA and HMDB spectral libraries are augmented with in
silico MS/MS spectra that were simulated using e.g. LipidBlast (MoNA) (Kind et al., 2013) and
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CFM-ID (HMDB) (F. Wang et al., 2021). Additionally, NIST provides smaller spectral libraries
focused on specific types of molecules, such as oligosaccharides (Remoroza et al., 2018, 2020)
and acylcarnitines (Yan et al., 2020), that were annotated using analog searching (Burke et al.,
2017)—a strategy to identify structurally related molecules that differ by a modification by using
a very wide precursor mass window (on the order of 100s Da)—rather than by measuring pure
reference standards. GNPS contains secondary reference MS/MS spectra that have been
annotated by high-quality matching against the NIST spectral library and “nearest neighbor
suspect” MS/MS spectra (Bittremieux, Avalon, et al., 2022) that were obtained by propagating
annotations using molecular networking (Aron et al., 2020) across all public untargeted
metabolomics data in the GNPS/MassIVE repository. By propagating annotations from existing
spectral libraries to related MS/MS spectra it becomes possible to provide annotations that
would otherwise not be accessible to the community. Therefore, these strategies expand the set
of putative annotations that can be obtained in untargeted metabolomics experiments. This is
especially relevant for molecules for which pure standards are not available, because their
structures have never been synthesized or isolated from biological material, or because they
cannot be described as a structure (e.g. sodium formate clusters or a specific modification of
unknown regio- or stereochemistry). However, because the MS/MS spectra are not directly
measured from pure reference material, additional care should be taken when interpreting
annotations that match such library spectra. In other words, the user has to verify whether the
annotations match the data and whether they make sense in the context of the experiment
before investing precious time and resources to perform additional validation experiments.

Besides these traditional spectral libraries for untargeted metabolomics that focus on
fragmentation data, other libraries that include complementary information or for different data
acquisition methods are starting to become available. For example, some spectral libraries
contain LC retention time information as well (Stanstrup et al., 2015; Tada et al., 2019), such as
the METLIN small molecule retention time dataset (Domingo-Almenara et al., 2019).
Additionally, with the increasing integration of ion mobility functionality in modern mass
spectrometry instruments, ion mobility libraries that contain reference collision cross section
(CCS) measurements are emerging (Zheng et al., 2017; Hernández-Mesa et al., 2018; Righetti
et al., 2018; Picache et al., 2018; Schroeder et al., 2019; Z. Zhou et al., 2020). This availability
of retention time and CCS reference measurements provides orthogonal information for
metabolite annotation from untargeted MS/MS data. Additionally, spectral libraries for alternative
data acquisition methods exist. For example, mzCloud organizes MSn spectra into
“fragmentation trees,” and the METLIN-MRM spectral library is a multiple-reaction monitoring
(MRM) transition repository for small-molecule quantitative mass spectrometry that contains
MRM transitions for more than 15,500 unique molecules (Domingo-Almenara et al., 2018).

With the growing commodification of advanced instrumentation capabilities, there is a need for
further expansion of alternative spectral libraries. Whereas most LC-MS/MS spectral libraries
use collision-induced dissociation (CID) or higher-energy C-trap dissociation (HCD), various
other fragmentation techniques, such as electron-induced dissociation (X. Chen et al., 2018),
ultraviolet photodissociation (Bowers et al., 1984), charge transfer dissociation (W. D. Hoffmann
& Jackson, 2014), and others (Heiles, 2021), can now be used as well. Because different
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fragmentation techniques can result in dramatically different MS/MS fragmentation patterns,
traditional spectral libraries might not be suitable for MS/MS spectral matching of such data and
custom libraries will be needed. Even when using CID/HCD fragmentation, different instrument
platforms or employing different collision energies can produce MS/MS data that exhibit
dissimilar fragmentation behavior. Consequently, it is not always possible to get a spectral
match when data is collected differently. Nevertheless, we recommend searching experimental
MS/MS data against the broadest possible relevant spectral libraries, irrespective of instrument
platform details. Even if the MS/MS spectra differ to some extent, it can still be possible to
obtain relevant matches, especially with modern algorithmic techniques that preprocess spectra
to try to minimize the effects of experimental variability. Furthermore, some advanced MS/MS
fragmentation strategies might enable synergies between previously disparate library generation
efforts. For example, CID spectra can contain a non-negligible number of radical fragment ions
(K. Chen et al., 2008; Xing & Huan, 2022), and fragmentation mechanisms from
electron-induced dissociation techniques show significant similarity to fragmentation events
under electron ionization, which is commonly used in gas chromatography mass spectrometry
(GC-MS) (Ducati et al., 2021). This suggests that it could be possible to repurpose the
information content from large amounts of historical spectral libraries that have been generated
for GC-MS.

