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Abstract: Saturation transfer difference NMR spectroscopy 
has revolutionized the study of weak receptor-ligand 
interactions. Its versatility and popularity are demonstrated by 
a myriad of approaches developed. Methodologies such as 
DEEP-STD NMR, KD determination, SSTD, and determination 
and validation of protein-ligand complexes are a few elegant 
examples among them. However, the use of the STD NMR 
technique together with full relaxation matrix calculations for 
the determination and structure evaluation of protein-ligand 
complexes remain a major milestone in the field. In this 
communication, we present a new approach based on a 
reduced relaxation matrix that pushes further the boundaries 
of the relaxation matrix theory applied to structure 
determination and evaluation, in solution, using STD NMR 
data and molecular dynamics simulations. 
 

The analysis of the 3D structural determinants for 
specificity in the molecular recognition of small ligands by 
proteins in solution is a field of major interest in structural 
biology and drug design, with NMR spectroscopy playing a 
key role.[1–4] The NMR approaches towards 3D structure 
determination in solution fall into two main categories, where 
the observables can originate either from the spins of the 
protein or from those of the small ligand. [5,6] Both 
spectroscopic strategies have a fundamental ground on the 
same physical principle known as Nuclear Overhauser Effect 
(NOE).[7] Within the realm of ligand-observed NMR strategies, 
WaterLOGSY[8,9] and saturation transfer difference STD NMR 
are powerful tools to probe and characterize weak protein-
ligand interactions, being extensively used due to their 
robustness, short experimental times in comparison to 
protein-observed NMR approaches, flexibility and relatively 
low cost.[10] Very conveniently, they rely on the acquisition of 
ligand 1H NMR spectra in the presence of low amounts of the 
protein without the need of isotopic enrichment. It should be 

noted that STD NMR is particularly useful for the structural 
analysis of weak protein-ligand complexes as it allows to 
identify the orientation, binding determinants, and ligand 
conformation within the complex through the use of 3D 
molecular models that best agree with the experimental 
data.[11–13]  

The STD NMR technique is a difference spectroscopy 
approach based on the selective saturation of a group of 
protons of the protein using a low power shaped pulse 
repeated for long enough time to approach a state of 
saturation of the whole protein via intramolecular spin 
diffusion, which is very efficient for large molecules. Upon 
ligand binding, saturation is first transferred from the protein to 
the closest protons of the bound ligand, via inter-molecular 
NOE. This NOE builds up in the complex as a function of both 
the protein-ligand proton-proton distances and the residence 
time of the ligand in the bound state. For weak interactions, 
the ligand residence time is typically much shorter than the 
relaxation time of the ligand in the complex. The saturation 
received from the ligand via intermolecular NOE is transferred 
through chemical exchange in the ligand free state. The 
resulting NMR spectrum is then compared to a reference 
spectrum (so-called off-resonance spectrum), which is 
obtained by positioning the selective saturation pulse in a 
spectral region far away from both, the ligand, and the protein 
resonances. The difference between these two spectra results 
in the STD NMR spectrum. In order to perform the STD NMR 
experiment, the protein should be present in a very low 
amount compared to the ligand (usually protein to ligand ratios 
of 1:30 to 1:100) to minimise fast-rebinding effects.[14] Further, 
the ligand/receptor complex dissociation constant, KD, should 
preferably sits within the high nanomolar to millimolar range 
(10-7-10-3 M) as fast exchange kinetics of binding is needed for 
efficient accumulation of the saturated ligand in the free state 
in solution.  

A latest development of STD NMR, called DEEP-STD 
NMR,[15] has pushed further this concept allowing the 
identification of the types of protein side chains (aromatic, 
aliphatic, polar, apolar) surrounding the ligand, facilitating the 
determination of the orientation of the ligand within the 
architecture of the binding site, and has opened the door to a 
novel set of STD NMR protocols that are collectively termed 
multi-frequency STD NMR approaches.[16] Proper analysis of 
the intensities of the ligand STD NMR signals allows to gain 
structural information on the molecular recognition of the 
ligand by the receptor, revealing what particular ligand protons 
are far or near from the protein-ligand interface in the binding 
site, identifying what ligand regions are buried in the binding 
pocket, and what areas are farther apart and consequently 
more solvent exposed (the so-called binding epitope 
mapping). Generally speaking, binding epitopes should not be 
obtained from one saturation time only, as artefacts might 
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occur leading to wrong classification of relative STD intensities 
within the ligand due to (i) differences in ligand T1 relaxation 
among the protons, (ii) kinetics of binding, (iii) fast rebinding 
effects, and (iv) extent of saturation. In order to minimise the 
impact of these factors on the determination of the binding 
epitope mapping from STD NMR, Mayer and James proposed 
to acquire a set of STD NMR experiments at increasing 
saturation times. In this procedure, known as the analysis of 
initial slopes from STD NMR build-up curves, the experimental 
STD data points are fitted to the mono-exponential 
equation[17]: 
 

