
 1

 2

 3

Technical note 4

 5

psm_utils: A high level Python API for parsing 6

and handling peptide-spectrum-matches and 7

proteomics search results 8
 9

 10

 11

 12

Ralf Gabriels1,2, Arthur Declercq1,2, Robbin Bouwmeester1,2, Sven Degroeve1,2, and 13
Lennart Martens1,2,§ 14

 15

 16

 17

 18

 19

 20

1 VIB-UGent Center for Medical Biotechnology, VIB, Belgium 21
2 Department of Biomolecular Medicine, Ghent University, Belgium 22

§ To whom correspondence should be addressed: 23
Tel: +32 9 264 93 58 24
Email: lennart.martens@vib-ugent.be 25
Address: Technologiepark 75, 9052 Ghent, Belgium 26

ORCID IDs: 27
Ralf Gabriels: https://orcid.org/0000-0002-1679-1711/ 28
Arthur Declercq: https://orcid.org/0000-0002-9376-1399/ 29
Robbin Bouwmeester: https://orcid.org/0000-0001-6807-7029/ 30
Sven Degroeve: https://orcid.org/0000-0001-8349-3370/ 31
Lennart Martens: https://orcid.org/0000-0003-4277-658X/ 32

mailto:lennart.martens@vib-ugent.be
https://orcid.org/0000-0002-1679-1711/
https://orcid.org/0000-0002-9376-1399/
https://orcid.org/0000-0001-6807-7029/
https://orcid.org/0000-0001-8349-3370/
https://orcid.org/0000-0003-4277-658X/

Abstract 33
A plethora of proteomics search engine output file formats are in circulation. This lack of 34
standardized output files greatly complicates generic downstream processing of peptide-35
spectrum matches (PSMs) and PSM files. While standards exist to solve this problem, 36
these are far from universally supported by search engines. Moreover, software libraries 37
are available to read a selection of PSM file formats, but a light-weight package to parse 38
PSM files into a unified data structure has been missing. Here, we present psm_utils, a 39
Python package to read and write various PSM file formats and to handle peptidoforms, 40
PSMs, and PSM lists in a unified and user-friendly Python-, command line-, and web-41
interface. psm_utils was developed with pragmatism and maintainability in mind, 42
adhering to community standards and relying on existing packages where possible. The 43
Python API and command line interface greatly facilitate handling various PSM file 44
formats. Moreover, a user-friendly web application was built using psm_utils that allows 45
anyone to interconvert PSM files and retrieve basic PSM statistics. psm_utils is freely 46
available under the permissive Apache2 license at 47
https://github.com/compomics/psm_utils. 48

Keywords 49
Proteomics; bioinformatics; data analysis; peptide identification; peptide-spectrum 50
matches 51

https://github.com/compomics/psm_utils

Introduction 52
Peptide identification from MS/MS spectra is a key step in bottom-up mass spectrometry-53
based proteomics. Since the mid-1990’s, a plethora of specialized software, called 54
proteomics search engines, have been developed to automate peptide identification. 55
These search engines generally take two inputs: a spectrum file originating from the mass 56
spectrometer, potentially preprocessed, and a FASTA protein sequence file. Then the 57
output in its simplest form is a list of identified peptides with peptide-spectrum match 58
(PSM) information.1 This PSM list is then usually passed on to other bioinformatics tools 59
for further downstream analysis step(s), such as identification rescoring, protein 60
inference, or protein quantification. 61

For optimal reproducibility and maintainability, each of these steps should be performed 62
by a dedicated interchangeable software module, which requires standardization of the 63
file formats that link each workflow step.2,3 Such a comprehensive standardization effort 64
is being undertaken by the HUPO Proteomics Standards Initiative, most notably with the 65
development of the mzML and mzIdentML formats.4,5 However, most search engines only 66
support their own output file format that typically does not adhere to community 67
standards. Consequentially, building a module for downstream use of PSM files from 68
various search engines can be cumbersome at best, and infeasible at worst. This hurdle 69
often results in the ad hoc writing of hard-to-maintain parsing scripts that are only 70
intended for single use. While a few open-source Python libraries exist to read and/or 71
write various PSM file formats, such as Pyteomics, psims, and pyOpenMS, a Python library 72
that parses PSM files into a unified high-level data structure for consistent and easy 73
handling is missing. 6–8 74