The increasing availability of large-scale and open spectral libraries is driving their growing role
in computational mass spectrometry (Stein, 2012; Vinaixa et al., 2016; Aksenov et al., 2017;
Tsugawa, 2018). Whereas in untargeted metabolomics experiments, using all commercial and
openly available spectral libraries, only 2% of MS/MS spectra could be successfully annotated
by spectral library searching less than a decade ago (M. Wang et al., 2016), in 2022 the
spectrum annotation rate for untargeted metabolomics on the GNPS platform has increased to
13% (Figure 2b). This increase by up to an order of magnitude in the number of unique MS/MS
spectrum annotations that can be obtained is essential in advancing the amount of biological
knowledge that can be achieved using untargeted metabolomics, and has only been possible by
tremendous and continued efforts of various stakeholders—both academic and industry—and
the metabolomics community at large.

Interpreting spectral library searching results

When interpreting spectrum annotations from spectral library searching, it is essential to have a
clear understanding of the information that mass spectrometry can and cannot provide (Stein,
2012). For example, mass spectrometry may not always distinguish between isomeric
molecules. Although the Metabolomics Standards Initiative provides guidelines to denote the
level of identification rigor for reported metabolite identifications (Sumner et al., 2007), these do
not fully capture the ambiguity related to isomers (e.g. using an ontology) and do not provide a
system to build provenance into the confidence of spectrum annotations. Additionally, MS/MS
spectra might not contain sufficiently discriminative information to annotate specific molecules if
there are too few fragment ions or no unique fragment ions. Analyzing non-discriminative
MS/MS spectra is equivalent to searching a genetic sequence database with a two-mer
oligonucleotide, which would result in an excessive number of non-specific matches. Instead,
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when few ions are available or the sample contains multiple isomers, spectral library
annotations might only go up to the molecular family if fragment ions correspond to similar
(sub)structures that are shared by related molecules. Therefore, it is recommended that users
do not restrict themselves to only the top MS/MS match obtained using spectral library
searching, but carefully consider lower ranked MS/MS matches that fall within the user defined
inclusion criteria of acceptable errors of MS and MS/MS ions, and minimum number of matching
fragment ions. If there are multiple annotations with similar MS/MS match scores that
correspond to isomeric molecules or belong to the same molecular family—which usually
consists of isomeric structures—additional information is needed to further refine the most likely
candidate structures. At present, verifying such ambiguity often still involves careful manual
investigation by expert users, isolation and NMR confirmation, or purchase or synthesis of all
possible structures to validate the assignments. In the future, we anticipate that a new
generation of computational mass spectrometry tools that can directly communicate this
information to the user will be developed, for example by rolling up spectrum annotations to the
family level or indicating spectral evidence of the (sub)structures that can be unambiguously
explained. The goal of these tools should be to clearly communicate the maximum amount of
knowledge that can be derived from the mass spectral data and then follow up with additional
experiments to differentiate among all possible annotations.

