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ABSTRACT

Discovering meaningful molecules in the vast combinatorial chemical space has
been a long-standing challenge in many fields from materials science to drug dis-
covery. Recent advances in machine learning, especially generative models, have
made remarkable progress and demonstrate considerable promise for automated
molecule design. Nevertheless, most molecule generative models remain black-
box systems, whose utility is limited by a lack of interpretability and human par-
ticipation in the generation process. In this work we propose Chemical Space
Explorer (ChemSpacE), a simple yet effective method for exploring the chem-
ical space with pre-trained deep generative models. It enables users to interact
with existing generative models and inform the molecule generation process. We
demonstrate the efficacy of ChemSpacE on the molecule optimization task and the
molecule manipulation task in single property and multi-property settings. On the
molecule optimization task, the performance of ChemSpacE is on par with previ-
ous black-box optimization methods yet is considerably faster and more sample
efficient. Furthermore, the interface from ChemSpacE facilitates human-in-the-
loop chemical space exploration and interactive molecule design.

1 INTRODUCTION

Designing new molecules with desired properties is crucial for a wide range of tasks in drug discov-
ery and materials science (Chen et al., 2018). Traditional pipelines require exhaustive human efforts
and extensive domain knowledge to explore the vast combinatorial chemical space, making them
difficult to scale up. Recent studies exploit deep generative models to tackle this problem by encod-
ing molecules into a meaningful latent space, from which random samples are drawn and decoded
to new molecules. Such deep molecule generative models can facilitate the design and development
of drugs and materials (Lopez et al., 2020; Sanchez-Lengeling & Aspuru-Guzik, 2018).

Despite the promising results of deep generative models for molecule generation, considerably less
effort has been made in understanding their underlying working mechanisms, which are key to
interpretable and interactive AI-empowered molecule design. Most existing models are based on
deep neural networks or black-box optimization methods, which lack transparency and interpretabil-
ity (Samek et al., 2019). Outside of the molecule generation domain, many attempts have been
made to improve the interpretability of deep learning models from various aspects, e.g., representa-
tion space (Zhou et al., 2016), model space (Guo et al., 2021), and latent space (Shen et al., 2020;
Shen & Zhou, 2021). In the molecule generation domain, interpretability can be studied from two
perspectives: (1) the interpretation of the learned latent space where traversing the value of latent
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vectors could lead to smooth molecular property change, and (2) the interpretation of the chemical
space where adjusting molecular properties could observe smooth structure change of molecules.

Furthermore, it remains difficult to generate molecules with desired properties. Previous works
tackle the problem with reinforcement learning-based, latent space optimization-based, and
searching-based methods to achieve property control of the generated molecules (Shi et al., 2020;
Jin et al., 2018a). Specifically, reinforcement learning-based algorithms (You et al., 2018a) equip the
model with rewards designed to encourage the models to generate molecules with specific molecular
properties. Latent space optimization-based algorithms take advantage of the learned latent space of
molecule generative models and optimize the molecular properties via Bayesian Optimization (Liu
et al., 2018). Searching-based algorithms directly search the discrete and high-dimensional chem-
ical space for molecules with optimal properties (Kwon et al., 2021). However, these works often
have three major issues. (1) They require many expensive oracle calls to provide feedback (i.e.,
property scores) of the intermediate molecules during the searching or optimization process Huang
et al. (2021). (2) They often only focus on the outcome of the process while ignoring its interme-
diate steps which can be essential for chemists and pharmacologists in understanding the chemical
instances and rules that govern the process. (3) They stick to local gradients while putting less focus
on global directions in the chemical/latent space.

To tackle the above challenges, we propose a simple yet effective method to explore the chemi-
cal space for molecule generation by leveraging the latent space of the pre-trained deep generative
models. The motivation for our approach is based on the emergent properties of the latent space
learned by molecule generative models Gómez-Bombarelli et al. (2018); Zang & Wang (2020): (1)
molecules sharing similar structures/properties tend to cluster in the latent space, (2) interpolating
two molecules in the latent space leads to smooth changes in molecular structures/properties. Thus,
we develop ChemSpace Explorer, a model-agnostic method to manipulate molecules with smooth
changes of molecular structures and properties which has broad applications ranging from molecule
optimization to chemical space interpretation. Specifically, ChemSpace Explorer first identifies the
property separation hyperplane which defines the binary boundary corresponding to some molecu-
lar property (e.g., drug-like or drug-unlike) in the learned latent space of a generative model. Based
on the identified property separation hyperplane, it then estimates the latent directions that govern
molecular properties, which enable smooth change of molecular structures and properties without
model re-training. This manipulation process improves the interpretability of deep generative mod-
els by navigating their latent spaces and enables human-in-the-loop exploration of the chemical
space and molecule design. It allows users to manipulate the properties of generated molecules
by leveraging the steerability and interpretability of molecule generative models. To the best of
our knowledge, this work is the first attempt to achieve interactive molecule discovery by steering
pre-trained molecule generative models.

Our experiments demonstrate that our method can efficiently and effectively steer state-of-the-art
molecule generative models for molecule manipulation with a small amount of training/inference
time, data, and oracle calls. To quantitatively measure the performance of molecule manipula-
tion, we design two new evaluation metrics named strict success rate and relax success rate, which
evaluate the percentage of successful manipulations with smooth property-changing molecules over
manipulations of a group of molecules. In addition, we compare ChemSpacE with a gradient-based
optimization method that traverses the latent space of molecule generative models on the molecule
optimization task. To facilitate the interactive molecule design and discovery for practitioners, we
further develop an interface for real-time interactive molecule manipulations and smooth molecular
structure/property changes. We summarize the main contributions as follows:

• We explore a new task on latent molecule manipulation, which aims at steering the latent
space of molecule generative models for manipulating the chemical properties of the output
molecule and facilitating human-in-the-loop molecule design.

• We develop an efficient model-agnostic method named ChemSpacE for molecule manipu-
lation, which can be incorporated in various pre-trained state-of-the-art molecule generative
models without re-training or modification.

• We demonstrate the effectiveness and efficiency of our method in molecule optimization
and achieving human-in-the-loop molecule design through comprehensive experiments.
We further develop an interface to exhibit interactive molecule discovery and design.
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Figure 1: ChemSpacE framework: (1) the tested molecule generative model generates novel
molecules by sampling random vector from the latent space and then feeding it into the genera-
tor, (2) off-the-shelf oracle function is used to predict molecular properties from the chemical space,
(3) ChemSpacE identifies latent directions which govern molecular properties via the property sep-
aration hyperplane.

2 PROBLEM FORMULATION OF MOLECULE MANIPULATION

Molecule Generative Models. In molecule generation, a generative model M encodes the molec-
ular graph X as a latent vector Z ∈ Rl with l being the latent space dimension, and further decodes
latent vector back to the molecular space. Specifically, variational auto-encoder (VAE) (Kingma &
Welling, 2013) and flow-based model (Flow) (Rezende & Mohamed, 2015) are the two most com-
monly used models for molecule generation, which typically encode the data from molecular space
to latent space of Gaussian distribution. The encoding and decoding process can be formulated as:

z = f(x), x′ = g(z), (1)

where x and x′ are the ground-truth and reconstructed/sampled data respectively, and z ∈ Z repre-
sents a latent vector in the latent space, f(.) and g(z) are the encoder and generator/decoder of the
generative model.