STD(t!"#) = STD$"%(1 − exp(−k!"#t!"#))     [eq. 1] 
 

Where STD(t!"#) is the STD factor of a particular 
resonance obtained as I$ − I!"# I$⁄  at a saturation time t!"# , 
STD%"&  is the max asymptotic value obtained from fitting, k!"# 
is the saturation rate constant while t!"#is the saturation time. 
The initial slope, STD$, is obtained from eq. 2:  
 

    STD& = k!"# ∙ t!"#                                     [eq. 2] 
 

The STD$ values are then normalized to the highest 
value within the set of ligand protons, allowing to analyse the 
binding epitope, minimising the possible artefacts described 
above .[14]  

Although the binding epitope mappings derived from 
STD NMR experiments can inform subsequent optimization of 
the identified hits for a given protein target, arguably the best 
aid for a medicinal chemist will come from the availability of 
experimentally validated 3D molecular models of the protein-
ligand complexes. However, during the ligand screening stage 
of the drug discovery pipeline, fragments identified as hits 
typically show very weak affinity, precluding in most of the 
cases the determination of the 3D structure of the receptor-
fragment complex by X-ray crystallography. For these cases, 
the relevance of STD NMR cannot be underappreciated, due 
to its excellent performance to study protein-ligand complexes 
under fast chemical exchange or weak affinity, and its 
capability to access to structural information at atomic detail.  

Where crystallization of receptor-fragment complexes 
has been unsuccessful, the process of ligand optimization 
(“hit-to-lead”) will strongly benefit from availability 3D 
molecular models validated by STD NMR. Further, it is not 
only very useful to validate static 3D models, but also 
trajectories of the protein-ligand complexes from molecular 
dynamics (MD) simulations.  

Simplified algorithms based on protein-ligand distance 
hierarchies following a distance cutoff have been shown to be 
efficient to score sets of binding conformations based on 
minimum deviations with respect to experimental binding 
epitope mappings.[18,19] However, purely distance-based 
algorithms suffer from a lack of description of the dipole-dipole 
relaxation processes during the STD NMR experiment, so 
that, although flexibility is included by analyzing MD 
simulations, the impact of internal motions in the 
cross-relaxation (NOE) efficiency is completely absent, which 
might compromise the results for protein-ligand complexes 
with significant side chain mobility for amino acids surrounding 
the ligand in the binding pocket. 

Full relaxation matrix approaches have also been 
previously applied to validate static and dynamic models of 

protein-ligand complexes by STD NMR.[20] However, such full 
matrix approaches can become extremely time-consuming, 
turning impractical for analyzing very long MD simulations and 
simultaneously deriving theoretical full STD build-up curves 
for each frame of the simulation. To reduce the computational 
burden, the application of these full matrix approaches in the 
literature has been customarily limited to the case of “one 
saturation time” analysis of MD trajectories.[21] However, this 
type of analysis is extremely prone to false optimum structures 
when scoring is based on a best fitting factor value (NOE 
R-factor), as the full matrix calculation is not used to predict 
the whole build-up of saturation. Thus, whereas a particular 
protein-ligand complex can give a bad (high) R-factor when 
considering the whole STD build-up curve, a relatively good 
(low) R-factor might be obtained for the same complex when 
using a single saturation time, hence misleading the model 
validation. 

In this communication, we present a reduced 
matrix analysis of the STD NMR initial slopes that fully 
considers both the network of dipole-dipole couplings and the 
relaxation processes present at the protein-ligand 
interface. This allows to (i) perform extremely fast calculations 
of theoretical STD initial slopes (STD$'"() from a 3D molecular 
model (or MD trajectory) of the protein-ligand complex, and (ii) 
explicitly include experimental STD initial slopes (STD$

)&*) from 
complete STD build-up curves in receptor-ligand 3D structure 
determination and evaluation in solution.  