In the best case, a library MS/MS spectrum should be measured from only a single, pure
reference compound. In practice, during large-scale spectral library generation efforts multiple
reference compounds are measured simultaneously to minimize the data acquisition time that is
needed. Although it is typically ensured that no near-isobaric compounds are simultaneously
measured during such multiplexing of reference compounds to avoid potential confusion when
annotating the library spectra, interference during MS data acquisition might still occur.
Additionally, other typical quality considerations for mass spectrometry experiments
(Bittremieux, Tabb, et al., 2018), such as the presence of contaminants, carry-over, and other
factors that can influence the data can impact spectral library generation.

However, it is also important to be mindful of the biases associated with using pure reference
compounds to generate spectral libraries. First, this requires a physical specimen of the pure
compound, obtained from commercial sources or through laborious purification of biological
samples. Unfortunately the majority of biological molecules whose structures have been
elucidated are not readily available for purchase. An example of this bias is the
disproportionately large number of unique matches to medicines and drugs when analyzing
human fecal samples, while there are much fewer matches to microbial metabolites, which are
not well represented in reference spectral libraries. A second type of bias is via the adduct that
is chosen for fragmentation. For example, protonated and sodiated adducts are most frequently
considered, with two thirds of positively charged MS/MS spectra in the MoNA and GNPS
spectral libraries corresponding to protonated adducts (Figure 3a-b). However, many other
adducts can be formed as well, especially during analysis of heterogeneous biological samples.
Therefore, unless a complex background matrix is added to the pure standards, it is likely that
an adduct that is observed in an experiment may not have been measured while generating
library spectra from a reference compound. This is illustrated by the “ion identity molecular
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networking” approach, which was recently used to create a propagated spectral library that
exhibits a broader coverage of different adducts, multimers, and in-source fragments (Figure
3c) (Schmid et al., 2021). Nevertheless, because ion identity molecular networking can only find
predefined ion forms, and we generally do not know the distribution and diversity of all ion forms
that exist yet, several unanswered questions remain. For example, how many ions are
protonated, sodiated, or acetonitrile-ammonia ion forms? How many ions are magnesium
adducts, heterodimers, or other ion forms that are currently not considered? To alleviate these
biases, although this is typically not performed, library spectra could be acquired by running
pure reference compounds with a more representative background or in a biological matrix and
unbiased searches need to be performed to find all ion forms of the standards. Alternatively, as
is possible on the GNPS ecosystem, researchers that are experts in the biological systems
under investigation can annotate experimental MS/MS spectra directly and add them to the
reference libraries.

Figure 3. Distribution of ion adducts in public
spectral libraries. The majority of positive ion
mode MS/MS spectra in MoNA (a) and GNPS
(b) are protonated, while other adducts,
in-source fragments, multiply charged species,
and multimers are minimally represented. (c)
Ion identity molecular networking was used to
extract novel reference MS/MS spectra that
exhibit overall broader coverage of different
adducts, multimers, and in-source fragments
(Schmid et al., 2021). Note that these ion forms
are found with a predefined inclusion list, rather
than a comprehensive search for all ion forms
that might be present in untargeted
metabolomics data of a biological sample.
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Another important, yet often overlooked aspect when evaluating spectral library searching
results is the confidence that is ascribed to the original library annotation. If an original library
spectrum is incorrectly annotated, this error will propagate through all future studies that find a
match to this library spectrum. Consequently, even when a match is obtained, the researcher
should still make sure that this makes sense in the context of their experiment. Therefore, it is
paramount that library spectra are of the highest possible quality and that their provenance is
tracked, so that the end user can understand the origin of their spectral library annotations.
Having a clear understanding of the provenance of reference MS/MS spectra is especially
relevant when spectral libraries are crowd-sourced, with spectral data coming from
heterogeneous sources with potentially differing quality levels, although mistakes have also
been found in commercial spectral libraries.

