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ABSTRACT: Automated optimization in flow reactors is a technology that 

continues to gain interest in academic and industrial research. For drug 

substance applications, where limited material is available for extensive 
studies, it is imperative that the automated optimization procedure identify 

ideal conditions for manufacturing in a resource sparing manner.  It is 

equally as important that these investigations provide data-rich results so 
that the information can be used for process understanding. Achieving these 

two objectives in parallel is challenging with traditional automated 

optimization systems that rely on steady-state data.  Dynamic flow systems, 
which adjust process inputs in a controlled manner to collect transient 

reaction results, maximize reaction information content. In this work, the 

gains in reaction knowledge by performing the automated optimization in a 
dynamic flow system are demonstrated using a nucleophilic aromatic 

substitution as a case study. A gradient-based search algorithm is used to 

optimize a multi-faceted objective function that accounts for yield, material 
input, and productivity. The immense dataset from the automated dynamic 

optimization was used to establish a reaction model to provide greater 
insight to the reaction kinetics and selectivity.   

 

Introduction 
 

Flow chemistry and continuous reactors have proven to be enabling 

technologies for pharmaceutical reaction development and drug 
substance manufacturing.1-5 For process development, the ability to 

perform experiments in rapid sequential order has rendered flow 

reactors as powerful tools for reaction optimization.6-10 In flow 
reactors, where new experimental conditions can be achieved simply 

by adjusting flow rates or temperature, one factor at a time (OFAT) 
techniques can be used to individually select the residence time, 

reagent equivalents, or catalyst loading to achieve a desired reaction 

outcome.11-13 This strategy can be extended to multiple factors and 
used to explicitly enumerate the reaction performance over a defined 

design space.14, 15 While these approaches provide results that are easy 

to visualize, a more insightful and statistically relevant approach 
toward reaction optimization can be achieved by applying a design of 

experiment strategy to flow experiments.16  Factorial designs offer 

reaction sensitivity information and suggest how factors should be 
adjusted to improve reaction performance. As one nears the optimum, 

central composite designs are used to approximate the reaction 

response surface as a quadratic model with the proposed optimal 

conditions located at the model’s supremum. Each of these 

optimization methodologies described above are iterative, where data 

from the prior flow experiments are used to update experimental 
conditions in search of the optimal conditions. As such, the reaction 

optimization procedure becomes laborious and increasingly complex 

as the number of process variables grows.  
 

The speed and efficiency of these optimization studies can be greatly 

enhanced with automated optimization flow systems.  Here, the reactor 
system is equipped with Process Analytical Technology (PAT) for 

reaction monitoring, automation technology to adjust reaction 

conditions, and a feedback algorithm to guide sequential experiments 
toward the optimal conditions.  Early examples of this technology 

focused on self-optimization of single-step reactions using black-box 
optimization algorithms.17-20 Growing interest in flow chemistry 

research and applications, along with advancements in machine 

learning,21, 22 have led to the expansion of automated optimization 
systems.23  Besides optimizing the continuous variables of complex 

reactions,24 discrete optimization approaches have been used to 

identify the best solvent,25 base,26 and catalyst10, 27 for reactions.  By 
cascading flow reactors and including work-up modules in the flow 

system, automated systems have been used to optimize the conditions 

for an overall process of a multi-step synthesis.28, 29 
  

All automated optimization flow reactor systems require accurate and 

informative experimental data to arrive at the optimal conditions. Due 
to limited availability of starting materials, converging on the optimal 

conditions in a minimum number of experiments is imperative for drug 

substance process development. A judicious selection among the 
myriad of algorithms that have been implemented in automated 

optimization systems can improve efficiency of the optimization 

investigations,30 though this decision is also influenced by the number 
of variables, the constraints on the reaction system, accuracy of 

analytical methods, and prior knowledge of the reaction kinetics. 

Additionally, because the procedure is material intensive, it is unlikely 
that multiple automated optimization trials will be performed during 

development; therefore, the obtained solution must account for all 

important reaction features, such as yield, purity, and sustainability. 
Using a multi-faceted objective function, implementing an algorithm 

that can optimize multiple objective functions simultaneously, or using 

a model-based optimization approach31, 32 ensures superior utility of 
the optimization results. When these techniques cannot be used 

directly, it is important that the automated optimization provide 

sufficient data to generate accurate process models in post-run 
processing. These models can be used to predict reaction performance, 

to aid in process characterization experiments, and to identify the 

appropriate design space for manufacturing.   
 

Despite advancements in the efficiency of automated optimization, 

these systems have continued to rely on steady-state experiments. This 
data is collected inefficiently because the reaction material that exits 

the reactor as the flow systems transitions from one experiment to the 

next, approximately three to five reactor volumes, is discarded. 

Dynamic flow systems, on the other hand, have proven to be a data-

rich alternative to conventional steady-state approaches by adjusting 

reaction inputs in a controlled manner to collect transient data.33-36 In 
these dynamic systems, experimental information content is 

maximized as each element of the reaction outlet stream provides a 

new reaction data point. Linear, one-dimensional dynamic 
experiments, where a single variable is ramped, have shown to be 

efficient tools for kinetic studies.37 More recent work has illustrated 

increased efficiency by performing orthogonal 2-dimensional dynamic 
experiments.38 Multi-dimensional trajectories that combine linear and 

non-linear ramps have shown to yield higher levels of data density by 

efficiently transgressing large areas of the reaction design space.39, 40   
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In this work, the enhancement in data-rich experimentation from a 
dynamic flow system is demonstrated for an automated optimization 

application. The aromatic nucleophilic substitution (SNAr) shown in 

Scheme 1 was selected as a case study.41 Features of this reaction are 
common in drug substance applications, such as the parallel side 

reaction and the product degradation pathway. Here, the desired 

product (2) is the ortho-nitro addition of morpholine. The para-nitro 
isomer (3) and the overreaction double addition product (4) are 

considered impurities. To further relate this model chemistry to drug 

substance applications, a hypothetical scenario was created where the 
reaction was required to produce less than 5.0 LCAP42 of the double 

addition impurity to generate acceptable quality material, mimicking 

situations with limited downstream purge capability. A conjugate 
gradient method was used to optimize an objective function that 

considered reaction yield, double addition impurity level, process mass 

intensity, and residence time. The dynamic optimization was 
performed from two initial conditions to better understand if the global 

optimum was achieved. Data from these investigations were used to 

estimate kinetic parameters from a mechanistic model to provide 
further process insight and map the design space.   