In order to validate this new approach, we studied three 
protein-ligand complexes (PDB codes: 6MSY, 4X4A, 6GH2) 
for which high resolution X-ray and STD0 values were 
available. The agreement between theoretical and 
experimental STD0 factors was evaluated using the NOE 
R-factor, defined for k ligand protons as: 

 

NOE	R − factor = 9
∑ (!)*+,"

#$%,!-*+,"
'(),!.

*
!

∑ (!)*+,"
#$%,!.

*
!

       [eq. 3] 

 
Where W+ is a weighting factor (in our NOE R-factor 

calculation W+ = 1), STD,
-./,+ is the STD0 experimental value 

obtained for the k-th proton of the ligand while the STD,012,+ is 
the calculated STD0 value using the reduced matrix approach 
presented in this communication. 

 
Theory 
 

The complete relaxation matrix for a two-site exchange 
system was already described from Jayalakshmi et al.[22] In 
this model, it is proposed that the protein protons can be 
divided in (i) E1 and E1’, protein protons not directly affected 
by saturation, in the free and bound states, respectively, and 
(ii) E2 and E2’, protein protons directly affected by saturation, 
in the free and bound states, respectively. Considering the 
above premises, the theoretical STD NMR build-up curves can 
be derived using the following equation.  

 

𝐈(𝐭𝐬𝐚𝐭) = 𝐈𝟎 + [
𝐌
𝐑5𝐊

](𝟏 − 𝐞𝐱𝐩[−(𝐑 + 𝐊) · 𝐭𝐬𝐚𝐭])       [eq. 4] 

Where I0 is the Intensity of the protons of the ligand at 
thermal equilibrium while I(𝐭𝐬𝐚𝐭) is the intensity of the ligand 
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protons after protein saturation, R is the general relaxation 
rate matrix for the ligand, K is the generalized exchange 
kinetics matrix and M is a general matrix term containing 
elements of both protein and ligand species in their bound and 
free form. The equation resembles the mono-exponential 
equation proposed by Mayer and James for the fitting of STD 
NMR experimental data.[17] In fact, the sum of the general 
relaxation rate matrix R and the kinetics exchange matrix K is 
equivalent to the saturation rate constant ksat, which is 
calculated from the mono-exponential fit of the experimental 
STD NMR data. Moreover, the term M/(R+K) is proportional 
to STD%"&, and is also obtained during the mono-exponential 
fit. On these premises equation 2 can be arranged by 
substitution: 
 

  STD& = k!"# · STD$"% ∝ (𝐑 + 𝐊) · G
𝐌

(𝐑5𝐊)H             [eq. 5] 

 
which simplifies to: 
 

                           STD& ∝ 𝐌                    [eq. 6] 
 

With the M matrix defined in as scheme 1:  
 

 
 

Scheme 1. M matrix definition. 
 

In Scheme 1, RE1E2 is the cross relaxation matrix 
between the unsaturated (E1) and directly saturated (E2) 
protein protons in the free state  multiplied by the thermal 
equilibrium intensity of the directly saturated protons of the 
protein (E2) in the free state IE20; RL’E2’ is the cross relaxation 
matrix between the ligand protons in the bound state (L1’) and 
the directly saturated protons of the protein in the bound state 
(E2’) multiplied by the thermal equilibrium intensity of the 
saturated bound protons (E2’) IE2’0; RE1’E2’ is the cross 
relaxation matrix between the unsaturated and directly 
saturated protein protons in the bound state (E1’ and E2’) 
multiplied by the thermal equilibrium intensity of the directly 
saturated protein protons in the bound state (E2’) IE2’0. 

We have developed a new algorithm for the quantitative 
analysis and fast validation of 3D models of protein-ligand 
complexes against experimental STD NMR data, based on the 
determination of the reduced relaxation matrix M (Eq. 6). The 
protocol has been implemented in the form of a web 
application, called RedMat, which takes as input data (i) the 
Cartesian coordinates of the protein-ligand complex, (ii) the 
experimental STD initial slopes (STD0 values), in relative 
scale, i.e. normalised to the highest intensity STD0 (arbitrarily 
assigned a value of 100%), (iii) the protein protons initially 
saturated in the STD NMR experiment, and (iv) a number of 
additional experimental parameters. These parameters 
include: the NMR spectrometer frequency (in MHz), the 
rotational correlation time of the bound protein-ligand complex 
(in ns), the concentrations of ligand and protein (both in μM 
units), the dissociation constant of the protein ligand complex 

(in μM units), and the cut-off distance (in Å units) for protein 
protons from the ligand to be considered in the calculation. 