To assign quality levels to MS/MS library spectra, several community resources, including
GNPS and MoNA, use a rating system. For example, on GNPS, library spectra are categorized
based on the source of the MS/MS spectra. “Gold” spectra are derived from synthetic samples
that have been characterized using mass spectrometry and an orthogonal analytical method,
such as NMR or crystallography, and can only be contributed by privileged users; “silver”
spectra are obtained from an isolated or lysate/crude sample with a scientific publication
confirming the presence of the molecule in the sample; and “bronze” spectra are other
experimental MS/MS spectra that provide evidence for putative or partial annotations. Finally,
there are “in silico” spectra that have been produced using computational approaches. The
latter are not selected by default when performing spectral library searching using GNPS,
however, as we believe that such spectra should be used with extreme caution and generally
only give insights into molecular families rather than specific identities. GNPS also allows users
to update spectral library annotations if the original submission contained limited details (e.g.
someone may have denoted the spectrum as a saccharide but further insights revealed that the
specific molecule is azithromycin, or the original submission did not include the molecular
structure which was subsequently added) or to correct previously misassigned library spectra. In
these cases, the GNPS system always retains a complete record of the full annotation history.
Additionally, GNPS allows users to rate the quality of MS/MS matches from spectral library
searching using four star (correct), three star (likely correct, e.g. could also be isomers with
similar fragmentation patterns), two star (unable to confirm the annotation due to limited
information), and one star (incorrect) ratings. MoNA assigns a five-star quality rating to all
spectra based on the amount of metadata that was provided (ionization mode, instrument
model, collision energy, liquid chromatography details, etc.), and top rated MS/MS spectra and a
leaderboard of their submitting users are advertised on the MoNA homepage. Additionally, users
can rate spectra as being either “clean” or “noisy.” These rating approaches allow users to
manage expectations based on the evaluation of the library spectra so that they can make
informed decisions based on the veracity of an MS/MS spectrum match, as well as provide
feedback to help improve library annotations.

As an example of spectral library curation, a strategy for inter-library comparison was described
to detect mis-annotated outliers by visual inspection based on an extensive checklist of potential
issues (Wallace et al., 2017). Manual quality annotations have limited scalability, however, as
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they depend on scarce expert user knowledge and require a significant time investment.
Because such domain experts often produce very trustworthy manual spectrum annotations and
their expertise is not (yet) translated into community knowledge, this represents a unique
opportunity to further improve the quality of spectral libraries. Alternatively, some computational
approaches for MS/MS spectral library assessment have been proposed, including spectral
entropy. Entropy is often likened to the disorder of a system. For example, there are more
disorderly states in which a deck of cards can occur in random order (high entropy) than those
in which the deck occurs in sorted order (low entropy). Spectral entropy (Li et al., 2021) was
recently proposed as a measure to assess the quality of MS/MS spectra, with lower-quality
spectra receiving higher spectral entropies. For example, there are small differences in the
spectral entropy distributions of the highly curated NIST spectral library and more
heterogeneous spectral libraries from MoNA and GNPS (Figure 4). Nevertheless, we would
argue against a simple maximum spectral entropy cut-off to determine whether MS/MS spectra
are of sufficient quality. There is a strong (nonlinear) relationship between spectral entropy and
the number of fragment ions, with MS/MS spectra that contain only a few fragment ions getting
low spectral entropy scores (Li et al., 2021). Although such spectra might be arguably of higher
quality and more “clean,” this could also indicate that some of the spectra with low spectral
entropy contain insufficiently discriminative fragmentation information to achieve sensitive
MS/MS annotation. Nevertheless, spectral entropy is an interesting criterion to support the
automated quality assessment of MS/MS spectra, which forms an open challenge that warrants
additional research.

Figure 4: Spectral entropy distributions for the GNPS, MoNA, and NIST20 spectral libraries.
GNPS consists of 497,137 MS/MS spectra from the “ALL_GNPS_NO_PROPOGATED” library
(downloaded on 2022-09-08), MoNA contains 145,361 MS/MS spectra from the “LC-MS/MS
Spectra” collection (downloaded on 2022-09-08), and NIST20 consists of 1,026,712 MS/MS
spectra (high-resolution MS/MS collection). Spectra were processed by removing noise peaks
below 1% of the base peak intensity and normalizing fragment intensities to sum to one. (a)
There is a strong relationship between spectral entropy and the number of fragment ions
(Spearman correlation 0.963). (b) Although the NIST20 library contains smaller molecules than
GNPS and MoNA, the difference in entropy distributions cannot be directly explained by the
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weight of the molecules (Spearman correlation 0.095).

