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ABSTRACT: Molecular simulations have been extensively employed to accelerate biocatalytic 

discoveries. Enzyme functional descriptors derived from molecular simulations have been 

leveraged to guide the search for beneficial enzyme mutants. However, the ideal active-site region 

size for computing the descriptors over multiple enzyme variants remains untested. Here, we 

conducted convergence tests for dynamics-derived and electrostatic descriptors on eighteen Kemp 

eliminase variants across six active-site regions with various boundary distances to the substrate. 

The tested descriptors include the root-mean-square deviation of the active-site region, the solvent 

accessible surface area ratio between the substrate and active site, and the projection of the electric 

field on the breaking C–H bond. All descriptors were evaluated using molecular mechanics 

methods. To understand the effects of electronic structure, the electric field was also evaluated 

using quantum mechanics/molecular mechanics methods. The descriptor values were computed 

for eighteen KE variants combined with six active-site regions. Spearman correlation matrices 

were used to determine the region size condition under which further expansion of the region 

boundary does not substantially change the ranking of descriptor values. We observed that protein 

dynamics-derived descriptors, including RMSDactive_site and SASAratio, converge at a distance 

cutoff of 5 Å from the substrate. The electrostatic descriptor, EFC–H, converges at 6 Å using 

molecular mechanics methods and 7 Å using quantum mechanics/molecular mechanics methods. 

This study serves as a future reference to determine descriptors for predictive modeling of enzyme 

engineering. 
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1. Introduction  

Enzymes have been widely used as biocatalysts for chemical synthesis,1-3 biomass 

conversion,4-7 polymer upcycling,8-11 drug functionalization,12-15 and food allergy treatment.16-18 

Wild-type enzymes usually exhibit low specificity for converting non-native substrate and feeble 

activity for catalyzing new-to-nature reactions. Experimental strategies of enzyme engineering, 

such as random mutagenesis,19-21 gene shuffling/recombination,22,23 CASTing,24,25 and directed 

evolution,26-29 have been leveraged to optimize enzymes’ capability for accommodating non-native 

substrates or catalyzing new-to-nature reactions. These strategies require extensive efforts for 

screening and selecting mutants to achieve desired functions. To accelerate biocatalytic discovery, 

molecular simulations30-34 have been augmented with the campaign of biocatalytic discovery. The 

catalytic actions of enzyme catalysis can be elucidated and quantified using descriptors, including 

folding stability,35 binding affinity,36-38 activation barriers,39,40 protein dynamics and correlated 

motions,41-49 electric field (EF),50-55 charge transfer,54,56 and more. These descriptors, derived from 

quantum mechanical (QM) or molecular mechanical (MM) simulations, have guided the search 

for beneficial mutants.57,58 They also serve as critical features for data-driven enzyme engineering.  

For example, protein dynamics-derived descriptors and electric fields have been 

extensively studied, because they were found to correlate with enzyme catalytic efficiency.50,58-60 

Additionally, their computation is more efficient than that of activation barriers, whose 

convergence requires intensive conformational sampling and electronic structure calculations. A 

common descriptor for protein dynamics is the root-mean-square deviation of the active-site region 

(RMSDactive_site). RMSDactive_site quantifies the structural fluctuation of protein backbones or 

sidechains relative to a reference structure. The fluctuation is associated with the B-factor of 

protein structure determined from crystallography. In an analysis of catalytic residues in 178 
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enzyme active sites,59 Bartlett et. al. showed that the active-site residues of efficient enzymes 

generally have a lower B-factor. As such, a lower RMSDactive_site should be expected for efficient 

mutant enzymes and designer enzymes in catalysis, albeit that the catalytic efficiency may drop 

under very low RMSD range.61 Besides RMSDactive_site, our group identified a new descriptor to 

evaluate the overall impact of protein dynamics on substrates.58 The descriptor, defined as solvent 

accessible surface area ratio of substrate to active-site residues (SASAratio), can be obtained from 

molecular dynamics simulations. Using lactonase as a model system, our previous work shows 

that SASAratio can guide the search of optimal enzyme mutants with enhanced specificity for non-

native substrates. Besides protein dynamics, the role of electrostatic environments was reported as 