RedMat accepts both 3D structures of complexes and 
dynamic ensembles from molecular dynamics (MD) 
simulations. The former takes the sets of coordinates in the 
form of Protein Data Bank (PDB) files, one for the protein and 
one for the ligand. Predicted initial slope values (STD,012,+) and 
the NOE R-factor (Eq. 3) are outputted for each ligand proton. 
In our experience, as a rule of thumb, an NOE R-factor of less 
than 0.3 indicates a good agreement between the calculated 
and experimental STD0 values. If multiple models are present 
in the ligand file (i.e. different ligand poses from docking 
calculations), separate calculations will be performed for each 
model, making this mode useful for quantitatively assessing 
the agreement of molecular docking models with the 
experimental STD NMR data. The second mode accepts 
AMBER[23] topology and trajectory files, allowing MD 
trajectories to be used as input files. This mode gives the 
evolution of the NOE R-factor as a function of the simulation 
time for each MD trajectory frame, allowing to elucidate to 
what extent changes in the conformation and/or orientation of 
the ligand and the protein binding site along the MD simulation 
agree or disagree with the experimental data. The application 
additionally allows individual frames to be downloaded for 
further analysis. For flexible receptors and ligands, the 
dynamic mode significantly improves the analysis over static 
models from rigid or semi-rigid docking calculations, where the 
dynamics of both molecular partners is not fully considered.  

In order to verify the validity of our reduced relaxation 
matrix algorithm, three protein-ligand systems, for which we 
have previously determined accurate experimental STD0 
values,[15,24,25] were tested. In all cases we tested both 
application modes, by first calculating the reduced relaxation 
matrix from the experimentally determined X-ray crystal 
structures of the protein-ligand complexes, and, secondly, 
performing the calculation on 100 ns MD trajectories with 
frames saved at 100 ps intervals (1000 frames). In all cases, 
for the purpose of STD0 calculation from trajectories, all methyl 
protein protons were assumed to be saturated and a relatively 
long cut-off distance of 12 Å from the ligand was considered. 
This allowed to include all the protein protons that mostly 
contribute to the saturation transfer at the protein-ligand 
interface in the STD NMR experiment. 
 
Human anti-HIV-1 antibody 2G12 – tetramannoside 
complex.  

 
The first system considered was the human monoclonal 

antibody 2G12 in complex with a tetramannoside (PDB code: 
6MSY), which is therapeutically of interest due to its role as a 
broadly neutralising antibody to human immunodeficiency 
virus (HIV)[26]. For the RedMat calculation, we used a 
rotational correlation time of the protein of 43.1 ns, estimated 
with HYDRONMR[27], and a dissociation constant of 1000 μM. 
The concentrations of ligand and protein were 8000 μM and 
25 μM, respectively, as per experimental conditions.[24] Figure 
1 shows the X-ray crystal structure of the 2G12-
tetramannoside complex, and the comparison of experimental 
STD0 values (blue bars) with those calculated using RedMat 
(red bars). A NOE R-factor of 0.27 was obtained, indicating a 
good fit between the experimental and theoretical STD0 
values. The MD trajectory displayed an average NOE R-factor  
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Figure 1. a) X-ray structure of the anti-HIV 2G12 monoclonal antibody (heavy and light chain in magenta and green, respectively) in complex with 
tetramannoside (in cyan; PDB 6MSY). The protein residues (at 12 Å distance from the ligand) that were considered for the calculation of theoretical 
STD0 factors are shown in sticks. b) 2D sketch of the ligand. The labels associated to each sugar ring are shown next to it. c) Comparison between 
calculated (red bars) and experimental (blue bars) STD0 factors for the protons of tetramannoside ligand. A NOE R-factor of 0.27 was obtained, 
showing a very good agreement between the crystal and the solution state structures of the complex. d) Evolution of the NOE R-factor of the 
tetramannoside ligand over 100 ns of MD simulation. 
 
of 0.29 (with a standard deviation of 0.03), indicating that the 
complex remained relatively stable throughout the simulation 
(Fig. 1). 
 
Gut intramolecular trans-sialidase RgNanH-GH33 - 2,7-
anhydro-Neu5Ac complex.  
 