Here we therefore present psm_utils (https://github.com/compomics/psm_utils), an easy-75
to-use Python library which reads and writes various PSM file formats, but which also 76
handles PSMs in a unified data model and API. We also used our psm_utils library to 77
develop both a command line interface (CLI) and a web interface to easily interconvert 78
PSM files and to retrieve basic PSM statistics, for scripting and end-users, respectively. 79

Python library 80
psm_utils was developed with pragmatism and maintainability in mind. Instead of 81
reinventing the wheel, psm_utils relies on the existing Pyteomics and psims Python 82
packages where possible. Furthermore, psm_utils follows HUPO-PSI community 83
standards where applicable, and is built to be open and dynamic, allowing easy updates 84
and extensions. A permissively licensed open-source software, psm_utils welcomes 85
contributions from the community. 86

The project is split into the main psm_utils package and the psm_utils.io subpackage. 87
The former provides the main API for peptidoforms, PSMs, and PSM lists; the latter 88
provides modules for reading and writing various PSM file formats (Figure 1). More 89
specifically, in the main psm_utils package, PSM information is represented by three 90
distinct classes. (1) The Peptidoform class accepts a combination of peptide sequence, 91

https://github.com/compomics/psm_utils

residue modifications, and optionally charge state, represented in the HUPO-PSI 92
ProForma 2.0 notation.9 Through the proforma and mass modules of Pyteomics, this 93
permits a direct implementation of useful methods, such as the calculation of theoretical 94
mass or fragmentation spectrum, while considering any resolvable residue modification. 95
(2) The PeptideSpectrumMatch class connects a Peptidoform instance to a spectrum 96
defined by a collection, run, and spectrum identifier – analogous to the keys of HUPO-PSI 97
Universal Spectrum Identifier (USI)10 - and holds all relevant match information and PSM 98
metadata. (3) The PSMList class represents a collection of PSMs as a simple Python list 99
with additional functionality. Any PSM file can therefore be parsed into a PSMList with 100
PeptideSpectrumMatch instances, each in turn holding a Peptidoform instance alongside 101
relevant PSM information. Both the PeptideSpectrumMatch and PSMList classes are 102
based on the Pydantic data class model for efficient data validation and type coercion 103
(https://github.com/pydantic/pydantic). For effortless use of psm_utils in data analysis or 104
machine learning contexts, PSMList instances can be transformed into the commonly 105
used tabular Pandas DataFrame object. The fully documented Python API and a quickstart 106
guide can be found on https://psm-utils.readthedocs.io/. 107

 108
Figure 1. Overview of the psm_utils structure. Various file formats can be read to, or written from, a PSMList object, 109
which holds multiple PeptideSpectrumMatch objects, which in turn each hold a Peptidoform objects along with the 110
relevant metadata. 111

The psm_utils.io subpackage contains a separate module for each of the (currently) 112
eight supported PSM file formats (Table 1). Every module implements a reader and/or 113
writer class to convert the specific PSM file format to, or from, the unified PSMList object. 114
Importantly, these readers and writers also interconvert the various proprietary 115

https://github.com/pydantic/pydantic
https://psm-utils.readthedocs.io/

peptidoform notations from or to ProForma 2.0, which can otherwise be a cumbersome 116
process to perform ad hoc. Consistency between various readers and writers is achieved 117
by inheriting from an abstract base class, providing a blueprint for future 118
implementations of new PSM file formats. Generic read_file and write_file functions 119
could therefore be implemented, where the file type can be specified or set to be inferred 120
from the filename. Similarly, a high-level convert function was implemented for quick 121
interconversion between PSM file formats. Due to this blueprint and the hierarchical 122
architecture of psm_utils, support for more file types can easily be added in the future 123
without requiring changes to the central API. 124

Table 1. Supported file formats for reading and writing peptide-spectrum match lists 125