 

Equipment & Experimental Methods 
 

Reactor Setup 

The flow platform (Figure 1) utilized in this work was designed to be 

reaction agnostic to afford flexibility for future applications. Substrate 
and reagent solutions were positioned on Mettler Toledo balances 

(ME4301) to monitor solution feed rates. The reactor system had three 

inlet feed streams that were preheated with heat exchangers, and a 
quench stream that entered downstream of the FTIR. Solutions were 

charged to the flow reactor using a manifold of high-pressure 

MilliGAT HF pumps (MG-2-CER-XT-NM, PTFE stator) via tubular 
heat exchangers (0.04” ID PFA, 25 ft, 6.2 mL each) that were 

submerged in a bath held at 75°C. The substrate stream (1) was mixed 

with the solvent stream using a tee-mixer (IDEX, PEEK, 0.050” ID, 

1/8”) and then immediately combined with the morpholine stream 

using an interdigital mixer (MiChS Co., LTD.) before entering the 
reactor (0.04” ID PFA, 12.36 mL). Residence time distribution studies 

for this reactor have been reported previously.40 The reactor 

temperature was controlled using a Polar Bear Plus (Cambridge 
Reactor Design) equipped with custom metal mandrals to secure the 

reactor, promote heat transfer, and improve experimental 

reproducibility. In-line monitoring of the reactor outlet stream was 
achieved with a Fourier Transform Infrared Spectroscopy (FTIR, 

 
Scheme 1.  SNAr reaction between 2,4-difluoronitrobenzene and 

morpholine 

 

 

 
Figure 1. Reactor schematic and picture of reactor in operation. 
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Mettler Toledo ReactIR 702L, D-Sub Micro Flow Cell DiComp). The 
reaction was quenched with a trifluoroacetic acid stream in a Y-mixer 

(IDEX, PEEK, 0.040” ID, 1/8”) prior to flowing through the fraction 

collector (Teledyne Isco Foxy R1) where off-line samples were 
obtained and analyzed using Ultra High Pressure Liquid 

Chromatography (UPLC, Agilent 1290 Infinity II). Check valves 

(IDEX, 3 psi, 0.020” ID, 1/8”) were leveraged between the FTIR and 
quench mixer to prevent backflow. 

 

Reactor Automation 

LabVIEW (National Instruments, 2018 SP1 Full Developer Suite) was 

used to automate the reactor platform, leveraging a state machine 

architecture from JKI (2018). LabVIEW-Matlab interfacing 
capabilities and the Open Platform Communication United 

Architecture (OPC UA) toolkit were utilized for various aspects of the 

automation sequence, optimization algorithm, and in-line analytics.  
New LabVIEW subVIs were generated or existing product 

architecture was leveraged to control the analytical balances, 

milliGAT pumps, Polar Bear Plus, and Foxy R1 fraction collector. 
Additionally, OPC UA functionality was leveraged to read data from 

the FTIR spectrometer for model regressions and optimization 

searches to evaluate performance in real-time. Additional details are 
provided in the ESI. 

 

Analytical Methods 

To maximize data capture for a single experiment, both in-line analysis 

(FTIR) and off-line analysis (UPLC) were performed to provide 
orthogonal datasets for comparison and validation.  The fraction 

collector used repeated fixed time intervals, specified at the start of the 

experiment for sample collection and diversion to waste. As discussed 
in previous work,40 to avoid averaging a broad range of dynamic 

reaction data, a so-called sampling bias, and associated decreased 

efficiency in data collection, it is recommended to sample based on 
time rather than by volume.  UPLC analyses were performed on an 

Agilent 1290 Infinity II using an analytical method from previously 

reported work40 that was leveraged and modified as a fit-for-purpose 
method for the SNAr chemistry investigated here. Additional details 

around sample preparation, method parameters, calibrations and 

analysis are provided in the ESI. 
 

Infrared (IR) spectra were analyzed in the MettlerToledo iC IR 

software environment (version 7.1). Off-line UPLC results were used 
to calibrate the FTIR data to train and validate a quantitative model. 

This predictive model auto-selected the number of factors using 

spectral information in two regions, 3800 – 2500 cm-1 and 1800 – 750 
cm-1, due to the ATR bands for diamond.  

 

Experimental Conditions & Procedure 

All experiments were performed in the reactor setup described above. 

The LabVIEW code required multiple inputs prior to an automated 

experiment, including the reaction parameters (solution 
concentrations, the desired reaction concentration, reactor volume) 

and the optimization parameters, such as the initial point, bounding 

factors, maximum search step size, and termination criteria.  To set the 
design space, the lower and upper bounds on the residence time (τ) 

were set to 1 and 20 min, respectively, while the bounds for 

morpholine equivalents (equiv) were set from 0.5 to 4.0. These design 
space constraints along with the feasible range of pump flowrates 

helped to establish the various stock stream concentrations and reactor 

volume.  
 

The stock solutions of 2,4-difluoronitrobenzene and morpholine were 

prepared at 1.25 M and 3.5 M, respectively, in ethanol.  Solutions were 
prepared in advance of experiments and were found to be stable via 

HPLC analysis upon extended age. Biphenyl (0.3 M) and bibenzyl (0.4 

M) were used as internal standards in the starting material and 
morpholine streams, respectively, to confirm experimental reaction 

concentration and morpholine equivalents. To allow residence time 

and morpholine equivalents to vary independently, a stream of neat 
ethanol was included, affording an additional degree of freedom to the 

system. Additionally, to enable accurate offline analysis of the 

collected fractions, a 3.5M trifluoroacetic acid (TFA) in ethanol stream 

was used to quench the reaction downstream of the FTIR, with the 
TFA equivalents held constant at 4.0 throughout. All reactions were 

performed at 75°C. This temperature was selected from a range of 

values explored in previous works.16, 41 Please refer to the ESI for 
additional experimental details.   