The second system considered was the complex of the 
catalytic domain of the intramolecular trans-sialidase from 
Ruminococcus gnavus RgNanH-GH33 with the ligand 2,7-
anhydro-Neu5Ac (PDB code: 4X4A).[28] Unravelling the 
binding determinants of 2,7-anhydro-Neu5Ac in solution by 
sialidases is of major interest for the understanding of the 
fundamental mechanisms of gut microbiota adaptation. For 
the RedMat calculation, we used a rotational correlation time 
of the protein of 34.5 ns, estimated with HYDRONMR[27], and 
a dissociation constant of 2000 μM. The concentrations of 
ligand and protein were 1000 μM and 20 μM, respectively, as 
per experimental conditions.[15] Figure 2 shows the X-ray 
crystal structure of the RgNanH-GH33-2,7-anhydro-Neu5Ac 
complex, and the comparison of the experimental STD0 values 

(blue bars) with those calculated using RedMat (red bars). The 
NOE R-factor was 0.13, indicating an extremely good fit 
between the STD NMR data and the X-ray crystal structure.  
When running the MD simulations of the RgNanH-GH33-2,7-
anhydro-Neu5Ac complex, we observed that the model was in 
extremely good agreement with the experimental data for the 
first 45 ns, with an average NOE R-factor of 0.10 (with a 
standard deviation of 0.01). However, a conformational 
change event occurred at this point, resulting in a ligand 
conformation that did not agree that well with the experimental 
data. Since this effect might be due to the limitation of the 
forcefield parameters used, we introduced some experimental 
restraints to the model based on information known from 
DEEP-STD NMR.[15] These were restraints between 
H9/H9’/H8 of the ligand with Trp 698, H3a atom of the ligand 
with Ile 258, and the ligand methyl group with the methyl 
groups of Val 502 and Ile 338. In all cases the restraints 
allowed each pair to have a distance range between 2-6 Å, 
based on the NOE being detectable within these ranges. With 
these restraints, the trajectory showed extremely good
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agreement (except for the last 3 ns), with an average NOE 
R-factor of 0.11 (with a standard deviation of 0.02) (Fig. 2). 
This example highlights the power of combining the latest 
advanced multi-frequency STD NMR techniques alongside 
the proposed reduced relaxation matrix approach to develop 
a 3D model that strongly agrees with experimental data in 
solution. 
 

Figure 2. a) X-ray structure of the RgNanH-GH33 (coloured in green) 
in complex with 2,7-anhydro-Neu5Ac (in cyan; PDB 4X4A). The protein 
residues (at 12 Å distance from the ligand considered for the calculation 
of theoretical STD0 factors are shown in sticks. b) 2D sketch of the 
ligand. The ligand numbering is shown next to each carbon atom. c) 
Comparison between calculated (red bars) and experimental (blue 
bars) STD0 factors for the protons of the ligand. The NOE R-factor was 
0.13 showing a very good agreement between the crystal and the 
solution state structure of the complex. In the insert, the naming 
scheme used is shown to identify the protons of the ligands. d) 
Evolution of the NOE R-factor of the 2,7-anhydro-Neu5Ac ligand over 
100 ns of MD simulation. 
 
Laminaribiose phosphorylase - a-glucopyronase-1-P 
complex.  
 

The third system considered was the complex of the 
enzyme GH94 laminaribiose phosphorylase from 
Paenibacillus sp. YM-1 (PsLBP) with the ligand 
a-glucopyronase-1-phosphate (PDB code: 6GH2).[25] The 
PsLBP reverse reaction (synthesis of glycosidic linkages) is of 
high significance nowadays as it can be used as an alternative 
way of enzymatic glycosylation using sugar 1-phosphates as 
donor substrates.[21,29] For the RedMat calculation, we used a 
rotational correlation time of the protein of 68.5 ns, estimated 
with HYDRONMR[27] (GH94 has a molecular weight of ≈ 102 
kDa), and a dissociation constant of 2000 μM. The 
concentrations of ligand and protein were 5000 μM and 50 μM, 
respectively, as per experimental conditions.[25]  

Figure 3 shows the X-ray crystal structure of the 
a-Glc-1-phosphate-GH94 laminaribiose phosphorylase 
complex, and the comparison of experimental STD0 values 
(blue bars) with those calculated using RedMat (red bars). The 
NOE R-factor based on the X-ray crystal structure was 0.17, 
again indicating a very good fit. Similarly, the MD simulation 
remained stable for the first 75 ns, with an average NOE R-
factor of 0.23 (with a standard deviation of 0.03) (Fig. 3). 