a critical factor in mediating enzyme catalysis.62 Linear correlation was observed between the 

magnitude of EF in the reaction center and the free energy barrier in ketosteroid isomerase and 

serine protease.50 

Despite the broad applications of simulation-derived descriptors in guiding enzyme 

engineering, converging the computation of descriptors in QM and MM simulations is a non-trivial 

task. Failure of achieving convergence hampers reproducibility of computational outcomes and 

may misguide experimental designs. This issue is particularly significant for QM-based 

calculations due to their high computational cost. Benchmarks have been performed to investigate 

the selection of QM regions that converge the computation of electronic structure descriptors (e.g., 

partial charge,63-67 charge transfer,67 charge density,66 bond valence,67 and electrostatic potential), 

energetic properties (e.g., energy barrier, reaction energy, and free energy),64,65,67-75 

geometries,64,73,74 and NMR shielding76,77 in various model enzymes (peroxidase, 

methyltransferases, cytochrome P450, and deacetylase).67 Rational QM region selection 
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approaches have also been developed, including charge shift analysis,78 Fukui shift analysis,78 and 

point charge variation analysis79.  

The benchmark studies on descriptors have been mostly performed on wild-type 

enzymes.72 However, to understand or predict mutation effects, it is essential to perform 

convergence tests over multiple enzyme variants. Ideally, the selected active-site region for 

computing QM or MM properties should be large enough so that further expanding the region size 

does not substantially change the order of descriptor values across different enzyme variants. In 

this work, using 18 variants of Kemp eliminase,80 we investigated whether the ranking of 

descriptor values across enzyme variants approaches convergence as the increase of active-site 

region sizes used in descriptor computation. We first sampled conformational ensembles for 18 

variants using classical molecular dynamics. Based on the sampled conformers, protein dynamics-

derived descriptors (i.e., RMSDactive_site and SASAratio) and electronic structure-derived descriptors 

(i.e., electric field along the breaking C–H bond) were evaluated using different sizes of active-

site region based on MM or QM methods. For each descriptor, the Spearman correlation matrix 

was computed to examine the trend of convergence. The study informs the conditions under which 

different descriptors can be calculated with high fidelity for predicting the impact of mutations on 

catalytic functions.  

2. Computational Methods  

Protein Structure and Preparation The crystal structure of KE07-R7-2 was obtained from 

the Protein Data Bank (PDB ID: 5D38).56 All the crystallizing water molecules were removed. To 

make the amino acid sequence consistent with the original KE07 design,30 the N-terminal alanine 

was changed to methionine and the residues following Leu253 on the C-terminal were removed. 
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The crystal structure30 of KE07 in complex with the substrate 5-nitrobenzisoxazole was aligned 

relative to the KE07-R7-2 crystal structure using PyMol.81 The coordinates of the substrate were 

used to construct the KE07-R7-2-substrate complex. The complex was then prepared with the 

AMBER 18 tleap82 utility for MD simulations. AMBER ff14SB force field was used for the 

protein.83 Parameters for the substrate were obtained using the generalized AMBER force field.84,85 

The atomic charges were determined by the AM1-BCC model.86 The missing atoms were also 

complemented with tleap. 

Molecular Dynamics Simulations MD simulations for each of the 18 variant-substrate 

complexes were conducted with a high throughput enzyme modeling platform, EnzyHTP.87 The 

18 variants include one KE07-R7-2 as the “wild-type” and 17 of its mutants, including S48N, 

H201A, H201K, K222A, R16Q, N25S, I52A, M62A, H84Y, K132N, I199S, I199F, I199A, 

K132M, K162A, L170A, E185A (Supporting Information, Table S1 and .zip file). Specifically, 