File format Read support Write support
OpenMS idXML
MaxQuant msms.txt
MS Amanda CSV
mzIdentML
PeptideRecord
Percolator Tab
TSV
X!Tandem XML

 126

Command line interface 127
The psm_utils.io.convert function is also accessible through a CLI. This facilitates the 128
implementation of psm_utils within proteomics data analysis pipelines where two 129
sequential steps would otherwise be incompatible due to different PSM file types being 130
used. While currently only file conversion is implemented, the use of subcommands 131
allows for more functionality to be added to the psm_utils CLI in the future. 132

Web application 133
The psm_utils functionality can also be accessed through a Streamlit (https://streamlit.io) 134
web application (Figure 2). This allows any researcher to interconvert between any 135
supported file formats, regardless of programming skills. Next to the interconversion of 136
PSM file formats, PSM files can be uploaded to retrieve basic PSM statistics, such as the 137
total number of identified spectra at a preset false discovery rate (FDR) threshold. 138
Moreover, several diagnostic target-decoy plots are automatically generated, allowing 139
users to easily assess the quality of the FDR estimation. 140

https://streamlit.io/

 141

Figure 2. Screenshot of the psm_utils online web application. Users can upload a PSM file for interconversion 142
between supported file types, or retrieve PSM-related statistics and diagnostic target-decoy plots. 143

Conclusion 144
We here presented psm_utils, a Python package that greatly simplifies downstream usage 145
of peptide identifications, regardless of PSM file format. The Python package is 146
convenient to use in any data analysis tool that handles PSMs, and the command line 147
interface can easily be embedded in automated workflows. The web application brings 148
the ability to interconvert or quickly inspect any supported PSM file type to any researcher 149
in the field. psm_utils is set up as an open and dynamic project and we welcome everyone 150
in the computational proteomics community to make use of, and contribute to, the 151
project. 152

Availability 153
The psm_utils Python package is available on PyPI (https://pypi.org/project/psm-utils) and 154
Bioconda (https://anaconda.org/bioconda/psm-utils). The source code is available on 155
GitHub (https://github.com/compomics/psm_utils) under the permissive Apache2 156
license. The psm_utils online web application is available on Streamlit 157
(https://compomics-psm-utils-onlinehome-4j4frp.streamlitapp.com). 158

https://pypi.org/project/psm-utils
https://anaconda.org/bioconda/psm-utils
https://github.com/compomics/psm_utils
https://compomics-psm-utils-onlinehome-4j4frp.streamlitapp.com/

Acknowledgment 159
R.G. and A.D. acknowledge funding from the Research Foundation Flanders (FWO) 160
[1SE3722; 12B7123N]. R.B. acknowledges funding from the Vlaams Agentschap Innoveren 161
en Ondernemen [HBC.2020.2205]. S.D. and L.M. acknowledge funding from the European 162
Union’s Horizon 2020 Programme (H2020-INFRAIA-2018-1) [823839]; L. M. acknowledges 163
funding from the Research Foundation Flanders (FWO) [G028821N] and from Ghent 164
University Concerted Research Action [BOF21/GOA/033]. 165

References 166
(1) Verheggen, K.; Raeder, H.; Berven, F. S.; Martens, L.; Barsnes, H.; Vaudel, M. 167

Anatomy and Evolution of Database Search Engines-a Central Component of 168
Mass Spectrometry Based Proteomic Workflows. Mass Spectrom Rev 2017. 169
https://doi.org/10.1002/mas.21543. 170

(2) Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; 171
Andreotti, S.; Ehrlich, H. C.; Gutenbrunner, P.; Kenar, E.; Liang, X.; Nahnsen, S.; 172
Nilse, L.; Pfeuffer, J.; Rosenberger, G.; Rurik, M.; Schmitt, U.; Veit, J.; Walzer, M.; 173
Wojnar, D.; Wolski, W. E.; Schilling, O.; Choudhary, J. S.; Malmström, L.; Aebersold, 174
R.; Reinert, K.; Kohlbacher, O. OpenMS: A Flexible Open-Source Software Platform 175
for Mass Spectrometry Data Analysis. Nat Methods 2016, 13 (9). 176
https://doi.org/10.1038/nmeth.3959. 177