Besides the quality of the library spectra, the veracity of the matches between library spectra
and experimental spectra is also essential in determining whether to accept spectrum
annotations. Typically, valid spectrum annotations are accepted based on common heuristics,
such as a minimum cosine similarity threshold of 0.7 and minimum 6 matching peaks (M. Wang
et al., 2016; Scheubert et al., 2017). However, such heuristics do not provide a statistical
confidence estimate of the spectrum annotations, and as such, the number of false positives
(i.e. incorrectly accepted high-scoring annotations) and false negatives (i.e. missed low-scoring
annotations) are unknown. Although not widely used yet at this time, there are emerging
strategies for estimating the false discovery rate of MS/MS spectrum annotations. For example,
the Passatuto approach constructs a decoy library by modifying MS/MS library spectra based
on re-rooted fragmentation trees to enable estimating false discovery rates using a target–decoy
strategy (Scheubert et al., 2017). This allows the researcher to accept spectrum annotations
with a controlled false discovery rate such that they can decide how many incorrect matches
they are willing to include in their results. Although a few other methods to control false
discovery rates in metabolomics have been introduced (Palmer et al., 2016; X. Wang et al.,
2018; Alka et al., 2022), none are currently routinely used. Statistical control of MS/MS
spectrum annotations is an important area of research to explore further and advance
untargeted metabolomics into a highly scalable quantitative technique, and we anticipate that
such tools will become routinely accessible in emerging MS/MS-based spectrum annotation
software.

Spectral libraries as a source of machine learning training data

Besides their primary function for spectrum annotation, spectral libraries are also an extremely
valuable resource to develop machine learning approaches for the analysis of mass
spectrometry data (Kelchtermans et al., 2014). In proteomics, the availability of high-quality
spectral libraries that can be used as large-scale training data has spurred the development of
several innovative deep learning tools. For example, Prosit is a deep neural network that was
trained on the ProteomeTools library to learn peptide fragmentation patterns and predict MS/MS
fragment intensities with high fidelity (Gessulat et al., 2019). MS/MS spectra predicted by Prosit,
as well as related tools that were developed in a similar fashion (Tiwary et al., 2019; Xu et al.,
2020; X.-X. Zhou et al., 2017, p. 201), are now regularly used in lieu of experimental spectral
libraries, for example, for the analysis of DIA data without the need to acquire a custom spectral
library in advance. This illustrates how the important effort of synthesizing and measuring
peptide standards provides continuing benefits outside of the original study by enabling the
development of deep learning methods that can be used to simulate highly accurate MS/MS
spectra for novel peptides to complement experimental spectral libraries. Similarly, MassIVE-KB
was recently used to develop the GLEAMS neural network that can efficiently process hundreds
of millions of MS/MS spectra at the repository scale to explore the dark proteome (Bittremieux,
May, et al., 2022).
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Small molecule spectral libraries are also used as the basis of computational tool and resource
development in metabolomics (Krettler & Thallinger, 2021). For example, fragmentation patterns
of acylcarnitines were derived from the NIST spectral library using the hybrid search strategy,
which could then be used to extract and validate additional related acylcarnitine MS/MS spectra
(Yan et al., 2020). The GNPS nearest neighbor suspect spectral library was created in a
data-driven fashion by molecular networking of hundreds of millions of public MS/MS spectra on
the GNPS repository in combination with reference MS/MS spectra in the GNPS community
spectral libraries, and is a unique resource that provides insights into common modifications that
molecules can undergo (Bittremieux, Avalon, et al., 2022). Additionally, high-quality annotated
MS/MS spectra in open spectral libraries are increasingly being used to train and validate
machine learning methods in metabolomics (Krettler & Thallinger, 2021; Liu et al., 2021). For
example, they can be used to learn relationships between MS/MS patterns and molecular
(sub)structures (e.g. MS2LDA (van der Hooft et al., 2016), MESSAR (Liu et al., 2020)), develop
machine learning-inspired spectrum similarity scores (e.g. Spec2Vec (Huber, Ridder, et al.,
2021), MS2DeepScore (Huber, van der Burg, et al., 2021), SIMILE (Treen et al., 2022)),
simulate MS/MS spectra (e.g. CFM-ID (F. Wang et al., 2021)), and predict spectrum annotations
(e.g. CSI:FingerID (Dührkop et al., 2015), COSMIC (M. A. Hoffmann et al., 2021), MassGenie
(Shrivastava et al., 2021)).