EnzyHTP automatically generates the structures of enzyme mutants based on the original structure 

and performs MD simulations using AMBER 18.82 The SHAKE algorithm was applied to 

constrain all the hydrogen-containing bonds.88 To sample the near transition state conformations 

throughout the simulations, geometric restraints between the substrate and key amino acid residues 

were applied from minimization to production runs (Supporting Information, Figure S1). The 

enzyme complexes were then solvated in a periodic octahedron box with a 10 Å buffer of TIP3P 

water and were neutralized with Na+ counterions. For each variant complex, the whole solvent box 

was first relaxed using steepest descent method for 10000 steps followed by conjugate gradient 

method for another 10000 steps. After minimization, each box was heated from 0 to 293.15 K 

within 36 ps with constant volume, equilibrated for 4 ps under constant volume at 293.15 K, and 

further equilibrated at 293.15 K and 1 atm for 1 ns. In addition to the geometric restraints 
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mentioned above, the backbone Cα, C and N of the amide group were also restrained with a 2 

kcal·mol-1·Å-2 weight from the minimization to equilibration. After equilibration, we carried out 

production runs for 110 ns and output the trajectories every 100 ps. The snapshots derived from 

the last 100 ns of the production run were used for analyses. This yields a total of 1000 snapshots 

for each production run. All simulations were performed with a time step of 2 fs. The Langevin 

thermostat89 and Berendsen barostat90 were used throughout the simulations. For each of the 18 

variant-substrate complexes, five parallel MD runs were conducted with different random seeds, 

yielding a total sampling time of 500 ns and 5000 snapshots. 

QM/MM Calculations We conducted QM/MM single-point electronic structure 

calculations for 500 snapshots sampled from MD production runs with a 1 ns interval. QM/MM 

single-point energies were calculated using TeraChem.91,92 The electrostatic interactions between 

the QM and MM region were treated with the electrostatic embedding method.62 The QM/MM 

boundaries cut the backbone C-N bond of the amide group. To cap the unbonded atoms in the QM 

region, explicit H atoms were placed along the bond vector connecting the QM and MM atoms, 

and the resulting N–H and C–H bond lengths were set to be 1.09 Å. At the same time, the point 

charges originally belonging to the QM-region-bonded amide C and N atoms in the MM region 

were removed, and their charges were redistributed evenly on the remaining MM atoms except for 

those covalently bonded to the deleted MM amide C and N atoms. The electronic structures were 

described using the range-separated exchange-correlation functional ωPBEh93 (ω = 0.2 bohr-1) 

with 6-31G(d).94 This combination of method and basis set has been validated in the study of large-

scale electronic structure effects in catechol O-methyltransferase, cytochrome P450cam, lysozyme, 

and DNA methyltransferase.65,67 The restrained electrostatic potential (RESP) point charges95 of 

each snapshot were calculated for QM residue electric field analyses. 
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Descriptor Calculations and Analyses We selected six active-site regions whose 

boundary’s distance to the substrate surface ranges from 3 to 8 Å with a 1 Å interval. For all 18 

variants, the active-site regions were classified based on the averaged MD structure of KE07-R7-

2. A residue is selected in the region if any one of its heavy atoms is within the distance cutoff 

from its nearest substrate heavy atom. Based on each of the active-site region, we calculated the 

enzyme functional descriptors, including mass weighted root-mean-square deviation of an active-

site region (RMSDactive_site, in Å), solvent accessible surface area ratio between substrate and 

active-site residues (SASAratio, in Å2), and electric field along the breaking C–H bond (EFC–H, in 

MV·cm-1). The values of each descriptor were first evaluated on individual conformational 

snapshots, and then averaged over sampled classical MD or QM/MM snapshots (Supporting 

Information, Table S3-S6).   

For RMSDactive_site, we included all the heavy atoms of the amino acid residues. The 

reference structure was averaged from sampled MD snapshots. The SASAratio was calculated based 

on the ratio of SASAsub (substrate’s SASA) to SASAprotein (protein residues’ SASA). SASA was 

quantified using the Shrake and Rupley algorithm96 embedded in the python library MDTraj.97 

The probe radius was 1.4 Å and the surface of each atom was represented by 5000 grid points. 