 

Correction of Conditions 

The correct interpretation of experimental results obtained under 

dynamic flow conditions requires a correlation between the recorded 

data points as a function of time on stream and the achieved reaction 
conditions determined by the history of input flowrates.  Due to the 

finite holdup volume of the flow reactor, reaction conditions set at the 

reactor inlet (e.g., equivalents) as well as the instantaneous residence 
time based on flowrates are not immediately realized at the reactor 

effluent.  Instead, the actual conditions achieved must be calculated 

knowing the instantaneous flowrate profile provided as inputs. This 
correction of experimental conditions is performed for each inline 

(FTIR) or offline (UPLC) analytical data point to directly correlate 

reaction results to experienced reaction conditions.  
 

The realized residence time for a single reaction element eluting from 

the reactor is calculated from Eq. 1, where Q(t) is the flowrate profile, 
VReactor is the total reactor volume,  and ti and tf are the initial and final 

reaction time, respectively. The residence time, τ, is then defined as 

the difference between the final and initial reaction times, as expressed 
in Eq. 2.  

𝑉𝑅𝑒𝑎𝑐𝑡𝑜𝑟 = ∫ 𝑄(𝑡)𝑑𝑡
𝑡𝑓

𝑡𝑖
           (1) 

 

𝜏 = 𝑡𝑓 − 𝑡𝑖                   (2) 

 

In practice, the effluent of the reactor does not always represent the 
point of inline or offline sampling, particularly if there is a quench to 

halt reaction progress for more accurate reaction analysis. When dead 
volumes and quench streams are applicable, Eq. 3 is solved in parallel 

with Eq. 1 and Eq. 2, where tmeas, Vd, and Qquench(t) represent the time 

of measurement, dead volume, and quench flowrate profile, 
respectively.  

𝑉𝑑 = ∫ [𝑄(𝑡) + 𝑄𝑞𝑢𝑒𝑛𝑐ℎ(𝑡)]𝑑𝑡
𝑡𝑚𝑒𝑎𝑠

𝑡𝑓
    (3) 

Eqs. 1 – 3 relate the residence time, τ, to the measurement time, tmeas, 

which can be specified to reflect the periodic sampling of either the 
FTIR or the fraction collector. Similarly, the morpholine equivalents 

can also be calculated for each tmeas by comparing the instantaneous 

flowrates of the 2,4-difluoronitrobenzene and morpholine at the start 
of the reaction, ti. The experimental equivalents are given by Eq. 4, 

where CMorpholine, CSM, QMorpholine, and QSM are the morpholine stream 

concentration, starting material stream concentration, morpholine 
stream flowrate, and starting material stream flowrate, respectively. 

 

𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑖𝑛𝑒 𝐸𝑞(𝑡𝑚𝑒𝑎𝑠) =
𝐶𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑖𝑛𝑒𝑄𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑖𝑛𝑒(𝑡𝑖)

𝐶𝑆𝑀𝑄𝑆𝑀(𝑡𝑖)
          (4) 

 

While analytical solutions exist for linear dynamic variations to 

residence time,33 more complex flow rate profiles require  numerical 
integration. Conditions for all experiments performed in this work 

were corrected for each measurement sample using custom Matlab 

code. More information is provided in the Electronic Supplemental 
Information. 

 

Optimization Methodology & Results 
 

Optimization Strategy and Objective Function Definition 

The optimization strategy was assembled through preliminary 

dynamic experiments, consideration for real-time reaction monitoring 

capability, and elements of process development that are typically 
important to drug substance manufacturing. First, the process variables 

for reaction optimization were identified and limited to residence time 

and morpholine equivalents for this SNAr case study. Although 
temperature is often included in optimization studies, dynamic 

trajectories in temperature can be challenging as correcting the 

experimental conditions requires a temperature-dependent kinetic 
model a priori,38 or a sluggish trajectory to accurately estimate the 
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reaction temperature experienced in the dynamic experiment.39  

Because the focus of this work revolves around increasing data-density 
of automated optimization systems and minimizing resource 

requirements, it was decided to not include reaction temperature in this 

initial demonstration.   
   

Next, preliminary one-dimensional dynamic flow experiments were 

performed to characterize reaction performance over the design space 
and correlate results to process parameters. These initial experiments 

also provided an appreciation for data reproducibility and were used 

in the calibration of the FTIR model. Two experiments dynamically 
varied residence time from 1 to 20 minutes at morpholine equivalents 

of 2.0 and 3.5, while a third experiment dynamically varied 

morpholine equivalents from 0.25 to 4.0 at a constant residence time 
of five minutes. The dynamic transient time (60 min), temperature 

(75°C), and sampling strategy (one FTIR scan and one UPLC sample 

per minute) were held constant in each run. During these dynamic 
experiments, the in-line FTIR recorded spectra of the reactor outlet 

stream while the fraction collector aliquoted quenched reaction 

samples for off-line UPLC analysis. During post-run processing, the 
reaction conditions corresponding to each acquired data point were 

corrected using Eqs. (1) – (4), enabling accurate correlation between 

reaction performance and the two parameters of interest across the 
design space. 

 

Results for the three one-dimensional dynamic experimental runs are 

provided in Figure 2. Of note, over 370 UPLC results were obtained 

from these three dynamic experiments highlighting the data-density 
gains associated with this experimental methodology. The reaction 

profiles for the various experiments are plotted against time on stream 

(Figure 2, X-1 plots) and the corrected conditions (Figure 2, X-2 plots).  
Experimental reaction data followed the expected trends in conversion 

and impurity generation with respect to residence time and morpholine 

equivalents. Excess morpholine results in faster conversion rates to the 
desired product (2), but generates stability concerns as product 

degradation and double addition impurity (4) formation occur with 

increasing residence time. This trend is best viewed in Figure 2, A-2, 
where 3.5 equivalents of morpholine resulted in near reaction 

completion and a product yield of approximately 84%; however, 

significant quantities of the double addition impurity formed with 

slightly longer residence times. In aggregate, these dynamic 
experiments reveal a balance between residence time, morpholine 

equivalents, yield, and purity.  