Molecule Manipulation Formulation. To leverage the steerability and interpretability of
molecule generative models, we explore a new task, molecule manipulation, which interprets and
steer the latent space of the generative model in order to manipulate the properties of the output
molecule. To be specific, a deep generative model contains a generator g : Z → X , where Z ∈ Rl

stands for the l-dimensional latent space, which is commonly assumed to be Gaussian distribution
(Kingma & Welling, 2013; Rezende & Mohamed, 2015). There exist property functions fP which
define the property space P via P = fP (X). The input to molecule manipulation is a list of n
molecules X = {x1, x2, · · · , xn} and a list of m molecular properties P = {p1, p2, · · · , pm}. We
aim to manipulate one or more molecular properties p of a given molecule in a k consecutive steps
and output the manipulated molecules with properties p′ = {p(1), p(2), · · · , p(k)}. By manipulating
the given molecule, we can observe the alignment of Z → X → P , where the relationship between
Z and X explains the latent space of molecule generative models. The relationship between X and
P reveals the correlations between molecular structures and properties. By traversing latent space,
we can generate molecules with continuous structure/property changes.

Evaluation Criteria. There are two important measures to evaluate the molecule manipulation
task: smooth structure change and smooth property change. To be specific, we design two new
evaluation metrics named strict success rate (SSR) and relaxed success rate (RSR) that measure
the quality of the identified latent direction in controlling the molecular property. Under strict suc-
cess rate, we consider a manipulation path to be successful only if we generate molecules with
monotonically-changing properties and structures in consecutive k steps of manipulation. While
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Figure 2: (a) Molecule clusters in the latent space, the number represents structure similarity (Bajusz
et al., 2015), where the red box represents the base molecule, x and y axes denote two random
orthogonal directions to manipulate. (b) Linear interpolation of two (top and bottom) molecules. (c)
Latent property boundary is visualized for QED property.

this criteria is rather strict, we propose an alternative relaxed success rate that tolerates a small
deviation along the manipulation path, detailed in Appendix A.

3 CHEMSPACE FOR MOLECULE MANIPULATION

3.1 LATENT CLUSTER ASSUMPTION

We examine the property of latent space learned by the generative models and have the following ob-
servations, (1) molecules with similar structures tend to cluster in the latent space, (2) interpolating
two molecules x1 and x2, represented by latent vectors z1 and z2, can lead to a list of intermedi-
ate molecules whose structures/properties gradually change from x1 to x2. As molecular structures
determine molecular properties (Seybold et al., 1987), the observations imply that molecules with
similar property values of certain molecular property would cluster together and interpolating two
molecules with different values of the molecular property could lead to gradual changes in molecular
structures. As shown in Fig. 1, there may exist two groups of molecules, drug-like and drug-unlike,
where each group cluster together and linear interpolating two latent vectors with one molecule from
each group could lead to a direction that crosses the property separation boundary. These observa-
tions also match the analysis from the prior work (Gómez-Bombarelli et al., 2018; Zang & Wang,
2020). To verify our assumption, we visualize the latent space of the pre-trained MoFlow model
in Fig. 2. The left figure shows that molecules close in the latent space are similar in structures.
The middle figure shows that interpolating two molecules in the latent space could lead to smooth
structure changes. The right figure shows that the latent boundary is present for QED property in
the pre-trained MoFlow model.

3.2 IDENTIFYING LATENT DIRECTIONS

Latent Separation Boundary. With the verifications above and the previous work of analyzing
the latent space of generative models (Shen et al., 2020; Bau et al., 2017; Jahanian et al., 2019;
Plumerault et al., 2020), we assume that there exists a separation boundary which separates groups
of molecules for each molecular property (e.g., drug-like and drug-unlike) and the normal vector of
the separation boundary defines a latent direction which controls the degree of the property value (in
Fig. 1). When z moves toward and crosses the boundary, the molecular properties change accord-
ingly (e.g., from drug-unlike to drug-like). A perfect separation boundary would have molecules
with different properties well separated on different sides. From that, we can find a separation
boundary for each molecular property with a unit normal vector n ∈ Rl, such that the distance from
any sample z to the separation boundary as:

d(z, n) = nT z. (2)

Latent Direction. In the latent space, the molecular structure and property change smoothly to-
wards the new property class when z moves towards the separation boundary and vice versa, where
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we assume linear dependency between z and p:

fP (g(z)) = α · d(z, n), (3)

where fP is an oracle function and α is a degree scalar that scales the changes along that corre-
sponding direction. Extending the method to multiple molecular properties manipulation, we have:

fP (g(z)) = ANT z, (4)

where A = Diag(a1, · · · , am) is the diagonal matrix with linear coefficients for each of the m
molecular properties and N = [n1, · · · , nm] represents normal vectors for the separation boundaries
of m molecular properties. We have the molecular properties P following a multivariate normal
distribution via:

µP = E(ANT z) = ANTE(z) = 0, (5)

ΣP = E(ANT zzTNAT ) = ANTE(zzT )NAT = ANTNAT . (6)

We have all disentangled molecular properties in P if and only if ΣP is a diagonal matrix and all
directions in N are orthogonal with each other. Nevertheless, not all molecular properties are purely
disentangled with each other. In that case, molecular properties can correlate with each other and
nT
i nj is used to denote the entanglement between the i-th and j-th molecular properties in P .

3.3 MOLECULE MANIPULATION

After we find the separation boundary and identify the latent direction, to manipulate the generated
molecules with desired properties, we first move from latent vector z along the direction n with a
degree scalar α, and the new latent vector is

z′ = z + αn. (7)

To this end, the expected property of the new manipulated molecule is

fP (g(z + αn)) = fP (g(z)) + kα. (8)

For single-property manipulation, we can simply take the identified direction, but when multiple
properties correlate with each other, we need to determine whether the two directions are entangled
or disentangled. We can then simply take the disentangled and positively correlated attributions of
the directions as the new direction:

n = n1 + (1[n1⊙n2≥0])⊙ n2. (9)

4 EXPERIMENTS

4.1 SETUP

Datasets. We use three molecule datasets, QM9 (Ramakrishnan et al., 2014), ZINC250K (Irwin &
Shoichet, 2005), and ChEMBL (Mendez et al., 2019). QM9 contains 134k small organic molecules
with up to 9 heavy atoms (C, O, N, F). ZINC250K (Gómez-Bombarelli et al., 2018) is a sampled
250K molecules from ZINC, a free database of commercially-available compounds for drug dis-
covery with an average of ∼23 heavy atoms. ChEMBL is a manually curated database of bioactive
molecules with drug-like properties and contains ∼1.8 million molecules.