EFC–H was calculated to be the projected EF strength at the middle point of the breaking C–H bond 

of the substrate 5-nitrobenzisoxazole. The bond vector direction points from C to H. We separately 

computed EFC–H based on RESP charges either derived from molecular mechanics force field or 

single-point electronic structure calculation. For MM-derived EFC–H, the EFC–H was summed over 

from all atoms in the selected active-site region based on the RESP charges used in the classical 

force field. For QM/MM-derived EFC–H, the EFC–H was summed over from all atoms in the QM 

and MM region. The EF contributions from the capping H atoms were not included.  
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For each active-site region, the averaged descriptor values were computed then ranked 

across the 18 enzyme variants. Spearman correlation matrix for each descriptor was computed that 

contains the correlation coefficients for each pair of the active-site regions.  

3. Results and Discussion 

3.1 Kemp Eliminase Variants as the Model System 

As the first known de novo-designed enzyme, Kemp eliminase catalyzes the conversion of 

benzisoxazole to cyanophenol via C–H deprotonation followed by ring opening (Figure 1 top 

right).30 Three generations of Kemp eliminase have been reported,30,42,51,52,56,80,98-100 including the 

KE family designed using the “inside-out” protocol by Baker, Houk, Tawfik, and co-workers;30 

the HG family using iterative protocol by Hilvert, Houk, Mayo and co-workers;31 and the AlleyCat 

family using the minimalist approach by Korendovych, Degrado, and coworkers.32,100 From their 

initial reports, the most efficient enzyme variants were identified to be KE07-R7-2 (kcat/KM = 2590 

M-1s-1), HG-3 (kcat/KM = 430 M-1 s-1), and AlleyCat (i.e., kcat/KM = 128.4 M-1s-1). All three families 

of Kemp eliminase involve a general acid-base mechanism, in which the substrate 5-

nitrobenzisoxazole is deprotonated by a nearby carboxylate (side chain of Glu or Asp) to form 2-

hydroxy-5-nitrobenzonitrile via one single transition state (Figure 1, top-right). Nonetheless, they 

involve a different set of active site residues for substrate deprotonation and binding.   

We chose the model system to be a member of the KE family, KE07-R7-2,30,56 and 

seventeen of its variants with single amino acid substitution reported by Head-Gordon and 

coworkers.80 KE07-R7-2 was derived from seven rounds of directed evolution based on a 

computationally designed enzyme scaffold KE07. In KE07-R7-2 and its variants, the carboxylic 

sidechain of Glu101 serves as the catalytic base (Figure 1, bottom-right). These variants were 
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selected in the benchmark for three reasons. First, the mutational spots of the variants span over a 

wide range of spatial proximity to the substrate (i.e., 3 - 23 Å, Figure 1, left and Supporting 

Information, Table S1). Both close and distal mutations are thus considered in the study. Second, 

although modeling has been performed for KE07-R7-2 to infer mutational hotspots based on 

correlated residue motion,80 protein dynamics and electronic structures for the 17 variants of 

KE07-R7-2 have not been investigated. Third, the kinetic parameters (i.e., kcat or KM) for these 

variants are known experimentally.80 This implies that the mutation does not abolish the structural 

and catalytic integrity of Kemp eliminase. The crystal structure for KE07-R7-2 can be used as a 

scaffold for mimicking the mutant structures.  

 

Figure 1. Mutation spots, catalyzed reaction, and active site residues of Kemp eliminase KE07-

R7-2. (Left) Spatial distribution of mutation spots. The Cα
 atom of each site is shown in purple 

sphere, and the substrate is shown in green sticks. (Top-right) Catalyzed Kemp elimination 
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reaction. The single transition state involves the deprotonation of a carbon atom. The transition 

state is stabilized by a general base from an amino acid side chain. The partial negative charge on 

the oxygen atom is stabilized by a hydrogen bond donor, which can be an amino acid side chain 

or a solvent water molecule.  (Bottom-right) Active site residues are shown in stick. The catalytic 

base is labeled in red, the substrate is shown in green, and the rest of the residues are shown in 

gray. 