 
The mass balance closure was greater than 97% in all samples, 

validating the sampling, analytical, and post-processing methods. 

Experimental reproducibility was assessed by comparing the reaction 
results at conditions that overlapped across the dynamic trajectories.  

There was a maximum error of 1.0% in the reaction species 

concentrations for the duplicate measurements at 2.0 morpholine 
equivalents and five-minute residence time, and for those at 3.0 

equivalents and five-minute residence time. These data reinforce the 

accuracy and reproducibility of the platform and methodology 
allowing the work to reliably transition to the automated optimization 

runs. 

 
These experimental data were also leveraged to calibrate a 

multivariate, partial least squares (PLS) FTIR model for the main 

reaction species and the bibenzyl internal standard. FTIR trends for the 
reaction species derived from the resulting model are provided against 

the UPLC data results in Figure 2. Parity plots of measured UPLC 

concentrations and the model predicted FTIR concentrations are 
provided in the ESI. Overall, there was excellent agreement between 

the FTIR models and the UPLC measurements, giving confidence that 

the FTIR could be used for accurate real-time reaction monitoring and 

provide quantitative feedback in the optimization routine.   

 
This preliminary knowledge and analytical capability enabled 

definition of an objective function suitable for many drug substance 

manufacturing applications. Because comparable reaction 
performance was observed across different conditions, these 

experiments suggested that reaction inputs such as residence time and 

morpholine equivalents could be included in the optimization 
objective function to search for ideal operating conditions that also 

achieve target performance. This feature can be important in drug 

substance manufacturing as multiple aspects, such as process mass 

  
Figure 2.  One-dimensional dynamic reaction experimental results, showing the FTIR ( ̶ ) and UPLC (○,□,∆,◊) results for the various species. The figures 

portray results from (A-1, A-2) dynamic residence time (1 – 20 min) at constant morpholine equivalents (3.5), (B-1, B-2) dynamic residence time (1 – 20 
min) at constant morpholine equivalents (2.0), and (C-1, C-2) dynamic equivalents of morpholine (0.25 – 4.0) at constant residence time (5 min). Plots 

X-1 represent the reaction performance data as a function of experimental time, while plots X-2 show the reaction performance against the corrected 

reaction conditions from the 1-dimensional dynamic ramps.  

 



 

5 

intensity, robustness, and cycle time, are considered in addition to 
yield and purity. Using the objective function (Fobj) defined in Eq. 5, 

the optimization routine aimed to maximize yield while achieving 

other desired properties through several penalty functions,  Pi. Here, 
piecewise quadratic penalty functions corresponding to P1, P2, and P3 

were used to maintain target thresholds on double addition impurity 

formation, morpholine use, and residence time, respectively. The 
penalty functions are presented in Figure 3 with the mathematical 

formulae given in the ESI. As common with many optimization 

routines, the maximization problem was solved by minimizing the 
negative objective function.   

 

𝐹𝑂𝑏𝑗 = [ 
[𝟐]

[𝟏]𝑖𝑛𝑖𝑡𝑖𝑎𝑙
− ∑ 𝑃𝑖]         (5) 

 
Optimization Procedure 

Given the nature of dynamic flow experiments, where conditions are 

gradually adjusted to move along a trajectory, a gradient-based 
optimization approach was deemed the most appropriate to implement 

in this work. Similar to how numerical solvers perform iterative 

calculations along a gradient-based search direction to locate the 
optimum, an automated dynamic flow system continually profiles the 

reaction along the search trajectory. The paths taken by the gradient-

based search also provide a straightforward, visual understanding of 
the objective function response surface.  As such, the optimization 

procedure provides a solution and an interpretation of the process 

sensitivities across the search areas.  Furthermore, gradient-based 
search algorithms are typically efficient at finding a local optimum and 

may minimize the material quantity required to obtain an experimental 

solution.   
 

What follows is the procedure for how a gradient-based search 

algorithm was applied to dynamic flow experimentation. For 

reference, a comprehensive flowchart of the approach is provided in 

Figure 4. 
 

Response Surface Model with Transient Datasets  

Experimentally, gradients are estimated by first fitting a response 
surface model of the objective function over a subset of the design 

space and then taking the derivative with respect to the factors.  A 

variety of experimental designs are suitable for this purpose, but 

 
Figure 3. Piecewise quadratic penalty functions visualizing the penalty 

value as a function of double addition impurity levels (  ̶), morpholine 

equivalents ( ̶ ), and residence time (  ̶). 

 

 
Figure 4. Flowchart describing the optimization algorithm along with associated decision points. Contents within dashed lines represent iterative, 

automated operations.  

 



 

6  

factorial and central composite designs are most common in drug 
substance process characterization. For two-factor designs, a 22 full-

factorial design forms a square with experiments performed at the 

vertices and an experiment at the center to evaluate curvature. While 
this design is efficient for steady-state experiments, dynamic 

experiments can better utilize material streams and provide more dense 

datasets by continuously collecting data along a trajectory that outlines 
a standard experimental design. While a few continuous function 

forms were evaluated for establishing a response surface model (see 

ESI), a circular path inscribed within the vertices of a 22 factorial 
design was selected. To evaluate curvature over the local design space, 

the system underwent a step-change to the center point and collected 

a single steady-state data point. While this discontinuity in 
experimental path was undesired as a fully dynamic optimization was 

pursued, compared to alternative methods considered, this simplistic 

design offered a straightforward approach to achieving corrected 
conditions that more closely resembled the intended dynamic design.  

A more detailed discussion of these dynamic design of experiment 

patterns and the corresponding corrected conditions are provided in the 
ESI.     