Baselines. We include two baseline methods of identifying latent direction that governs the molec-
ular property and one gradient-based method, which optimizes the molecular property of the gener-
ated molecules via gradient ascent/descent for comparisons. Random manipulation randomly sam-
ples latent directions for molecular properties. Largest range manipulation draws latent vectors
from the training set and defines the directions via calculating the direction between one molecule
with the largest property score and another molecule with the smallest property score for each molec-
ular property. Gradient-based method optimizes the molecular property of the generated molecules
by searching a latent vector with the optimized molecular property via gradient ascent/descent.

Implementation Details. We take the publicly available pre-trained models from the GitHub Repos-
itory for HierVAE (Jin et al., 2020) and MoFlow (Zang & Wang, 2020), respectively. All the molec-
ular properties are calculated by RDKit Landrum et al. (2013) and TDC Huang et al. (2021). We
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Table 1: Quantitative Evaluation of Molecule Manipulation over a variety of molecular properties
(numbers reported are strict success rate in %, -R denotes model with random manipulation, -L
denotes model with the largest range manipulation, -O denotes gradient-based manipulation, -C
denotes model with ChemSpacE. The best performances are bold.

Datasets Models Avg. QED LogP SA DRD2 JNK3 GSK3B MolWt

QM9

MoFlow-R 1.65 1.50 0.00 0.50 0.00 0.00 0.00 0.50
MoFlow-L 3.43 1.50 1.00 0.50 0.00 1.50 0.00 0.50

MoFlow-O N/A 3.50 6.00 6.50 2.00 8.00 8.50 7.50

MoFlow-C 37.52 12.50 9.00 10.00 11.00 45.50 16.50 10.50
HierVAE-R 29.29 1.00 1.50 0.50 0.50 1.00 1.00 0.50
HierVAE-L 30.69 0.50 0.00 0.00 0.50 2.00 0.00 0.50

HierVAE-C 66.23 27.00 32.00 35.00 41.50 51.50 30.00 39.50

ZINC

MoFlow-R 4.25 1.50 1.50 2.50 3.00 3.50 1.50 2.00
MoFlow-L 5.61 1.50 6.50 2.00 6.00 2.50 4.00 1.50

MoFlow-O N/A 1.50 9.50 0.50 2.00 15.50 23.00 0.00

MoFlow-C 58.08 52.00 53.50 51.50 55.00 56.50 55.50 53.50

ChEMBL
HierVAE-R 25.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00
HierVAE-L 22.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HierVAE-C 47.70 0.50 3.00 3.00 6.00 7.50 5.50 4.50

utilize the implementation of linear models (linear SVM) from Scikit-learn Pedregosa et al. (2011).
More details are available in Appendix A.

Interactive Demo. An interactive demo for molecule manipulation is provided at https://
drive.google.com/drive/folders/1N036p_5OfvGZybgPJ3Vw1ONXHVepimSR?
usp=sharing and one example is shown in Fig. 4 (right).

4.2 QUANTITATIVE EVALUATION OF MOLECULE MANIPULATION

In Table 1, Table 5 (Appendix), Table 6 (Appendix), and Table 2, we report the quantitative eval-
uation results for both single property and multi-property molecule manipulation with both strict
success rate and relaxed success rate-L/G and training, inference time, data, oracle calls efficiency,
which are evaluated on 212 molecular properties over 1, 000 randomly generated molecules. Ac-
cording to the tables, we can obtain the following insights.

(1) Our proposed method, ChemSpacE, as the first attempt for molecule manipulation, achieves
excellent performance in manipulating both single and multi-properties of molecules with two state-
of-the-art molecule generative models (VAE-based and Flow-based). For some important molecular
properties (e.g., QED), we (with MoFlow) achieve 52% manipulation strict success rate in ZINC
dataset. We outperform the baseline methods 6× on average.

(2) The baseline (random manipulation) method sometimes “finds” directions that control molecular
properties. As shown in Fig. 2, the molecules are well-clustered in the latent space with respect to
structures that determine molecular properties (Seybold et al., 1987). However, the largest range
manipulation works worse possibly due to its strong assumption in determining the direction via the
molecules with extreme properties (largest property and smallest property) in the dataset.

(3) The ChemSpacE method outperforms the popular gradient-based method in both generating
smooth manipulation path, time and data efficiency. In Table 2, ChemSpacE speeds up the training
time for at least 1000×, required data for at least 400×, and required oracle calls for at least 400×.

4.3 QUANTITATIVE EVALUATION OF MOLECULE OPTIMIZATION

We further compare our methods under the common molecule optimization setting including two
tasks single property constrained optimization and multi-property constrained optimization. Begin-
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Table 2: Efficiency in terms of training/inference time, data, and number of oracles of ChemSpacE
compared to the gradient-based method.

Model Dataset Training(s) Inference/Path(s) # Data # Oracle calls

Opt-based QM9 137.03 0.02 120k 120k
ZINC 1027.26 0.04 200k 200k

ChemSpacE QM9 0.05 0 300 300
ZINC 0.95 0 400 400

Speedup QM9 2740× 0.02 ↑ 400× 400×
ZINC 1080× 0.04 ↑ 500× 500×

Table 3: Single property molecule optimization for Penalized-logP on ZINC dataset with four com-
parison methods (δ is the threshold for similarity between the optimized and base molecules).

MoFlow ChemSpacE
δ Improvement Similarity Success Improvement Similarity Success
0.0 8.61± 5.44 0.30± 0.20 98.88% 9.94± 6.09 0.18± 0.14 100%
0.2 7.06± 5.04 0.43± 0.20 96.75% 7.17± 5.59 0.42± 0.21 96.00%
0.4 4.71± 4.55 0.61± 0.18 85.75% 4.16± 4.43 0.65± 0.20 84.38%
0.6 2.10± 2.86 0.79± 0.14 58.25% 1.76± 2.40 0.81± 0.15 59.63%

ning with a set of candidate molecules, we aim to optimize the molecular properties while keeping
the similarities of the optimized molecules to be as close to the base molecules as possible. The
setting is persuasive in many drug discovery tasks where one needs to optimize the properties of a
given molecule while keeping the structure similar.

Single Property Constrained Optimization. We follow and compare with four previous works Jin
et al. (2018a); You et al. (2018a); Zang & Wang (2020); Eckmann et al. (2022) with the exact same
set of molecules on penalized logP property and test four different similarity constraint thresholds,
we report the property improvement and similarity compared to the base molecule as well as the
percentage of successfully optimized molecule within the threshold in Table 3. For our reported
result, ChemSpacE is manipulating over the latent space learned by MoFlow, as MoFlow leverages
gradient-based method which traces the local gradient that leads to property improvement in every
step while we take on a more efficient way to learn the global improvement direction and follow it
for all steps, we are performing surprisingly well and even better than the gradient-based method
used in MoFlow. This empirically supports our assumption about the latent space exploration.