For KE07-R7-2 and its variants, the greater enzyme active site region entails 32 residues, 

including 6 polar, 20 non-polar, and 6 charged residues (Figure 1, bottom-right and Supporting 

Information, Table S2). By design, Glu101, Lys222 and Trp50 directly participate in the reaction 

or stabilize the transition state.30 Glu101 is the general base that deprotonates the substrate. Lys222 

is the H-bond donor to stabilize the phenoxide intermediate. Trp50 is the π-stacking residue to 

stabilize the substrate binding and charge-separated transition state. Four polar residues are 

observed within 5 Å of the substrate, including Tyr128, Ser48, His201, and Arg202. They likely 

stabilize the substrate binding or transition state with electrostatic or polar interactions. In addition, 

a total of eight polar (i.e., Glu101, Lys222, Tyr128, Ser48, His201, Arg202, Asp224, Asn103) and 

four charged (i.e., Glu101, Lys222, Arg202, Asp224) residues are found within 5.5 Å from the 

substrate. These residues mediate the electric field environment exerted on the breaking C–H bond. 

Besides dispersion interactions, the nonpolar residues likely contribute to the active site dynamics 

as described by RMSDactive_site and SASAratio.  

3.2 Region Selection for Descriptor Calculation 

To calculate simulation-derived descriptors, an active-site region should be defined first. 

In this study, the calculations of RMSDactive_site, SASAratio, and MM-derived EFC–H involve only 
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the residues classified within a defined active-site region. The calculation of QM/MM-derived 

EFC–H involves treatment of the active-site region residues using quantum mechanics and the rest 

of the enzyme residues using molecular mechanics. To benchmark the region size effect, the 

active-site regions were defined based on the residues’ spatial proximity to the substrate (see 

Computational Method, Descriptor Calculations and Analyses). We selected six active-site 

regions whose boundaries to the substrate range from 3 to 8 Å (with 1 Å interval) – they are named 

C3 to C8, respectively (Figure 2). The residues were consistently selected by referencing KE07-

R7-2. For C3, only Glu101 is included. Glu101 serves as the catalytic base to deprotonate the 

residue. Notably, throughout the MD simulations, a distance constraint was applied between 

Glu101 and the substrate to maintain their favorable catalytic pose. Compared to C3, C4 involves 

an expansion of 7 additional residues. Among them, Lys222 and Trp50 appear in the original 

design of theozyme.30 These two residues, cooperating with His201, Tyr128, and Ser48, likely 

facilitate proton transfer needed for the general acid-base mechanism. Unlike C3 which bears a -1 

charge, C4 is charge neutral due to the addition of Lys222. In C5, only one additional residue 

Arg202 is included. This indicates that the catalytic core of KE involves a relatively compact inner 

cluster of residues surrounding the substrate. The positive charge introduced by Arg202 in C5 is 

neutralized by Asp224 in the C6 region. Notably, among the newly added residues in C6, three 

(i.e., Leu10, Phe49, and Val169) out of five are non-polar. This trend is also observed in C7 and 

C8. For the new additions, only two residues (i.e., Ser144 and Thr78) out of eight are polar in C7; 

two (i.e., Asp7 and Asp51) out of ten are polar in C8. The excessive number of non-polar residues 

in the greater active-site region contribute to the stability of Kemp eliminase.   
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Figure 2. Six active-site regions with various boundary distances to the substrate. The distances 

used here range from 3 to 8 Å; the regions are named C3 to C8, respectively. For each region, the 

selected residues are shown in stick. Compared to an adjacent region with a smaller size, the newly-

added residues shown in red stick and labeled with a residue name; the existing residues are shown 

in gray stick. 

Table 1. Residue number, atom number, and net charge for the six active-site regions of KE07-

R7-2 with different region sizes. Substrate atoms are counted in the atom number.  

Cutoff (Å) Residue number Atom number Charge 

3 1 31 -1 

4 8 155 0 

5 9 179 1 

6 14 260 0 

7 22 336 0 

8 32 495 -2 
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The total number of atoms ranges from 31 in C3 to 495 in C8 (Table 1). The region size 

tested here is comparable to or greater than the optimal region sizes determined from previous 

benchmark studies, including DNA methyltransferase by Mehmood et. al.67 (300 atoms), histone 

deacetylase by Morgenstern et al.66 (200 atoms), and catechol O-methyltransferase by Kulik et 

al.64 (500 to 600 atoms) and Jindal et al.72 (60 atoms). 