 

With the dynamic design of experiment structure established, other 
key parameters governing the operations were defined. The dynamic 

transient time (tdynamic), defined as the time for dynamic operations, and 

the reaction residence time center point (tCP) both impact how closely 
the corrected conditions match the targeted input conditions.  Over the 

course of this work, the ratio tdynamic/tCP was identified as a tuning 
parameter to balance experimental throughput and roundness of the 

corrected conditions. Simulations were performed at various tdynamic/tCP 

values (see ESI), and a ratio of 15 struck the appropriate balance for 
this application. Example dynamic design of experiments simulations 

with a tdynamic/tCP of 15 are provided in Figure 5, showing the 

consistency across differing center point and dynamic transient time 
conditions. Additionally, parameter ranges around the design center 

point, [τCP, EquivCP], were set at EquivCP ± 0.5 for morpholine 

equivalents while the range in residence time was variable for each 
center point expressed as τCP ± 0.25 · τCP. These ranges were selected 

to ensure a measurable response in both parameters regardless of the 

center point. Prior to performing the dynamic design of experiments, 
residence time and equivalents ranges were transformed to coded 

variables, x1 and x2, respectively, which ranged from -1 to 1. These 

coded variables were leveraged through the dynamic design of 
experiments, regression, and gradient calculation; coded variables 

were then renormalized prior to the search operation. 

 

The above dynamic design of experiments methodology was 

implemented in practice in the following manner:   

 

1. Experimental factors [τ, Equiv]  were converted to coded factors 

[x1,x2] using a specified or calculated center point [τCP, EquivCP] and 

the pre-defined factor ranges. 

2. Performed initial steady state experiment at [x1,x2] = [0,1].  

3. Dynamically progressed clockwise around the circular design, 

returning to [x1,x2] = [0,1]. 

4. Re-equilibrated system at [x1,x2] = [0,1]. 

5. Performed step change to the center point conditions [x1,x2] = [0,0] 

and flushed three system volumes to achieve steady-state and 

obtain reaction performance at center point  
 

After performing the circular design of experiments and recording 

reaction results via the inline FTIR, the automated optimization 
algorithm corrected reaction conditions (Eq. 1 - 4) using imbedded 

Matlab code. The yield and penalty functions were evaluated at each 

corrected condition to calculate the corresponding objective function 
value. Stepwise linear regression was then used to model the objective 

function as a quadratic function of the two parameters, corrected 

residence time and morpholine equivalents, as shown in Eq. 6. 
 

𝐹(𝒙) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2         (6) 

 

A quadratic model was selected as the basis for regression as this 
structure is often applied to response surface models around an 

optimum and capture curvature in systems without overfitting. When 

far from the optimum, curvature becomes less pronounced and the 
model reduces to linear terms.   

 

Before implementing in a fully autonomous optimization, the above 
protocol was tested in a series of experiments in two different regions 

of the design space. These validation experiments are provided in the 

ESI. Results indicate that the algorithm responsible for the 
experimental design, data manipulation/transformation, and regression 

to generate a response model performed adequately. These results not 

only validate the algorithm to generate a response surface model, but 
also ensure an accurate gradient is obtained from which to inform a 

path forward towards the reaction optimum.  

 
Search Direction and Termination Criteria 

From the objective function response surface model (Eq. 6), the 

gradient vector, g(x), can be estimated as the partial derivative with 
respect to input factors (Eq. 7 – 8).   

 

𝒈(𝒙) = 𝛁𝑭(𝒙) = [
𝝏𝑭

𝝏𝒙𝟏
,

𝝏𝑭

𝝏𝒙𝟐
]                    (7) 

 

𝒈(𝒙) = [β1 + β12x2 + 2β11x1, β2 + β12x1 + 2β22x2]       (8) 

 

The gradient can be used as the search direction for sequential 

experiments, as in the case for method of steepest descent.  While this 
search direction is a logical approach for the initial search (k=1), 

successive search iterations (k>1) can lead to slow convergence. 

Alternatively, conjugate gradient techniques may offer faster 
convergence as these methods use a mixture of the new steepest 

descent direction (gk+1) and the previous search direction (pk). This 

weighted search prevents large shifts in the search direction, making 
conjugate gradient methods less prone to slow convergence for 

corrugated objective function responses surfaces.    

 

In this work, the search direction vector, p(x), was calculated using the 

Polak-Ribiere conjugate gradient (PR-CG) method. This protocol 

provides favorable convergence for quadratic cost functions and biases 

the search direction toward the direction of steepest descent when the 

cost function is not quadratic.43 As defined by Eq. 9 - 10, the PR-CG 

method leverages objective function trends from the current gradient 
(gk+1), the previous gradient (gk), and the prior search direction (pk) in 

calculation of the new search vector to avoid the “zig-zag” behavior in 
the steepest descent. In these calculations, the gradient of the current 

iteration, g(x)k+1, is calculated using the current center point, xk+1, and 

the previous gradient, g(x)k
, which was measured at the previous center 

point, xk.   

𝒑𝑘+1 = 𝒈(𝒙)𝑘+1 + 𝛾𝒑𝑘                  (9) 

 

𝜸 =
𝒈(𝒙)𝑘+1∙(𝒈(𝒙)𝑘+1−𝒈(𝒙)𝑘)

𝒈(𝒙)𝑘∙𝒈(𝒙)𝑘
                        (10) 

 
Figure 5. Simulation results showing the instantaneous ( ̶ ) and 

associated corrected (  ̶) conditions for two example circular design of 

experiments centered at [τ, Equiv] = [2 min, 2.0] (left) and [15 min, 2.0] 

(right). The dynamic transient time, calculated using the 𝑡𝑑𝑦𝑛𝑎𝑚𝑖𝑐/

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ratio of 15, is shown for each simulation as well. 
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With a known search trajectory, a path for dynamic experiments was 
calculated from the current center point.  The automated optimization 

performed dynamic experiments along this search direction. To ensure 

that the corrected conditions closely followed the targeted search 
condition pathway while simultaneously considering experimental 

efficiency, a series of conditional statements were used to keep the 

maximum rate of change for the residence time,  ∆�̇�𝑚𝑎𝑥, at 2.5 s/s and 

the maximum change in morpholine equivalence,  ∆𝐸�̇�𝑚𝑎𝑥, at 2.5 x 

10-4 equivalents/s. As the FTIR data became available, the reaction 

yield and the penalty functions were computed for the objective 

function with the pre-corrected line search conditions. Dynamic line 
search experiments continued until the slope of the objective function 

for the five most recent experiments became non-negative. Using the 

slope from a series of data points made the line search termination 
more robust to experimental noise and error.  After terminating the 

dynamic line search, the system identified the search conditions that 

provided the best objective function value. These conditions were 
selected as the new center point, and the system performed a new 

circular, dynamic design of experiment using updated coded variables, 

as defined above. 
 