Multi-Property Constrained Optimization. As this is not reported by previous work on molecule
optimization, we propose to optimize QED and penalized logP as a multi-property constrained op-
timization task. We also propose two simple baselines: (1) we add up the two properties (QED and
penalized logP) to be optimized as a new objective and runs single-property constrained optimiza-
tion on it, (2) we take into account the two gradient directions on the two properties and each step
we move to both directions for gradient ascent. As shown in Appendix (Table 7), we demonstrate
the capability of ChemSpacE for efficient multi-objective optimization. Our method improves both
QED and penalized logP more than the two gradient-based methods. We showcase two examples in
Fig. 5 that demonstrates ChemSpacE can optimize molecules with high structure perseverance and
desired properties.

4.4 QUALITATIVE EVALUATION OF MOLECULE MANIPULATION AND INTERPRETATION

In Fig. 6, we visualize the property distributions of QED, MolWt and LogP along a 7-step manipu-
lation path. For each step, we draw a property distribution. The candidate molecules are at place 0
and we attempt to manipulate the molecular property to the left (lower) and the right (higher). From
the figure, we can clearly observe that the property distribution shifts to the left and right accord-
ingly when we manipulate the molecule to the left and right. For example, when we manipulate the
molecules three steps to the left, the range of QED shifts from [0, 0.7] to [0, 0.5]; when the molecules
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Figure 3: Manipulating QED, MolWt and LogP properties of sampled molecules. The backbone
model is MoFlow and HierVAE trained on QM9 dataset.
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QED 0.447
LogP -1.293

QED 0.459
LogP -0.189

QED 0.475
LogP 0.339

QED 0.484
LogP 0.585

QED 0.475
LogP 0.339

QED 0.484
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Figure 4: Manipulating QED and LogP properties of sampled molecules simultaneously with
MoFlow model trained on QM9 dataset (the repeated molecules are removed for better visualiza-
tion) (left). A Real-time Interactive System Interface. Please refer to Appendix D demo video for
interactive molecule discovery (right).

are manipulated three steps to the right, there are much more molecules that have QED > 0.5 than
the base distribution. Similar trends can also be seen for MolWt and LogP properties.

Single Property Manipulation. To qualitatively evaluate the performance of our method for
molecule manipulation, we randomly select the successful manipulation paths from all three gen-
erative models in Fig. 3. The figures show that our method successfully learns interpretable and
steerable directions. For example, for HierVAE in Fig. 3, we can find that gradually increasing
LogP of a molecule may lead to the removal of the heavy atoms O and N from the structure. With
respect to QED, the molecule drops double bonds, as well as heavy N and O atoms, when increasing
QED for the HierVAE model. A similar trend can be observed in the MoFlow model that increasing
QED drops double bonds and O atoms on the left of Fig. 3.
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Figure 5: Illustrations of multi-property constrained optimization, the Tanimoto similarity between
base and optimized molecules is 0.709 (top row) and 0.647 (bottom row) respectively.

Multi-Property Manipulation. When it comes to multi-property manipulation, the goal is to con-
trol multiple molecular properties of a given molecule at the same time. In Fig. 4 (left), we show
how our method manipulates multiple molecular properties. For simplicity, we remove the dupli-
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cate molecules and only leave the distinct molecules during the manipulation. From the figure, we
can observe some correlations between LogP and QED since when we increase QED, LogP also
increases accordingly.

5 RELATED WORK

Molecule Generation. Recent studies have explored a variety of deep generative models for
molecule generation Du et al. (2022), such as variational autoencoders (VAEs) (Jin et al., 2018a),
generative adversarial networks (GANs) (De Cao & Kipf, 2018), normalizing flows (Madhawa et al.,
2019; Shi et al., 2020; Luo et al., 2021), energy-based models (EBMs) (Liu et al., 2021), reinforce-
ment learning (Olivecrona et al., 2017; Zhou et al., 2019; Yang et al., 2021), etc (Yang et al., 2020;
Xie et al., 2021). To be specific, JT-VAE (Jin et al., 2018a) proposes a VAE-based architecture to en-
code both atomic graphs and structural graphs for efficient molecule generation. MolGAN (De Cao
& Kipf, 2018) exploits GANs for molecule generation, where discriminators are used to encourage
the model to generate realistic and chemically-valid molecules. MRNN (Popova et al., 2019) extends
the idea of GraphRNN (You et al., 2018b) to formulate molecule generation as an auto-regressive
process. GCPN (You et al., 2018a) formulates the molecule generation process as a reinforcement
learning problem where it obtains a molecule step by step by connecting atoms and reward is used
for steerable generation. GraphNVP (Madhawa et al., 2019) first introduces normalizing flows for
molecule generation, where the generation process is invertible. Later works improve the flow-
based models via auto-regressive generation (Shi et al., 2020), valency correction (Zang & Wang,
2020), and discrete latent representation (Luo et al., 2021). GraphEBM (Liu et al., 2021) introduces
energy-based models based on the density of molecule data.

Controllable Molecule Generation. Another key point for molecule generation is to generate
new molecular samples which possess certain properties. Early work (Segler et al., 2018) enforces
bias on the distribution of the data and trains the generative models with known desired proper-
ties to generate molecules with desired properties, while recent works mainly leverage latent space
gradient-based (Jin et al., 2018a; You et al., 2018a; Hoffman et al., 2020; Winter et al., 2019),
reinforcement learning-based (Shi et al., 2020; Zang & Wang, 2020; Blaschke et al., 2020), and
searching-based (Brown et al., 2019; Yang et al., 2020; Kwon et al., 2021) approaches to gener-
ate molecules with desired properties. Latent space gradient-based methods are quite flexible and
can work directly on both the molecules (Fu et al., 2022) and the learned latent vectors (Gómez-
Bombarelli et al., 2018; Jin et al., 2018b; Winter et al., 2019; Griffiths & Hernández-Lobato, 2020;
Notin et al., 2021). Reinforcement learning-based methods usually formulate controllable gener-
ation as a sequential decision-making problem and require a score-function to reward the agent.
Searching-based approaches (Brown et al., 2019; Yang et al., 2020; Kwon et al., 2021; Renz et al.,
2019; Fu et al., 2020; Xie et al., 2021; Maziarz et al., 2021) are also capable of searching over
chemical space for molecules with desired properties by defining a set of discrete actions. Besides,
a few works (Chenthamarakshan et al., 2020; Das et al., 2021) leverage the learned latent space
and achieve controllable generation by accepting/rejecting sampled molecules based on a molecular
property predictor.