For each of the six active-site regions, we computed the average descriptor values for the 

eighteen KE07-R7-2 variants based on their conformational ensembles (Supporting Information, 

Tables S3 to 6). We investigated how the ranking of descriptor values across the eighteen variants 

varies with the increase of region size. Instead of benchmarking a certain molecular property 

against its reference value, this study intends to identify a condition of region size under which 

further expanding the region boundary minimally changes the ranking of descriptor values across 

enzyme variants. Notably, the region size condition for a converged trend does not guarantee the 

convergence of individual property values. Nonetheless, the mutation effect can be reasonably 

inferred under this condition to guide enzyme engineering.  

3.3 Descriptor of Protein Dynamics: RMSDactive_site and SASAratio 

We first investigated the dynamics-derived descriptors, RMSDactive_site and SASAratio. They 

represent different aspects of protein dynamics. RMSDactive_site informs the conformational 

fluctuation of active site residues, while SASAratio informs the dynamic positioning and fitness of 

substrate in the active site.  

Figure 3 shows the Spearman correlation matrix for RMSDactive_site (left) and SASAratio 

(right). Each element of the matrix represents a Spearman correlation coefficient (i.e., ρ) between 

descriptor values derived from two regions with a distinct size. For RMSDactive_site, a high ρ value 
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(i.e., ≥ 0.70) is observed for almost all pairs of regions except those that involve C3. The moderate 

ρ values between C3 and C5 – C8 (i.e., 0.5-0.7) are caused by the small size of C3 that involves 

only one residue in the region (i.e., Glu101). The correlation coefficients tend to be higher for 

regions that are close in size (e.g., ρ > 0.9 for C5-C6, C6-C7, and C7-C8) and lower for regions 

with a larger size gap (e.g., R = 0.53 for C3-C8 and 0.73 for C4-C8). Notably, it is unexpected that 

the correlation coefficient is still as high as 0.53 between C3 and C8 because their numbers of 

residues differ by 31 and of atoms by 464. This indicates that the RMSDactive_site ranking calculated 

from C3 can still partially inform the ranking of dynamic fluctuation exhibited by larger-sized 

regions. This is likely caused by the collective motions of residues in the enzyme active site, where 

all residues are somewhat interconnected in a complex, dynamic network.  

 

Figure 3. Spearman correlation matrices for protein dynamics-derived descriptors, RMSDactive_site 

(left) and SASAratio (right). Each matrix element represents a Spearman correlation coefficient for 

a pair of active-site regions with a distinct size. The magnitude of the correlation is coded by a 

gradient color bar that ranges from 0 (white) to 1 (red). 
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Unlike RMSDactive_site, which emphasizes protein dynamics, SASAratio represents the 

interplay of dynamic motion between substrate and its surrounding active-site residues. The 

Spearman correlation matrix of SASAratio shows a similar trend to that of RMSDactive_site (Figure 3, 

right). For each pair of regions, the Spearman correlation coefficient of SASAratio is generally 

greater than that of RMSDactive_site. The ρ values are greater for correlations between larger regions 

that are closer in size (e.g., ρ = 0.96, 0.96, and 0.93 for C5-C6, C6-C7, and C7-C8, respectively). 

Notably, the SASAratio is computed by the SASA ratio of substrate to active-site residues. For 

different active-site regions, the SASA value of the substrate always remains constant. This helps 

dampen the perturbation of expanding region size on the ranking of descriptor values across 

variants.  

To determine a convergence cutoff for computing dynamics-derived descriptors, we 

investigated the change of Spearman correlation coefficients between adjacent active-site regions 

versus the increase of region size (Figure 4). For both RMSDactive_site and SASAratio, the correlation 

coefficient appears greater than 0.90 after C5 (i.e., 5.0 Å from the substrate). With a Spearman ρ 

value greater than 0.90, the ranking of descriptor values computed from one active-site region is 

largely preserved in another. As such, the convergence cutoff for dynamics-derived descriptors is 

determined to be 5.0 Å. Notably, from C5 to C8, the atomic charge varies from 1 (C5), to 0 (C6 

and C7), then to -2 (i.e., C8). The correlation coefficients remain high even between regions of 

different charges. This observation confirms that the dynamics-derived descriptors used here are 

approximately independent from electrostatic effects – they are insensitive to electrostatic 

perturbation in the protein environment.  
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Figure 4. Spearman correlation coefficients for the dynamics-derived descriptors, RMSDactive_site 

(left) and SASAratio (right) between regions that are close in size. 