This iterative procedure of performing dynamic design of experiments 

and line searches continued until the optimal conditions resided within 
the response surface of the current dynamic design of experiment. 

These conditions are defined as a point, x*, which lies within the 

bounds of the current dynamic design of experiment range, has g(x*) 
= 0, and a positive Hessian, H(x*) > 0.  When these conditions are 

satisfied, the program terminated.   

 

Automated Optimization Results  

 

Building from the preliminary experimental work and methodology 

described above, automated dynamic experiments were performed 

from two initial conditions. The first investigation started with a 
residence time of 2 minutes and 1.5 morpholine equivalents. These 

initial conditions achieved incomplete reaction conversion allowing 

for investigation into how the system would improve the reaction 
performance while balancing the penalty functions. The second 

investigation started at a 15 minute residence time and 3.5 equivalents 

of morpholine. Under these conditions, yield was near maximum 

levels, but double addition impurity levels were elevated and the 

penalty functions greatly diminished the objective function value. 

Here, optimization progress would aid in understanding how the 
system would move toward preferred operating conditions when final 

conversion levels were already realized. Additionally, performing 

these independent experiments provided a sense of system robustness 
and increased the likelihood of identifying a global optimum. As 

shown in Table 1, the results from both dynamic optimization 

investigations converged to an optimum near 10 minutes and ~2.3 
equivalents of morpholine.  

 

As the experimental approach was consistent across the two 
investigative experiments sans the initial conditions, an in-depth 

dissection of the experimental results is limited to the run initialized at 

a residence time of two minutes and 1.5 morpholine equivalents 
(Investigation #1); additional details for Investigation #2 can be found 

 
Figure 7. Objective function plotted against the design space 

conditions for the optimization run starting from [2 min, 1.5 equiv]. 

 

 

Figure 6. Conditions and experimental results from the automated 

optimization run starting from [2 min, 1.5 equiv] presented as a function 

of experimental time on stream. (A) Flowrates for the 3 streams 

combined to drive the reaction and control conditions: 2,4-

difluoronitrobenzene (SM), Morpholine (Base) and Ethanol (Solvent). 

(B,C) Instantaneous/input conditions and subsequently corrected 

conditions as a function of time on stream. (D) UPLC and FTIR data 

results for the 4 species: (1) 2,4-difluoronitrobenzene, (2) 4-(5-fluoro-

2-nitrophenyl)morpholine), (3) 4-(3-fluoro-4-nitrophenyl)morpholine), 

(4) 4,4'-(4-nitro-1,3-phenylene)dimorpholine. (E) Calculated objective 

function based on the FTIR results and corrected conditions as a 

function of experiment time. 

 

  

Table 1.  Initial and final conditions for the two automated dynamic 

optimization investigations along with the calculated objective function 

for each conditions set 

 
 Initial Conditions Final Conditions 

 τ 

(min) 
Equiv F# 

τ 

(min) 
Equiv F# 

Investigation 

#1 
2.0 1.5 -0.36 10.2 2.39 -0.77 

Investigation 

#2 
15.0 3.5 +0.50 10.0 2.26 -0.78 

# Gradient algorithm operated as a minimizer with more negative responses correlating to more 

desirable outcomes 
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in the Electronic Supplemental Information. In Investigation #1, 
starting with the initial conditions of two minute residence time and 

1.5 equivalents, the dynamic flow system continuously adjusted flow 

rates (Figure 6A) to tune the residence time and morpholine 
equivalents (Figure 6B-C) to improve the reaction performance 

(Figure 6D) and objective function (Figure 6E). Closer inspection of 

the data reveals that the flow reaction conditions were predominantly 
dynamic throughout the experiment and operated under steady-state 

only during the step changes to the center point (Figure 6A). The 

corrected conditions (Figure 6B-C) matched the targeted input 
conditions due to the well-informed selection of dynamic transient 

times, as discussed previously. The FTIR model that was used for 

feedback was further validated through off-line UPLC analysis of 
collected, quenched samples (Figure 6D).  Overall, the automated 

dynamic optimization collected 907 FTIR and 302 UPLC data points 

during its search for the optimal conditions.   
 

The approach that the automated dynamic optimization system used to 

arrive at the optimal conditions for the first investigation can be best 
understood through a series of figures. The procedure began with the 

dynamic design of experiment around the initial conditions of two 

minute residence time and 1.5 equivalents of morpholine, 
corresponding to the circular subset of data surrounding the initial 

conditions in Figure 7. Note, the circular dynamic design of 

experiment generated in coded factors is elongated when plotted with 
real variables.  Step wise regression was then performed on the 

objective function output to generate the response surface model 
(RSM) shown in Figure 9, RSM #1. The RSM #1 parity plot in Figure 

9 shows the excellent agreement between the experimental objective 

function values and those predicted by the empirical model.  This 
agreement assures that the optimization algorithm can leverage the 

response surface model to accurately identify the appropriate search 

direction.   
 

As the contours of RSM #1 illustrate, the gradient in this region of the 

design space showed that improvements to the objective function 
could be achieved by increasing morpholine equivalents and residence 

time. The lack of active penalty functions in this region indicated that 

this improvement was driven by increased product yield at longer 
residence time and higher equivalents.  For the first dynamic line 

search, the autonomous optimization procedure used the method of 

steepest descent to move along the gradient, starting from the center 
point. In Figure 7, this search corresponds to the line of dynamic 

experiments originating from the initial center point. The objective 
function values obtained during this dynamic search are provided in 

Figure 8, Search #1. As this profile shows, significant improvement in 

the objective function was achieved during this first search and 
terminated once a series of successive dynamic experiments showed 

little improvement. Following termination, parsing the search dataset 

identified new local best conditions of 2.62 minutes residence time and 
2.58 equivalents morpholine.   