6 CONCLUSION, LIMITATION AND FUTURE WORK

In this work, we develop a simple yet effective method called ChemSpacE to improve the steerability
and interpretability of molecular generative models. The interface demonstrates the promising appli-
cation of interactive molecule design and discovery. Nevertheless, we acknowledge two limitations
of this work, (1) it cannot study the activity cliff phenomenon yet, (2) it lacks theoretical analyses
about why the latent space of deep generative models is learned with property boundary. Specif-
ically, we anticipate the enhanced understanding about the chemical space will lead to promising
directions in understanding challenging phenomenons such as activity cliff — structurally similar
molecules may have very different potency against the same target Stumpfe et al. (2014). How-
ever, activity cliff is a very challenging phenomenon which it requires specific benchmark datasets,
and reliable oracle functions for molecule generation, thus is beyond the scope of this study. We
leave this as a promising future work. Second, even though semantic direction in the latent space of
generative models has been widely observed and leveraged, there have been few theoretical analy-
ses which make it a challenging yet important question to answer in the future. We find this to be
empirically meaningful and can be utilized to efficiently explore the chemical space.
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Appendix for
“ChemSpacE: Interpretable and Interactive

Chemical Space Exploration”

A EXPERIMENT PROTOCOLS

Pre-trained Models. We apply ChemSpacE, as well as baselines, on two state-of-the-art molecule
generative models with publicly available pre-trained models. HierVAE (Jin et al., 2020) embeds
molecular structure motifs into a hierarchical VAE-based generative model; MoFlow (Zang & Wang,
2020) designs a normalizing flow-based model which learns an invertible mapping between input
molecules and latent vectors. Molecular Properties. We study molecular properties identified in
the chemistry community through open-source cheminformatics software, RDKit Landrum et al.
(2013) and protein binding affinity, synthesis accessibility oracles in TDC Huang et al. (2021). In
total, we analyze 212 molecular properties from multiple dimensions, including distributions, inter-
correlations, etc. Details can be found in Appendix G. Due to the page limit, we mainly report results
for 7 molecular properties, including 4 very common yet important ones, drug-likeness (QED),
molecular weight (MolWt), partition coefficient (LogP), synthesis accessibility (SA), and 3 binding
affinity scores. For continuous molecular properties, we take the molecules with largest and smallest
properties for training the linear models.

Quantitatively, we evaluate the ability of the model to manipulate the given molecular property
of molecules with the proposed strict success rate and relaxed success rate-L/G metrics (see
Sec. 2). We evaluate the model’s efficiency by comparing the training process of the linear models
with a neural network-based predictor for a commonly used optimization-based method in terms
of training/inference time, data, and number of oracle calls. Qualitatively, we visualize molecule
manipulation including property distribution shift during manipulation, single and multiple property
manipulations.

Evaluation criteria. There are two important measures to evaluate the molecule manipulation
task: smooth structure change and smooth property change. To be specific, we design two new
evaluation metrics named strict success rate (SSR) and relaxed success rate (RSR) that measure
the quality of the identified latent direction in controlling the molecular property. Under strict suc-
cess rate, we consider a manipulation path to be successful only if we generate molecules with
monotonically-changing properties and structures in consecutive k steps of manipulation. The con-
straints are formulated as follows:

ϕSPC(x, k, f) = 1[∀ i ∈ [k],s.t., f(x(i))− f(x(i+1)) ≤ 0], (10)

ϕSSC(x, k, δ) = 1[∀ i ∈ [k],s.t., δ(x(i+1), x(1))− δ(x(i), x(1)) ≤ 0], (11)

ϕDIV (x, k) = 1[∃ i ∈ [k],s.t., x(i) ̸= x(1)], (12)

where f is a property function which calculates certain molecular property, δ denotes structure
similarity between molecules x(i), x(i+1) generated in two adjacent manipulation steps. ϕSPC
defines the strict property constraint; ϕSSC defines the strict structure constraint; ϕDIV defines the
diversity constraint. The strict success rate is defined as:

SSR− L(P,X, k) =
1

|P | × |X|
∑

p∈P,x∈X
1[ϕSPC(xp, k, fp) ∧ ϕSSC(xp, k) ∧ ϕDIV (xp, k)], (13)

As monotonicity is rather strict, we propose a more relaxed definition of success rate, namely relaxed
success rate, constructed via relaxed constraints, as follows:

ϕRPC(x,k, f, ϵ) = 1[∀ i ∈ [k], s.t., f(x(i))− f(x(i+1)) ≤ ϵ], (14)

ϕRSC(x,k, δ, γ) = 1[∀ i ∈ [k], s.t., δ(x(i+1), x(1))− δ(x(i), x(1)) ≤ γ], (15)

ϕDIV (x,k) = 1[∃ i ∈ [k], s.t., x(i) ̸= x(1)], (16)

where ϵ is a predefined tolerance threshold that weakens the monotonicity requirement. We also
provide two implementations of relaxed success rate, which defines different tolerance variables ϵ
with local relaxed constraint (RSR-L) and global relaxed constraint (RSR-G). For global constraint,
we obtain ϵ by calculating the possible values (ranges) of the molecular properties in the training
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dataset, while for local constraint, we obtain ϵ by calculating the possible values (ranges) of the
molecular properties only in the specific manipulation paths. The formulation of RSR-L and RSR-G
is as follows:

RSR− L(P,X, k, ϵl, γ) =
1

|P | × |X|
∑

p∈P,x∈X

1[ϕRPC(xp, k, fp, ϵl) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)], (17)

RSR−G(P,X, k, ϵg, γ) =
1

|P | × |X|
∑

p∈P,x∈X

1[ϕRPC(xp, k, fp, ϵg) ∧ ϕRSC(xp, k, γ) ∧ ϕDIV (xp, k)], (18)

Note even though it is more challenging for the model to pass RSR-L with local constraint (smaller
range) while evaluating the successful path, its extra benefit is to take into account the ability of
the model to manipulate one molecular property (i.e., the larger the range, the higher the tolerance
score, thus the better chance to achieve successful manipulation).

Hyperparameters. ChemSpacE does not entail many hyperparameters, the only important one is
the manipulation range which is critical to the exploration degree of the latent space. For molecule
manipulation experiments, as we would like a gradual change over the molecular structure and prop-
erty, we set the range as [−1, 1]. While for molecule optimization task, it requires more aggressive
exploration strategies to reach the expected latent area which poses optimal property values. We
utilize [−100, 100] and [−30, 30] for single property optimization and multi-property optimization
experiments respectively. We report the results for single property optimization with ranges from
[1, 5, 10, 15, 20, 30, 50, 100] in Table 4.

B EXTENDED MOLECULE MANIPULATION EXPERIMENTS

B.1 MOLECULE GENERATION EVALUATION

We evaluate the Validity, Novelty and Uniqueness of the generated molecules as proposed in Kus-
ner et al. (2017) in Table 8. We can observe that ChemSpacE not only improves the success rate from
the baseline methods, but also in general improves the novelty and uniqueness during manipulation.

B.2 MOLECULE MANIPULATION DISTRIBUTION EVALUATION

We report the distribution shift of the properties during molecule manipulation in Fig. 6. Clearly,
the property distributions shifts to the right when aiming to improve the molecular properties via
identified directions and to the left when aiming to decrease the molecular properties via identified
directions.

Figure 6: Visualization of Molecular property distribution shift while manipulating molecules with
MoFlow on QM9 dataset (0 denotes the randomly sampled base molecule and +x and −x denote
manipulation directions and steps).