3.4 Descriptor of Electrostatic Environment: Electric Field along Breaking C–H Bond 

Next, we investigated the descriptor for enzyme electrostatics, EFC–H, the electric field 

along the breaking C–H bond. The interior electric field in Kemp eliminase has been proposed as 

a factor to stabilize the developing dipole moment along the C–H bond.52 Optimizing the electric 

field through mutagenesis has also been demonstrated as an effective strategy to improve enzyme 

catalytic efficiency.52,101  

Figure 5 shows the Spearman correlation matrix for EFC–H that were separately computed 

using MM (left) and QM/MM (right) method. MM-derived EFC–H involves only the local residues 

that are classified in the active-site region. This approach is similar to the distance cutoff method 

used in Rosetta score functions for computing electrostatic interactions.102 QM/MM-derived EFC–

H employs QM to treat residues in the active-site region and MM for residues in the rest of the 

enzyme. This approach incorporates the effects of long-range electrostatics.  
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Unlike dynamics-derived descriptors, low correlation coefficients are more frequently 

observed between active-site regions of different sizes, especially between regions with a larger 

size gap. For example, the Spearman ρ values for C3-C6 (i.e., differ by 13 residues), C3-C7 (i.e., 

differ by 21 residues), and C3-C8 (i.e., differ by 31 residues) are 0.07, 0.07, and 0.05, respectively, 

for MM-derived EFC–H (Figure 5, left); they are 0.19, 0.28, and 0.25, respectively, for QM/MM-

derived EFC–H (Figure 5, right). The low correlation strength indicates that the ranking of EFC–H 

values derived from a smaller active-site region cannot be used to infer the ranking from a larger 

active-site region. Different from dynamics-derived descriptors, the electric field depends more 

sensitively on the active-site regions used in the calculation. From C3 to larger active-site regions, 

individual residues added to the active site region, especially polar and charged residues, can 

significantly affect the representation of mutation effects on interior enzyme electrostatics.  

 

Figure 5. Spearman correlation matrix for MM-derived EFC–H (left) and QM/MM-derived EFC–H 

(right). Each matrix element represents a Spearman correlation coefficient for a pair of active-site 

regions with different region sizes. The magnitude of the correlation is coded by a gradient color 

bar that ranges from 0 (white) to 1 (red). 
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Similar to dynamics-derived descriptors, the Spearman ρ values are greater for correlations 

of EFC–H rankings between larger regions that are closer in size. The ρ values for C4-C5, C6-C7, 

and C7-C8 are 0.99, 0.99, and 0.98, respectively, for MM-derived EFC–H (Figure 5, left); and are 

0.99, 0.76, and 0.96, respectively, for QM/MM-derived EFC–H (Figure 5, right). Interestingly, the 

rankings derived from C4 and C5 are highly consistent, albeit their difference in the total charge 

of active-site residues by -1. The charge difference is caused by the addition of Arg202 in C5. 

Despite having a +1 charge, Arg202 has a trivial influence on EFC–H due to it being perpendicular 

to the breaking C–H bond vector. For C6-C7 and C7-C8, the newly added residues are mostly 

nonpolar and are distant from the breaking C–H bond in the substrate (i.e., >6.3 Å). As electric 

field strength is inversely proportional to the square of the distance, the impact of remote residues 

dies off quickly. As such, a consistent ranking of EFC–H values is observed between regions beyond 

C6. Unexpectedly, the Spearman ρ value for C5-C6 (i.e., 0.54 and 0.49 for MM- and QM/MM-

derived EFC–H, respectively) is significantly lower than that for C4-C5 or C6-C7 (Figure 5). This 

is because the newly added charged residue in C6, Asp224, is positioned along the direction of the 

breaking C–H bond vector. As such, the impact of Asp224 on the ranking of EFC–H values is 

substantial.  