These are inspiring examples of computational advances that are beginning to define the next
generation of metabolomics analysis capabilities, which could not have been developed without
the availability of comprehensive and high-quality open spectral libraries. Although these are
already exciting advances in their own right, we believe that this is only the beginning of a more
data-driven approach to computational metabolomics. Especially with the emergence and
commodification of deep learning approaches, the availability of large training data is paramount
to achieve optimal performance. Deep learning is an extremely powerful class of machine
learning models that especially excels in deriving complex patterns from massive amounts of
data and discovering otherwise hidden data structures (LeCun et al., 2015). However, care must
be taken—as with any learning approach—that the analyses are reproducible and findings are
carefully validated using follow-up studies (Gibney, 2022). In other words, computational tools,
including those based on statistics or machine learning, can help investigators formulate
hypotheses, but it is critical that any discoveries made with such tools are confirmed using
follow-up experiments designed to refute the hypotheses. However, as public spectral libraries
continue to grow, we excitedly anticipate that this will further power the development of creative
machine learning and other computational solutions to provide further tools in the researcher’s
arsenal to understand the rich data content that untargeted metabolomics provides.

Discussion

Spectral libraries are essential knowledge bases that form a bridge between the past and future
of metabolomics: they capture the historical achievements of the metabolomics community in
structure elucidation to empower the next generation of biological insights. Currently there are
two prevalent strategies towards spectral library dissemination: as a commercial product or
freely available for public use. Although commercializing spectral libraries can be appealing to
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offset the significant costs associated with generating them, open spectral libraries that can
freely be used and reused provide a larger community benefit to advance science, by enabling
biological discoveries and supporting the development of the next generation of computational
and machine learning tools. We anticipate that with the ongoing shift towards open science and
data FAIRness (Findable, Accessible, Interoperable, Reusable), open spectral libraries will keep
growing in the near future to form increasingly comprehensive resources for the metabolomics
community.

There are still some challenges associated with generating and using spectral libraries in
metabolomics, however. Many spectral libraries have a considerable amount of missing
information. When compiling crowd-sourced spectral libraries, there is a trade-off between
requiring that all metadata has been unambiguously specified, which entails an additional time
commitment and complexity for users submitting their data, and freely accepting contributions.
The former results in a higher barrier towards contributing data to community spectral libraries,
leading to smaller spectral libraries, while the latter results in less defined spectral libraries. As it
is very challenging to completely eliminate all mistakes from spectral libraries, it is of the utmost
importance to understand the provenance of spectral library matches. This allows the end user
to make informed judgment calls to decide whether the matches should be followed up in
subsequent experiments. Popular community spectral libraries, such as GNPS and MoNA,
address this dichotomy by using a multi-faceted ranking system to rate individual MS/MS
spectra, contributing users, and MS/MS assignments. Furthermore, a critical evaluation of any
results by the user, irrespective of the spectral library source, is essential.