B.3 MULTI-PROPERTY MOLECULE MANIPULATION EVALUATION

We evaluate multi-property (penalized logp, QED) molecule manipulation over 200 randomly sam-
pled molecules on ZINC dataset in Table 5.
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Table 4: Single property molecule optimization for Penalized-logP on ZINC dataset with different
manipulation ranges of ChemSpacE (δ is the threshold for similarity between the optimized and
base molecules).

ChemSpacE-1 ChemSpacE-5

δ Improvement Similarity Success Improvement Similarity Success
0.0 2.61± 2.55 0.71± 0.23 83.25% 3.33± 3.74 0.67± 0.26 84.25%
0.2 2.56± 2.51 0.72± 0.22 97.1% 3.17± 3.60 0.69± 0.23 84.13%
0.4 2.26± 2.28 0.75± 0.20 77.25% 2.62± 3.08 0.73± 0.20 78.13%
0.6 1.34± 1.54 0.84± 0.14 57.0% 1.43± 1.54 0.84± 0.14 57.38%

ChemSpacE-10 ChemSpacE-15

δ Improvement Similarity Success Improvement Similarity Success
0.0 4.97± 4.86 0.57± 0.27 90.75% 5.92± 5.11 0.51± 0.26 93.75%
0.2 4.70± 4.71 0.60± 0.24 90.13% 5.62± 5.05 0.55± 0.23 93.25%
0.4 3.43± 3.96 0.69± 0.20 82.38% 3.96± 4.28 0.73± 0.20 84.25%
0.6 1.67± 2.32 0.82± 0.15 59.00% 1.73± 2.35 0.81± 0.15 59.63%

ChemSpacE-20 ChemSpacE-30

δ Improvement Similarity Success Improvement Similarity Success
0.0 6.62± 5.57 0.46± 0.25 94.40% 7.77± 6.34 0.39± 0.24 96.38%
0.2 6.11± 5.14 0.51± 0.22 93.75% 6.50± 5.40 0.48± 0.22 94.50%
0.4 4.22± 4.50 0.65± 0.19 85.13% 4.47± 4.73 0.64± 0.19 85.88%
0.6 1.79± 2.36 0.81± 0.15 59.88% 1.78± 2.37 0.81± 0.15 60.25%

ChemSpacE-50 ChemSpacE-100

δ Improvement Similarity Success Improvement Similarity Success
0.0 8.80± 6.35 0.30± 0.21 98.38% 9.94± 6.09 0.18± 0.14 100%
0.2 6.99± 5.53 0.44± 0.21 95.00% 7.17± 5.59 0.42± 0.21 96.00%
0.4 4.45± 4.65 0.63± 0.19 85.38% 4.16± 4.43 0.65± 0.20 84.38%
0.6 1.87± 2.56 0.80± 0.15 60.13% 1.76± 2.40 0.81± 0.15 59.63%
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Table 5: Quantitative Evaluation of Molecule Manipulation for Multiple Properties. (-R denotes
model with random manipulation, MoFlow-1 and MoFlow-2 denote two variants of gradient-based
baseline methods, RSR(L) denotes relaxed success rate-L, RSR(G) denotes relaxed success rate-G).

Metric MoFlow-1 MoFlow-2 ChemSpacE
SSR-both 28.00 27.00 62.00

RSR(L)-both 29.50 28.00 63.00
RSR(G)-both 41.00 38.50 76.00

Table 6: Quantitative Evaluation of Molecule Manipulation over a variety of molecular properties
(numbers reported are relaxed success rate-L / relaxed success rate-G in %, -R denotes model with
random manipulation, -L denotes model with largest range manipulation, -O denotes optimization-
based manipulation, -C denotes model with ChemSpacE. The best performances are bold.

Datasets Models Avg. QED LogP SA DRD2 JNK3 GSK3B MolWt

QM9

MoFlow-R 27.21 / 32.31 1.50 / 2.00 0.00 / 3.00 1.00 / 3.00 0.00 / 46.00 4.00 / 4.00 0.00 / 15.50 1.50 / 55.00
MoFlow-L 29.28 / 35.20 3.00 / 8.00 1.00 / 7.00 1.00 / 2.00 0.50 / 42.50 6.00 / 6.00 0.50 / 7.50 1.00 / 58.00

MoFlow-O N/A 4.50/6.50 6.50/8.50 8.50/13.00 3.00/15.0 10.50/10.50 10.50/17.50 8.50/22.00

MoFlow-C 53.97 / 61.56 16.00 / 28.00 13.50 / 28.00 17.50 / 39.50 17.50 / 72.50 58.50 / 58.50 21.50 / 49.00 15.00 / 72.00
HierVAE-R 2.62 / 26.06 1.00 / 1.00 1.50 / 1.50 0.50 / 0.50 0.50 / 1.50 1.00 / 5.50 1.00 / 3.00 0.50 / 2.50
HierVAE-L 3.25 / 27.33 0.50 / 1.00 0.00 / 1.50 0.00 / 5.50 0.50 / 4.00 2.00 / 8.50 0.00 / 2.50 0.50 / 1.50

HierVAE-C 46.72 / 61.49 27.00 / 35.00 32.00 / 44.00 35.00 / 42.00 41.50 / 48.50 51.50 / 60.00 30.00 / 33.50 39.50 / 45.50

ZINC

MoFlow-R 35.85 / 41.70 3.50 / 6.00 2.50 / 7.50 3.50 / 6.50 5.50 / 79.00 4.00 / 56.50 1.50 / 27.50 4.50 / 12.50
MoFlow-L 37.46 / 43.12 3.00 / 4.50 9.00 / 15.50 2.00 / 6.00 8.00 / 81.50 4.00 / 67.50 4.00 / 33.00 3.00 / 14.50

MoFlow-O N/A 1.50/2.00 10.50/15.50 1.00/2.50 2.50/5.50 18.00/21.50 23.50/28.50 0.50/1.50

MoFlow-C 60.54 / 63.23 53.50 / 57.00 57.00 / 73.50 54.00 / 61.50 55.50 / 65.50 57.50 / 63.50 56.00 / 68.00 56.00 / 71.00

ChEMBL
HierVAE-R 0.24 / 18.20 0.00 / 0.00 0.00 / 0.50 0.00 / 0.50 0.00 / 2.00 0.00 / 0.00 0.00 / 1.00 0.00 / 0.00
HierVAE-L 0.25 / 17.88 0.00 / 0.00 0.00 / 2.50 0.00 / 0.00 0.00 / 0.50 0.00 / 1.00 0.00 / 0.00 0.00 / 2.00

HierVAE-C 13.76 / 36.26 0.50 / 2.50 3.00 / 3.50 3.00 / 5.00 6.00 / 11.00 7.50 / 15.00 5.50 / 9.00 4.50 / 9.00

C EXTENDED MOLECULE OPTIMIZATION EXPERIMENTS

We report more experiments about single property and multi-property optimization in this section.
In Table 4, pushing further across the property separation boundary increases the improvement for
molecule optimization but lowers the similarity scores.