By comparing the Spearman ρ values for C4-C5, C5-C6, and C7-C8, the results show that 

for both MM- and QM/MM-derived EFC–H values, the ranking is dependent more on the spatial 

distribution of charged residues relative to the breaking C–H bond than on the total atomic charge 

in the active-site regions. This finding can potentially help rational identification of residues for 

tuning interior enzyme electric fields for selective bond activation. To determine a convergence 

cutoff for computing electrostatic descriptors (i.e., for MM- and QM/MM-derived EFC–H), we 

investigated the change of Spearman correlation coefficients between adjacent active-site regions 
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versus the increase of region size (Figure 6). Consistent with the dynamics-derived descriptors, we 

adopted a Spearman ρ value of 0.90 as the criterion for determining the convergence cutoff. As 

such, the convergence cutoff values for MM- and QM/MM-derived EFC–H are determined to be 

6.0 and 7.0 Å, respectively. QM/MM-derived EFC–H demands a larger active-site region for 

convergence due to the involvement of charge transfer and polarization between residues in the 

QM region. To predict mutation effects on interior enzyme electrostatics, the use of minimal QM 

region in QM/MM calculation is not sufficient, albeit the incorporation of the whole enzyme in 

the model.  

 

Figure 6. Spearman correlation coefficients for the dynamics-derived descriptors, MM-derived 

EFC–H (left) and QM/MM-derived EFC–H (right) between regions that are close in size. 

Due to the high computational cost of QM/MM calculations, we investigated how 

predictive the ranking of MM-derived EFC–H (i.e., including all atoms in the enzyme) is for the 

ranking of QM/MM-derived EFC–H values under different QM region sizes (Supporting 

Information, Figure S2). The Spearman correlation coefficient between the MM- versus QM/MM-

derived EFC–H values is 0.45 in C7 and 0.44 in C8. Under large QM region, the association still 

exists between the MM- and QM/MM-derived EFC–H values, albeit with a moderate correlation 
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strength. Considering the low computational cost of MM-derived EFC–H values, we would 

recommend a hybrid approach for future practice of computational enzyme engineering. This 

hybrid approach involves using MM-derived EFC–H values for pre-screening of a large number of 

mutants, followed by an assessment of QM/MM-derived EFC–H values to identify mutants for 

experimental tests. Based on the convergence test, a large-QM region should be used, but the 

region size could potentially be reduced by using rational QM determination approaches such as 

charge shift analysis,78 Fukui shift analysis,78 and point charge variation analysis79. 

4. Conclusions 

In this work, we investigated how large an active-site region should be to converge the 

description of mutation effects on enzyme dynamics and electrostatics. For eighteen KE07-R7-2 

variants, dynamics-derived descriptors (RMSDactive_site and SASAratio, both derived from classical 

MD) and electrostatic descriptors (MM- and QM/MM-derived EFC–H) were computed across six 

active-site regions with various boundary distances (i.e., 3-8 Å) to the substrate. For each 

descriptor, we employed a Spearman correlation matrix to determine the region size condition 

under which further expansion of the region boundary does not substantially change the ranking 

of descriptor values.  

Using a Spearman ρ value of 0.9 as a criterion for convergence, we observed that the 

ranking for RMSDactive_site and SASAratio converges at 5 Å; MM- and QM/MM-derived EFC–H 

converge at 6.0 and 7.0 Å, respectively. Under large QM regions (i.e., 7 or 8 Å from the substrate), 

the ranking of MM-derived EFC–H (i.e., including all atoms in the enzyme) is weakly predictive to 

the ranking of EFC–H values from QM/MM computation. As such, we recommend a hybrid 

approach for future practice of computational enzyme engineering, which involves a pre-screening 
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of a large number of mutants based on MM-derived EFC–H values, followed by an assessment of 

QM/MM-derived EFC–H values on a smaller number of pre-screened mutants. Notably, the 

convergence of rankings does not ensure the convergence of measured descriptor values. 

Nonetheless, the ranking is most useful to guide experimental selection of function-enhancing 

enzyme mutants. Additionally, the current study emphasizes a designer enzyme, Kemp eliminase. 

Future studies should entail more types of enzymes with various catalytic actions. 
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