 
 

 

Figure 3. a) X-ray structure of the PsLBP (coloured in green) in 
complex with 𝛼-Glc-1-phosphate (in cyan; PDB 6GH2). The protein 
residues (at 12 Å distance from the ligand) considered for the 
calculation of theoretical STD0 factors are shown in sticks. b) 2D sketch 
of the ligand. The ligand numbering is shown next to each carbon atom. 
c) Comparison between calculated (red bars) and experimental (red 
bars) STD0 factors for the protons of the ligand. The NOE R-factor was 
0.17 showing an excellent agreement between the crystal and the 
solution state structure of the complex. d) Evolution of the NOE R-
factor of the 𝛼-Glc-1-phosphate ligand over 100 ns of MD simulation. 
 
Conclusions 
 

In conclusion, we have developed a reduced relaxation 
matrix theoretical approach that allows fast validation of static 
and dynamic 3D models of weak protein-ligand complexes 
based on experimentally determined STD NMR binding 
epitopes. The new algorithm allows the calculation of 
theoretical binding epitopes from STD0 factors using the 
Cartesian coordinates of the receptor-ligand 3D structure, in 
the form of either a PDB structure or a MD trajectory. The 
practical implementation of this theoretical approach, in the 
form of a web application called RedMat, has been tested on 
different protein-ligand complexes of biological or 
biotechnological relevance. We demonstrate that RedMat is 
very robust, precise (as demonstrated by the low NOE 
R-factors obtained) and, remarkably, very fast (within seconds 
time scale per complex on a desktop computer). The 
development of such fast method for the calculation of 
theoretical STD0 factors and for the validation of experimental 
STD0 data obtained in solution is of major interest for both 
academic research and the pharmaceutical industry; this is 
because it can be readily used for rapidly screening a large 
range of protein-ligand complexes obtained from long MD 
simulations or docking calculations, as part of drug discovery 
pipelines. We foresee that RedMat will have a significant 
impact in the fields of structural biology of weak protein-ligand 
interactions and drug development. 
 
Material and Methods 

MD simulations  

The initial atomic coordinates of each of the three 
protein-ligand complexes were obtained from their X-ray 
crystal structures deposited in the Protein Data Bank: 
intramolecular trans-sialidase from R. gnavus in complex with 
2,7-anhydro-Neu5Ac (4X4A), laminaribiose phosphorylase 
from Paenibacillus sp. in complex with α-Glc-1-phosphate 
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(6GH2), and the broadly-neutralising anti-HIV-1 antibody 
2G12 in complex with Man4 (6MSY).  

Each system was parametrised using the AMBER 
ff14SB forcefield[30] for the protein and GAFF[31] (4X4A, 
6GH2)/GLYCAM_06j-1[32] (6MSY) forcefields for the ligand. 
Ligand charges were determined using the antechamber 
software[33] using AM1-BCC level of theory. The systems were 
solvated with the TIP3P water model within a truncated 
octahedron bounding box buffered from the complex by 10 Å. 
Each system was neutralised with either Na+ or Cl- ions. 

Conjugate gradient minimisation was run with 20 
kcal·mol-1·Å-2 restraints on solute atoms, before repeating with 
no restraints. Each system was heated to 300 K over a period 
of 500 ps at constant volume, before equilibrating at constant 
pressure (1 atm) for a period of 2 ns. Production dynamics 
simulations were run for 100 ns each, saving a frame every 
100 ps. In all cases periodic boundary conditions and the 
particle mesh Ewald method were applied. A Langevin 
thermostat with a collision frequency of 5 ps-1 and a 
Berendsen barostat with a relaxation time of 2 ps were used. 
The SHAKE algorithm was used to restrain all bonds involving 
hydrogen, allowing a timestep of 2 fs. A cutoff of 8 Å was used 
for all non-bonded interactions. 

In the case of 4X4A, we observed excessive movement 
of the ligand within the protein binding site. In order to improve 
the simulations, NOE-based restraints were applied between 
protons for which experimental STDs had been observed and 
protein sidechains known from the X-ray crystal structure to 
be in close proximity. The restraints applied a 20 kcal·mol-1·Å-

2 penalty for interatomic distances outside the 2 – 6 Å range, 
in agreement with the observed NOEs. 
 
Availability: the RedMat app is freely available for academic 
users upon request to the authors for granting access to our 
server-based application.  
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