Despite their impressive growth in the past few years (Stein, 2012; Vinaixa et al., 2016; Kind et
al., 2018; Peisl et al., 2018; Xue et al., 2020), spectral libraries still only cover a minor part of the
known chemical space. For example, PubChem (Kim et al., 2021) currently contains information
for 112 million unique compounds (September 2022), whereas all metabolomics spectral
libraries combined account for less than 1% of those molecules. As spectral library searching
can only annotate known molecules with reference MS/MS spectra or related molecules using
analog searching, “unknown unknowns,” where experimental MS/MS spectra did not match any
of the reference spectra included in the spectral library, cannot be identified (Stein, 2012). Some
spectral library providers have started to integrate in silico MS/MS spectra alongside
experimental MS/MS spectra to partially address this issue. Especially as spectrum prediction
tools are getting increasingly better, this could be a viable strategy to expand the coverage of
spectral libraries. At present, however, we strongly urge caution when accepting annotations
based on simulated spectra only. It is still easiest to assess whether an MS/MS spectrum match
is acceptable based on the user’s search criteria through manual inspection of experimental
MS/MS data. Rather than being able to simulate MS/MS spectra for all 112 million compounds
in PubChem, we anticipate that in silico spectra could be a valuable addition for a subset of
specific molecular families for which the performance and quality of spectrum prediction tools is
well understood and has been carefully validated. For example, high-fidelity peptide mass
spectra simulated by deep learning-powered spectrum prediction tools are being increasingly
incorporated into various proteomics bioinformatics workflows (Gessulat et al., 2019), and the
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LipidBlast library, which consists of approximately half a million simulated MS/MS spectra, is
available through MoNA to annotate lipids (Kind et al., 2013).

Furthermore, there is a mismatch between the compounds included in spectral libraries and the
MS/MS spectra observed in experimental data. For example, out of 586,647 MS/MS spectra
present in the GNPS community spectral libraries, 22% have been found in experimental
datasets deposited to GNPS (Figure 2a). This indicates that many of the compounds
represented in reference libraries are not observed in metabolomics experiments, or that the
library MS/MS spectra were created in a different fashion than for experimental data, such as
when the preferred ion form is not included (Figure 3). Notably, even as the public libraries have
grown spectacularly over the previous decade, the rate of matched library spectra has remained
relatively consistent. This illustrates the previously described bias in the commercial availability
of pure reference compounds that are typically used for spectral library creation efforts. It also
indicates that many relevant biological compounds are currently still missing from available
spectral libraries, and that careful prioritization of the reference compounds to include is an
important aspect of generating spectral libraries that provide maximum benefit.

An emerging approach towards creating comprehensive metabolomics knowledge bases is to
expand upon traditional spectral libraries by integrating controlled and structured metadata
information alongside the mass spectral data. “Reference data-driven metabolomics” uses not
only annotated MS/MS spectra, but also all unannotated spectra in combination with
metadata-annotated source data (e.g. were the samples derived from foods, personal care
products, medications, etc.) as a pseudo spectral library (Gauglitz et al., 2022). This strategy
was exemplified by linking approximately 100,000 MS/MS spectra to 3,600 foods. A key aspect
of this approach is that the foods are organized in a hierarchical ontology to enable granular
downstream analyses of the food origins. For instance, an example path in the food hierarchy
consists of “fruit → citrus → lemon → pink lemon.” This enables performing analyses akin to
microbiome science, in which the data may be interpreted at the class, genus, species, or even
strain level depending on the research question at hand. Although this approach does not
produce exact molecular identities, it provides essential insights into the origin of the data by
matching against the reference source data, such as food. Reference data-driven metabolomics
using the GNPS platform can increase the number of interpreted MS/MS spectra by up to an
order of magnitude, and it has been used to obtain empirical assessments of dietary patterns
from untargeted metabolomics data (Gauglitz et al., 2022). Metadata-driven analyses can be
broadly applied beyond diet readouts to also investigate other exposures (e.g. medications,
personal care products, agrichemicals), disease phenotypes, organ system distributions,
taxonomic matching, and many other uses. The key aspect that empowers reference
data-driven metabolomics is that the spectral data are linked to controlled and curated metadata
to be used as a pseudo-reference library. A less flexible but related metadata system is
available for GC-MS data using BinBase, which covers a limited set of metadata (Lai et al.,
2017).