(3) Perez-Riverol, Y.; Moreno, P. Scalable Data Analysis in Proteomics and 178
Metabolomics Using BioContainers and Workflows Engines. Proteomics 2020, 20 179
(9). https://doi.org/10.1002/pmic.201900147. 180

(4) Martens, L.; Chambers, M.; Sturm, M.; Kessner, D.; Levander, F.; Shofstahl, J.; Tang, 181
W. H.; Römpp, A.; Neumann, S.; Pizarro, A. D.; Montecchi-Palazzi, L.; Tasman, N.; 182
Coleman, M.; Reisinger, F.; Souda, P.; Hermjakob, H.; Binz, P. A.; Deutsch, E. W. 183
MzML - A Community Standard for Mass Spectrometry Data. Molecular and 184
Cellular Proteomics 2011, 10 (1). https://doi.org/10.1074/mcp.R110.000133. 185

(5) Vizcaíno, J. A.; Mayer, G.; Perkins, S.; Barsnes, H.; Vaudel, M.; Perez-Riverol, Y.; 186
Ternent, T.; Uszkoreit, J.; Eisenacher, M.; Fischer, L.; Rappsilber, J.; Netza, E.; 187
Walzer, M.; Kohlbacher, O.; Leitner, A.; Chalkley, R. J.; Ghali, F.; Martínez-188
Bartolome, S.; Deutsch, E. W.; Jones, A. R. The MzIdentML Data Standard Version 189
1.2, Supporting Advances in Proteome Informatics. Molecular and Cellular 190
Proteomics 2017, 16 (7). https://doi.org/10.1074/mcp.M117.068429. 191

(6) Levitsky, L. I.; Klein, J. A.; Ivanov, M. v.; Gorshkov, M. v. Pyteomics 4.0: Five Years of 192
Development of a Python Proteomics Framework. J Proteome Res 2019, 18 (2), 193
709–714. https://doi.org/10.1021/acs.jproteome.8b00717. 194

(7) Klein, J.; Zaia, J. Psims - A Declarative Writer for MzML and MzIdentML for Python. 195
Molecular and Cellular Proteomics 2019, 18 (3). 196
https://doi.org/10.1074/mcp.RP118.001070. 197

(8) Röst, H. L.; Schmitt, U.; Aebersold, R.; Malmström, L. PyOpenMS: A Python-Based 198
Interface to the OpenMS Mass-Spectrometry Algorithm Library. Proteomics 2014, 199
14 (1). https://doi.org/10.1002/pmic.201300246. 200

(9) LeDuc, R. D.; Deutsch, E. W.; Binz, P.-A.; Fellers, R. T.; Cesnik, A. J.; Klein, J. A.; van 201
den Bossche, T.; Gabriels, R.; Yalavarthi, A.; Perez-Riverol, Y.; Carver, J.; 202
Bittremieux, W.; Kawano, S.; Pullman, B.; Bandeira, N.; Kelleher, N. L.; Thomas, P. 203
M.; Vizcaíno, J. A. Proteomics Standards Initiatives ProForma 2.0 Unifying the 204
Encoding of Proteoforms and Peptidoforms. J Proteome Res 2021, 21, 1189–1195. 205
https://doi.org/https://doi.org/10.1021/acs.jproteome.1c00771. 206

(10) Deutsch, E. W.; Perez-Riverol, Y.; Carver, J.; Kawano, S.; Mendoza, L.; van den 207
Bossche, T.; Gabriels, R.; Binz, P.-A.; Pullman, B.; Sun, Z.; Shofstahl, J.; Bittremieux, 208
W.; Mak, T. D.; Klein, J.; Zhu, Y.; Lam, H.; Vizcaíno, J. A.; Bandeira, N. Universal 209
Spectrum Identifier for Mass Spectra. Nat Methods 2021, 18 (7). 210
https://doi.org/10.1038/s41592-021-01184-6. 211

 212