D CHEMSPACE DEMO

As shown in Fig. 7(right), we design an interactive real-time system for molecule manipulation,
where the user can click random to randomly sample a molecule and freely select which model to
interpret, which property to interpret, and tuning the slide bar manipulates the molecule accordingly
in real-time. The demo video is anonymously provided at https://drive.google.com/
drive/folders/1N036p_5OfvGZybgPJ3Vw1ONXHVepimSR?usp=sharing.

E MOLECULE REPRESENTATIONS

Molecule Graph. A molecule can be presented as a graph X = (V, E , E, F ), where V denotes
a set of N vertices (i.e., atoms), E ⊆ V × V denotes a set of edges (i.e., bonds), F ∈ {0, 1}N×D

denotes the node features (i.e., atom types) and E ∈ {0, 1}N×N×K denotes the edge features (i.e.,
bond types). The number of atom types and bond types are denoted by D and K, respectively.

F MOLECULE GENERATIVE MODELS

In Table 9, we summarize a list of representative molecule generative models, which span various
types of deep generative models, including the type of generative models, the type of generation
process and whether latent space is learned. We also provide the formulation for two types of deep
generative models (VAE and Flow) in Section F that are very popular for molecule generation task.
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Table 7: Multi-property molecule optimization for Penalized-logP and QED on ZINC dataset with
two variants of gradient-based methods (δ is the threshold for similarity between the optimized and
base molecules).

MoFlow-1

δ QED Improvement QED % Improvement pLogP Improvement pLogP % Improvement Similarity Success
0.0 0.17± 0.11 42.06± 35.69% 4.49± 3.87 51.00± 29.36% 0.44± 0.24 91.50%
0.2 0.16± 0.11 37.84± 32.16% 4.42± 3.78 51.26± 28.96% 0.48± 0.21 90.75%
0.4 0.12± 0.10 29.53± 27.45% 3.64± 3.43 44.61± 29.34% 0.61± 0.17 73.25%
0.6 0.07± 0.08 17.44± 20.36% 1.85± 2.18 26.38± 25.59% 0.78± 0.15 41.13%

MoFlow-2

δ QED Improvement QED % Improvement pLogP Improvement pLogP % Improvement Similarity Success
0.0 0.18± 0.12 45.09± 39.71% 4.67± 4.23 50.74± 28.79% 0.41± 0.23 92.88%
0.2 0.16± 0.11 40.12± 35.36% 4.48± 3.78 51.32± 29.11% 0.47± 0.20 91.50%
0.4 0.13± 0.10 31.25± 29.87% 3.70± 3.37 45.16± 29.27% 0.60± 0.17 74.88%
0.6 0.07± 0.08 17.61± 20.88% 1.97± 2.51 26.74± 26.30% 0.78± 0.15 41.88%

ChemSpacE
δ QED Improvement QED % Improvement pLogP Improvement pLogP % Improvement Similarity Success
0.0 0.20± 0.12 50.75± 41.77% 4.66± 4.34 50.01± 24.36% 0.34± 0.23 76.38%
0.2 0.18± 0.11 42.70± 32.87% 4.36± 3.50 51.57± 28.27% 0.45± 0.19 76.75%
0.4 0.14± 0.10 33.59± 27.92% 3.78± 3.49 46.07± 28.09% 0.58± 0.16 63.13%
0.6 0.08± 0.08 20.12± 22.33% 1.80± 1.81 26.77± 24.75% 0.77± 0.15 32.13%

Table 8: Quantitative Evaluation of Latent Manipulation.
Datasets Models Validity (%) Novelty (%) Uniqueness (%)

QM9

MoFlow 100.00 98.23 98.27
MoFlow-R 91.60 91.60 8.06
MoFlow-L 40.75 40.75 9.32
MoFlow-C 91.63 88.71 24.23

QM9

HierVAE 100.00 79.39 95.14
HierVAE-R 100.00 84.53 28.91
HierVAE-L 100.00 84.05 27.26
HierVAE-C 100.00 79.66 34.81

ZINC

MoFlow 100.00 100.00 100.00
MoFlow-R 69.98 69.98 29.04
MoFlow-L 43.36 43.36 24.87
MoFlow-C 71.26 71.26 15.82

ChEMBL

HierVAE 100.00 94.03 99.45
HierVAE-R 100.00 84.53 28.91
HierVAE-L 100.00 93.00 55.09
HierVAE-C 100.00 94.24 56.58

F.1 MOLECULE GENERATIVE MODEL FORMULATION

VAE. gets a lower bound (ELBO) for the data log probability by introducing a proposal distribution.

log p(x) = log

∫
z

p(x|z)p(z)dz

≥ log[Eq(z|x)[p(x|z)] + KL(q(z|x)||p(z))]
(19)

Flow. The key of Flow model is to design a invertible function with the following nice property:
z0 ∼ p0(z0)

zi = fi(zi−1)

zi−1 = f−1
i (zi)

pi(zi) = pi−1(zi−1)
∣∣∣det

df−1
i

dzi

∣∣∣ = pi−1(f
−1
i (zi))

∣∣∣det
df−1

i

dzi

∣∣∣,
(20)
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Figure 7: Optimizing molecular properties with optimization-based method.

Table 9: A summary of mainstream molecule generative models.

Prior Work Generative Model Sequential Latent Space
JT-VAE (Jin et al., 2018a) VAE ✓ ✓
CGVAE (Liu et al., 2018) VAE ✓ ✓
MRNN (Popova et al., 2019) RNN ✓
GraphNVP (Madhawa et al., 2019) Flow ✓
GCPN (You et al., 2018a) RL ✓
GraphAF (Shi et al., 2020) Flow ✓
MoFlow (Zang & Wang, 2020) Flow ✓
HierVAE (Jin et al., 2020) VAE ✓ ✓
GraphEBM (Liu et al., 2021) EBM
GraphDF (Luo et al., 2021) Flow ✓

where fi is invertible function. To be more concrete, we can take z0 as some tractable noise distri-
bution, like Gaussian distribution, and repeating this for K steps will lead to the data distribution,
i.e.,:

x = zK = fK ◦ fK−1 ◦ ... ◦ f1(z0).
Thus, the log likelihood of the data is as follows:

log p(x) = log pK(zK)

= log pK−1(zK−1)− log
∣∣∣det

dfK
dzK−1

∣∣∣
= log pK−2(zK−2)− log

∣∣∣det
dfK−1

dzK−2

∣∣∣− log
∣∣∣det

dfK
dzK−1

∣∣∣
= ...