Although applied to proteomics, a related approach consists of “spectral archives,” which
include MS/MS spectra that have been repeatedly observed, irrespective of whether they could
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be annotated (Frank et al., 2011). Spectral archives can be built by large-scale clustering of
MS/MS spectra across multiple datasets or in an entire repository (Frank et al., 2008; Griss et
al., 2013, 2016; Bittremieux, May, et al., 2022). In this fashion, commonly observed spectra can
be grouped and unannotated spectra can be linked across multiple experiments to find
correlations with identified compounds (Stein, 2012).

There are also challenges associated with the ever-increasing size of spectral libraries. First,
this makes it more difficult to process the data, and better compute infrastructure and optimized
algorithms are necessary to process large spectral libraries (Bittremieux et al., 2019;
Bittremieux, Meysman, et al., 2018). Cloud-based solutions, such as the GNPS analysis
platform, have the potential to be extremely scalable while hiding this complexity from the user.
For example, GNPS allows users to query their data against 1.2 billion open MS/MS spectra
using the Mass Spectrometry Search Tool (MASST) to discover public datasets that contain
similar MS/MS spectra (M. Wang et al., 2020; West et al., 2022). Developing and maintaining
such platforms requires suitable, continued investments and a team willing to maintain the
resources for the benefit of the community. The same is also true for MetaboLights (Haug et al.,
2013), Metabolomics Workbench (Sud et al., 2015), HMDB (Wishart et al., 2021),
MetaboAnalyst (Pang et al., 2022), MZmine (Pluskal et al., 2010), MS-DIAL (Tsugawa et al.,
2020, p. 4), and other popular untargeted metabolomics resources. In response, to overcome
some of these challenges, subscription models or commercial libraries such as NIST, mzCloud,
or METLIN Gen2 continue to be needed. Second, interoperability of various tools and resources
is important. There currently does not exist an official data standard for spectral libraries yet.
Frequently used spectral library file formats include the mzML (Martens et al., 2011), mzXML
(Pedrioli et al., 2004), Mascot Generic Format (MGF), and the NIST MSP formats.
Unfortunately, some of these formats are only loosely defined, change over time, often without
explicit versioning, and spectrum metadata can be encoded in various non-standardized ways,
limiting the usability and portability of such spectral library files. The Proteomics Standards
Initiative of the Human Proteome Organization (HUPO-PSI) (Deutsch et al., 2017), which has
previously developed fundamental mass spectrometry data standards such as the mzML peak
file format (Martens et al., 2011), is currently working on a specification for spectral libraries
(https://github.com/HUPO-PSI/mzSpecLib/). Although the HUPO-PSI primarily develops data
standards for proteomics, many of their efforts are relevant for any application of biological mass
spectrometry. The HUPO-PSI working groups are open to any community contributions, and
interested parties are encouraged to engage in the development of this nascent spectral library
format to ensure its full compatibility with applications in metabolomics.

In conclusion, we want to re-emphasize the exciting times ahead for spectral libraries in
metabolomics. The community has become increasingly aware that capturing metabolomics
knowledge in the form of reference MS/MS spectra accelerates discoveries. Existing spectral
libraries have grown tremendously in the past few years, and we expect this growth to continue.
Bigger libraries, especially those that are freely available for community use, will enable
researchers to get more and better annotations from their data and achieve important biological
insights. Additionally, it will be possible to develop increasingly powerful machine learning
algorithms by training them on large spectral libraries. As some of these machine learning tools
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will improve the annotation rate in metabolomics and derive more value from existing and new
data, this will make it possible to annotate new high-quality MS/MS spectra for inclusion in the
next iteration of spectral libraries. As such, the growth of open spectral libraries and
development of machine learning tools will proceed in lockstep to power a virtuous cycle and
advance metabolomics in the upcoming years.
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