 

The second dynamic design of experiment was performed around 
these new best conditions, resulting in the circular dataset centered 

 

Figure 8. Progression towards minimizing objective function values 

during the four searches performed during Investigation #1, the run 

starting from [τ, Equiv] = [2 min, 1.5 equiv]. The black arrow in each 

figure signifies the minimum value  throughout the search informing 

the next dynamic DOE center point conditions chosen. 

 

 
Figure 9. Response surface model results for the various DOEs performed during the Investigation #1, the run starting from [τ, Equiv] = [2 min, 1.5 

equiv]. Each DOE and regression is represented within each column. (Top Row) Comparison of the experimental objective function results and the 

response surface model mesh against the design space region. (Middle Row) Contour plot describing the response surface model and directionality. 

(Bottom Row) Parity plots of the experimental data against the predicted values based on the RSM. Color Scale: Objective function improves as color 

transitions from blue to red. 
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around 2.62 minutes residence time and 2.58 equivalents morpholine 
in Figure 7. Similar to the operations described above, the algorithm 

used this data to regress a response surface model (Figure 9, RSM#2) 

which also showed excellent agreement with the experimental data 
(Figure 9).  Here, as in subsequent iterations, the conjugate gradient 

method was used to calculate the search direction. Consequently, 

although the gradient in this region suggested that greatest 
improvement in the objective function would be achieved by 

increasing residence time alone, information from the prior design of 

experiments was leveraged to perform a dynamic line search with 
increasing residence time and equivalents. Objective function values 

during this dynamic line search are provided in Figure 8 and 

correspond to the line of dynamic experiments that originated from 
2.62 minutes residence time and 2.58 equivalents morpholine in Figure 

7, ultimately terminating with a new FObj best at 5.52 minutes residence 

time and 2.95 equivalents morpholine.   
 

The autonomous system continued these iterative operations of 

dynamic design of experiments and subsequent conjugate gradient line 
searches for three more iterations. During these later optimization 

experiments, the penalty functions became active and steered the 

dynamic routine toward high yielding conditions with more desirable 
operating conditions.  In the last dynamic design of experiments 

enveloping 10.23 minutes and 2.37 equivalents, the response surface 

model exhibited curvature with a calculated root within the space 
explored (Figure 9, RSM#5).  After verifying the response surface 

model had a positive definite Hessian, the algorithm concluded that 
the calculated root was indeed an optimum and terminated. Under 

these conditions, the reaction achieved a 78% yield and a double 

addition impurity level of 1.2 area% with ~8% residual starting 
material and ~10% side-product impurity present. Additional detail 

regarding the response surface models terms, gradient vectors and 

search vectors can be found in the ESI.  
 

Using similar operations, a second automated optimization 

(Investigation #2) was performed starting at a residence time of 15 min 
and 3.5 morpholine equivalents (see the results in Figure 10). 

Additional details and data for this investigation can be found in the 

ESI. In contrast to the previous optimization run, the dynamic design 
of experiment in this initial region captured product and isomer 

overreaction to the double addition impurity. Consequently, objective 

function values in this region were heavily penalized for double 
addition impurity levels as well as excessive values of morpholine 

equivalents and residence time. The resulting gradient calculated from 

the response surface model pushed the system towards shorter 
residence times and lower morpholine equivalents to ameliorate the 

penalty functions while maintaining high reaction yield. The 

subsequent first dynamic line search terminated at a residence time of 
approximately 8 minutes and 2.6 morpholine equivalents. The 

algorithm similarly iterated between the dynamic DOE/search 

operations until termination criteria were satisfied. 
 

Results from the second DOE (RSM#2) of Investigation #2 indicated 
that, while the optimal conditions were not found within the circular 

DOE, the predicted optimal conditions were within the rectangular 

design space subset studied during that DOE. As per the coded 
algorithm, no additional search was performed, but rather, the system 

shifted to a new center point at the hypothesized optimum and 

performed one additional confirmatory DOE and RSM generation.  
The resulting RSM identified that a minimum existed within the design 

space subset, reporting out an optimum at 10.0 min residence time and 

2.26 equivalents morpholine (FObj = -0.78). This identified optimum 
was close to the final center point [10.0 min, 2.23 equiv] indicating 

good agreement with the predicted optimum from the second RSM. At 

the center point of the final DOE, the reaction produced a 79% yield 
to the desired product, ~7% starting material, 10% side-reaction 

impurity, and ~1.6A% overreaction double addition impurity. While 

the reaction performance along with the identified optimal conditions 
for the observed optimum from both optimization experiments do not 

exactly match, despite comparable conditions, these results are within 

experimental error. Optimization results were ultimately confirmed 
using steady state experiments, results of which can be found in the 

ESI. 

 

Kinetic Modelling  
 

At a cursory glance, results from the automated dynamic optimization 

provide a set of preferred operating conditions that achieve the desired 
reaction outcome. Additionally, the dense data set from these 

investigations can also be used to build a mechanistic model to gain 

further process insight. This model can be leveraged to better define 
the design space, establish process robustness, and identify process 

sensitivities through numerical methods. To demonstrate this 

potential, the automated dynamic optimization data from this SNAr 
case study was used to build and regress a precise kinetic model.  

 

The set of equations (Eqs. 11-22) describing the overall reaction 
network was established from the set of reactions given in Scheme 1.  

To facilitate kinetic modeling, the equilibrium constant, Keq, for the 

acid neutralization was estimated from published pKa values for 
hydrofluoric acid (pKa = 3.8)44  and morpholine (pKa = 8.36).45  The 

rate constants were regressed by minimizing the weighted sum of 

squared errors using the quantitative FTIR data and corrected 
conditions obtained from the dynamic optimization trials. Additional 

modeling and regression information is provided in the ESI. The 

resulting best fit parameters and the associated 95% confidence 
parameters are listed in Table 2. Parity plots for the desired product (2) 

and the double addition impurity (4), key species influencing the 

optimization objective function, are shown in Figure 11 and highlight 
the excellent agreement between experimental and predicted reaction 

performance. 