= log p0(z0)−
K∑
i=1

log
∣∣∣det

dfi
dzi−1

∣∣∣
(21)

G STUDY OF MOLECULAR PROPERTIES

List of Molecular Properties. In total, study 208 molecular properties from the open
chemistry library RDKit1 and 4 important molecular properties including synthesis accessi-
bility and binding affinity scores from TDC2. They are MaxEStateIndex, MinEStateIndex,

1https://www.rdkit.org/docs/index.html
2https://tdcommons.ai/
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MaxAbsEStateIndex, MinAbsEStateIndex, qed, MolWt, HeavyAtomMolWt, ExactMolWt,
NumValenceElectrons, NumRadicalElectrons, MaxPartialCharge, MinPartialCharge, Max-
AbsPartialCharge, MinAbsPartialCharge, FpDensityMorgan1, FpDensityMorgan2, FpDensi-
tyMorgan3, BCUT2D MWHI, BCUT2D MWLOW, BCUT2D CHGHI, BCUT2D CHGLO,
BCUT2D LOGPHI, BCUT2D LOGPLOW, BCUT2D MRHI, BCUT2D MRLOW, Bala-
banJ, BertzCT, Chi0, Chi0n, Chi0v, Chi1, Chi1n, Chi1v, Chi2n, Chi2v, Chi3n, Chi3v,
Chi4n, Chi4v, HallKierAlpha, Ipc, Kappa1, Kappa2, Kappa3, LabuteASA, PEOE VSA1,
PEOE VSA10, PEOE VSA11, PEOE VSA12, PEOE VSA13, PEOE VSA14, PEOE VSA2,
PEOE VSA3, PEOE VSA4, PEOE VSA5, PEOE VSA6, PEOE VSA7, PEOE VSA8,
PEOE VSA9, SMR VSA1, SMR VSA10, SMR VSA2, SMR VSA3, SMR VSA4, SMR VSA5,
SMR VSA6, SMR VSA7, SMR VSA8, SMR VSA9, SlogP VSA1, SlogP VSA10, SlogP VSA11,
SlogP VSA12, SlogP VSA2, SlogP VSA3, SlogP VSA4, SlogP VSA5, SlogP VSA6,
SlogP VSA7, SlogP VSA8, SlogP VSA9, TPSA, EState VSA1, EState VSA10, ES-
tate VSA11, EState VSA2, EState VSA3, EState VSA4, EState VSA5, EState VSA6,
EState VSA7, EState VSA8, EState VSA9, VSA EState1, VSA EState10, VSA EState2,
VSA EState3, VSA EState4, VSA EState5, VSA EState6, VSA EState7, VSA EState8,
VSA EState9, FractionCSP3, HeavyAtomCount, NHOHCount, NOCount, NumAliphaticCar-
bocycles, NumAliphaticHeterocycles, NumAliphaticRings, NumAromaticCarbocycles, NumAro-
maticHeterocycles, NumAromaticRings, NumHAcceptors, NumHDonors, NumHeteroatoms,
NumRotatableBonds, NumSaturatedCarbocycles, NumSaturatedHeterocycles, NumSaturat-
edRings, RingCount, MolLogP, MolMR, fr Al COO, fr Al OH, fr Al OH noTert, fr ArN,
fr Ar COO, fr Ar N, fr Ar NH, fr Ar OH, fr COO, fr COO2, fr C O, fr C O noCOO, fr C S,
fr HOCCN, fr Imine, fr NH0, fr NH1, fr NH2, fr N O, fr Ndealkylation1, fr Ndealkylation2,
fr Nhpyrrole, fr SH, fr aldehyde, fr alkyl carbamate, fr alkyl halide, fr allylic oxid, fr amide,
fr amidine, fr aniline, fr aryl methyl, fr azide, fr azo, fr barbitur, fr benzene, fr benzodiazepine,
fr bicyclic, fr diazo, fr dihydropyridine, fr epoxide, fr ester, fr ether, fr furan, fr guanido,
fr halogen, fr hdrzine, fr hdrzone, fr imidazole, fr imide, fr isocyan, fr isothiocyan, fr ketone,
fr ketone Topliss, fr lactam, fr lactone, fr methoxy, fr morpholine, fr nitrile, fr nitro, fr nitro arom,
fr nitro arom nonortho, fr nitroso, fr oxazole, fr oxime, fr para hydroxylation, fr phenol,
fr phenol noOrthoHbond, fr phos acid, fr phos ester, fr piperdine, fr piperzine, fr priamide,
fr prisulfonamd, fr pyridine, fr quatN, fr sulfide, fr sulfonamd, fr sulfone, fr term acetylene,
fr tetrazole, fr thiazole, fr thiocyan, fr thiophene, fr unbrch alkane, fr urea, sa, drd2, jnk3, gsk3b.

However, not all of the molecular properties are varied in the three datasets. Specifically,
QM9 contains 29 frozen molecular properties, NumRadicalElectrons, SMR VSA8, SlogP VSA12,
SlogP VSA7, SlogP VSA9, EState VSA11, VSA EState10, fr C S, fr N O, fr SH, fr azide,
fr azo, fr barbitur, fr benzodiazepine, fr diazo, fr hdrzine, fr hdrzone, fr isocyan, fr isothiocyan,
fr nitroso, fr phos acid, fr phos ester, fr prisulfonamd, fr sulfide, fr sulfonamd, fr sulfone,
fr thiazole, fr thiocyan, fr thiophene, ZINC contains 4 frozen molecular properties, NumRadical-
Electrons, SMR VSA8, SlogP VSA9, fr prisulfonamd and ChEMBL contains only 3 frozen molec-
ular properties, SMR VSA8, SlogP VSA9, fr prisulfonamd.

Inter-correlations of molecular properties. In Fig. 8, we visualize the linear correlations between
each pair of molecular properties across three datasets. From the heatmaps, we can observe that
there are no linear correlations between half of the molecular properties, and similar patterns are
observed in ZINC and ChEMBL datasets.

Figure 8: Inter-correlation heatmaps for studied molecular properties in QM9, ZINC and ChEMBL
datasets.
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Molecular Property Distributions. We visualize 7 molecular property distributions reported in
section 4 in Fig. 9. From there, we can observe that the property distribution may vary a lot in terms
of different datasets. Notably, the distributions of some properties, e.g., QED, are very similar in
ZINC and ChEMBL datasets, while some are quite different, e.g., MolWt.

Figure 9: Property distributions of 7 randomly selected molecular properties on QM9, ZINC and
ChEMBL datasets.

QED MolWt LogP BalabanJ BertzCT CHGHI CHGLO

QM9

ZINC

ChEMBL

H LATENT SPACE EVALUATION

To evaluate the quality of the learned latent space, we utilize three disentanglement evaluation met-
rics, disentanglement, completeness and informativeness (Eastwood & Williams, 2018). To be spe-
cific, disentanglement measures the degree to which each latent dimension controls at most one
molecular property, completeness measures the degree to which each molecular property is gov-
erned by at most one latent dimension, and informativeness measures the prediction accuracy of
molecular properties given the latent representation. From Table 10, we find MoFlow learns a better
and more disentangled latent space than HierVAE. One possible reason is that MoFlow (369) has
a larger latent space than HierVAE (32) since Flow restricts the latent size to be equal to the input
size.

Table 10: Quantitative Evaluation of Disentanglement on Latent Space.
Datasets Models Disentanglement Completeness Informativeness

QM9 MoFlow 0.24 0.57 0.83
HierVAE 0.13 0.27 0.75

ZINC MoFlow 0.40 0.62 0.87

ChEMBL HierVAE 0.14 0.41 0.81
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