 
This kinetic model was used to profile the product yield, the double 

addition impurity formation, and the objective function (Eq. 5) over a 

 

Figure 10. Objective function plotted against the design space 

conditions for Investigation #2, the optimization run starting from [τ, 

Equiv] = [15 min, 3.5 equiv]. 

 

 

𝑟1 = −𝑘1[1][5]    (11)  

𝑟2 = −𝑘2[2][5]     (12) 

𝑟3 = −𝑘3[1][5]    (13) 

𝑟4 = −𝑘4[3][5]    (14) 

𝑟5 = −𝑘5 ([6][5] −
1

𝐾𝑒𝑞
[7])   (15) 

𝑑[1]

𝑑𝑡
= 𝑟1 + 𝑟3    (16) 

𝑑[2]

𝑑𝑡
= −𝑟1 + 𝑟2    (17) 

𝑑[3]

𝑑𝑡
= −𝑟3 + 𝑟4    (18) 

𝑑[4]

𝑑𝑡
= −𝑟2 − 𝑟4    (19) 

𝑑[5]

𝑑𝑡
= 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4 + 𝑟5    (20) 

𝑑[6]

𝑑𝑡
= −𝑟1 − 𝑟2 − 𝑟3 − 𝑟4 + 𝑟5   (21) 

𝑑[7]

𝑑𝑡
= −𝑟5     (22) 
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range of residence times and morpholine equivalents (Figure 12). 

These modelled response surfaces illustrate the reaction features that 

reinforce the experimental results from the automated dynamic 
optimization. At short residence times and low morpholine 

equivalents, increasing the morpholine charge leads to the most 

significant gains in the objective function as more morpholine is 
needed to counter the neutralization of hydrofluoric acid and increase 

yield. High yields at minimum residence times can be achieved with 

super stoichiometric morpholine but similar yields at more modest 
morpholine levels are realized by extending the residence time. The 

penalty function, P2, builds this latter preference into the automated 

dynamic optimization and results in the downward sloping objective 
values observed at the upper left portion of the design space.  In the 

later searches of the first automated dynamic optimization trial, the 

algorithm reaches the optimum by balancing residence time and 
morpholine equivalents while maintaining high yields in the search. 

 

At long residence times and high morpholine equivalents, such as 
those used in Investigation #2, the reaction exhibits high yield and 

elevated double addition impurity levels. These double addition levels, 
the excessive amounts of morpholine, and the unnecessarily long 

residence times cause the penalty functions to dominate the objective 

function value. From this design space area, the automated dynamic 
optimization searches for conditions that minimize these penalty terms 

while improving reaction yield. Additionally, as multiple penalty 

functions are active in this portion of the design space, the objective 
function improves quickly and significantly along the initial search for 

the second automated dynamic optimization.  In fact, the algorithm 

quickly approached a region of optimal conditions described by the 
elliptical plateau of the objective function within the design space of 

2.0 – 2.6 equivalents of morpholine and residence times between 6 and 

14 minutes. 

 

Conclusions 
 

As shown in this work, performing autonomous optimization with 
dynamic flow operations provides a unique, data-rich solution to a 

common process development problem. The data-dense, multi-

dimensional trajectories obtained between the initial and optimal 
conditions capture the reaction sensitivities over a broad design space, 

information that would require extensive time and materials under 

traditional steady state conditions. For drug substance development 
and manufacturing, this wealth of multi-variate data provides 

invaluable process knowledge and can be used directly in establishing 

the operating ranges as process development timelines are further 
accelerated. Further process understanding is gained by leveraging the 

automated dynamic optimization datasets to build mechanistic or data-

driven process models. As demonstrated, these models can be used to 
accurately predict trends in reaction product yield and impurity 

generation. Furthermore, as new process information becomes 

available, these models can be utilized to update optimal conditions 
given a new objective function or processing constraints.   

 

Growing interest in autonomous optimization in flow chemistry will 
lead to applications in dynamic optimization for complex reactions and 

multi-step synthesis. As the size of the optimization problem expands, 

the knowledge obtained from the data-rich experimentation of 

Table 2.  Regressed rate constant estimates 

k1  

(1/M·min) 

k2 x 10-3 

(1/M·min) 

k3 x 10-2 

(1/M·min) 

k4 x 10-2 

(1/M·min) 

0.55 ± 0.7% 3.84 ± 1.9% 7.42 ± 0.7% 3.16 ± 1.8% 

 

 
Figure 12.  Contour plots of product yield, double addition impurity 
LCAP, and objective function as functions of residence time and 

morpholine equivalents using regressed kinetic parameters in Table 

2.   

 

Figure 11.  Parity plots for Product (2) and Double Addition 

Impurity (4) using proposed kinetic model for predicted values. 
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dynamic optimization will become increasingly vital for rapid and 
efficient process development of drug substance compounds. In these 

situations, alternative algorithms, such as Stable Noisy Optimization 

by Branch and Fit (SNOBFIT), Bayesian optimization algorithms, 
multi-objective optimization algorithms, or model-based optimization 

algorithms, may be more efficient than gradient-based approaches. 

Adapting these more sophisticated optimization algorithms for 
dynamic operations to balance efficiency and data-rich 

experimentation will be of significant value for future research in flow 

chemistry optimization.   Incorporating integer optimization with 
dynamic flow operations may lead to data-rich routines that 

simultaneously optimize the selection of reagents and solvents as well 

as the associated operating conditions. As automated dynamic 
optimization becomes more prevalent in lab development, it has the 

potential to extend into manufacturing. At its core, automated dynamic 

optimization around the target manufacture behaves similarly to 
several well-established feedback process control strategies. Growing 

familiarity with feedback control systems in the lab will drive feedback 

control in production operations, thereby improving the  robustness 
and productivity of these processes in the manufacturing setting.   
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