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Abstract: DNA-encoded library (DEL) is a powerful ligand discovery technology that has been widely adopted in the 
pharmaceutical industry. DEL selections are typically performed with a purified protein target immobilized on a matrix or in 
solution phase. Recently, DELs have also been used to interrogate the targets in complex biological environment, such as 
membrane proteins on live cells. However, due to the complex landscape of the cell surface, the selection inevitably involves 
significant non-specific interactions, and the selection data is much noisier than the ones with purified proteins, making 
reliable hit identification highly challenging. Researchers have developed several approaches to denoise DEL datasets, but it 
remains unclear whether they are suitable for cell-based DEL selections. Here, we propose a new machine-learning (ML)-
based approach to process cell-based DEL selection datasets by using a Maximum A Posteriori (MAP) estimation loss function, 
a probabilistic framework that can account for and quantify uncertainties of noisy data. We applied the approach to a DEL 
selection dataset, where a library of 7,721,415 compounds was selected against a purified carbonic anhydrase 2 (CA-2) and a 
cell line expressing the membrane protein carbonic anhydrase 12 (CA-12). The Extended-Connectivity Fingerprint (ECFP)-
based regression model using the MAP loss function was able to identify the true binders and also reliable structure-activity 
relationship (SAR) from the noisy cell-based selection datasets. In addition, the regularized enrichment metric (known as MAP 
enrichment) could also be calculated directly without involving the specific machine learning model, effectively suppressing 
low-confidence outliers and enhancing the signal-to-noise ratio.  

INTRODUCTION 

DNA-encoded libraries (DELs) are widely used in drug 
discovery for early hit finding, offering the opportunity to 
screen extremely large number of compounds at a miniature 
scale with a fraction of the cost of traditional high 
throughput screening (HTS).1-16 Recently, DELs have also 
gained momentum in academic research as an efficient tool 
for discovering small molecule probes.10, 11, 17-19 In most 
cases, DELs are selected against a purified protein target 
immobilized on a matrix. Recently, new methodology 
developments have enabled DEL selections in buffer or cell 
lysates,20-28 in water-oil emulsion,29, 30 on the cell surface,31-

34 inside live cells,30, 32 against the whole bacteria,35, 36 and 
even in human sera.37 These selection modalities have not 
only expanded the target scope of DELs, but also enabled 
novel applications such as functional and even phenotypic 
DEL assays.7, 10, 11  

Membrane proteins on the cell surface perform a myriad 
of biological functions and are important drug targets. 
Membrane proteins account for >60% of the targets of all 
approved small molecule drugs.38 DELs have been selected 
against the soluble domain of membrane proteins,39-44 and 
the full-length membrane proteins stabilized with 
detergent,45 nanodiscs,46 and mutations.47 Notably, novel 

allosteric antagonists and orthosteric agonists have been 
identified from DEL selections against the purified full-
length G protein-coupled receptors (GPCRs).45-47 However, 
since the structure and functions of membrane proteins 
heavily rely on the hydrophobic lipid bilayer of cell 
membrane and purified proteins may lose important 
biological features, such as post-translational modifications, 
co-factor binding, and complex formation, it is highly 
desirable to conduct DEL selections against membrane 
proteins directly on live cells. Previously, the Bradley group 
pioneered PNA-encoded library screening against 
chemokine receptor and integrin proteins on live cells;48, 49 
GlaxoSmithKline (GSK) selected several DELs against a cell 
surface GPCR neurokinin 3 receptor (NK3);31 the Krusemark 
group conducted DEL selections against -opioid receptor, 
also a GPCR, on live cells;32 and recently, the Neri group 
comprehensively optimized the experimental conditions for 
cell-based selections.34 Intracellular DEL selections have 
also been reported by the Krusemark group32 and 
Vipergen.30 

However, cell-based DEL selections inevitably incur 
higher background noise and lower enrichment of the true 
hits mainly for two reasons.34 First, the complex landscape 
of the cell surface results in numerous non-specific 
interactions, which may obscure the specific target-ligand



 

Scheme 1. (A) Schematic illustration of DEL selections against immobilized proteins and membrane proteins on live cells. 
(B) Workflow of the machine-learning-based data processing for cell-based DEL selection datasets, using a Maximum A 
Posteriori (MAP) estimation loss function. Molecular fingerprint (ECFP6, 1,024-dimensional bit vector) was chosen as the 
representation of the chemical structures74 and used as the inputs of the Deep Neural Network (DNN).

binding; second, the target protein may not have sufficient 
abundance, i.e., effective molarity, on the cell to drive the 
binding equilibrium towards ligand binding.11 Previously, 
target over-expression30-32, 34 and DNA tagging33, 50 have 
been used to address these issues; however, in general, cell-
based DEL selections are very noisy with significantly higher 
chance of generating false positives. In fact, selection data 
analysis for reliable hit picking is one of the key issues in 
DEL research, especially for large DELs where the library 
quality is compromised by the truncated and/or side 
products during library synthesis.51-56  

In the past, many methods have been developed to 
process noisy DEL selection data.51-65 A commonly used 
technique is aggregation, which is used to reduce the 
variability from the relatively small number of sequencing 
counts.56 Kuai and co-workers proposed a framework for 
data normalization and enrichment calculation based on the 
estimation of Poisson confidence interval.53 Faver and co-
workers implemented a z-score metric approach that has 
enabled the quantitative comparison of compound 
enrichments between multiple experiments.59 Gerry and co-
workers developed a method to compute conservative 
estimates of the normalized fold-change scores, based on a 
statistical model involving Poisson distributions that is 
appropriate for counting relatively rare events.60 Recently, 
artificial intelligence (AI) using neural networks has 
demonstrated robust performance in molecular property 
prediction.66-69 DEL selection datasets offer large and highly 
structured information, which constitutes a requisite for the 
implementation of machine learning (ML). Thus, machine 
learning is considered to be a promising approach for 
processing DEL datasets.51, 52, 64, 65 Kómár and Kalinić have 
reported the use of machine learning to empower the 
discrimination of the true potential binders from the 

background noise (“deldenoiser”).51 McCloskey and co-
workers trained the classification models on aggregated 
DEL datasets and used the models to perform virtual 
screening on large chemical libraries.65 Lim and co-workers 
improved the regression approach by directly modeling an 
enrichment metric (the ratio between the counts from the 
target selection and an off-target control selection) using a 
custom negative-log-likelihood loss function derived from a 
Poisson ratio test.64 These methods have greatly facilitated 
the data processing for DEL selections with purified 
proteins; however, their effectiveness on the noisier cell-
based selection data remains unclear.  

In this report, we describe a machine-learning (ML)-
based approach for processing cell-based DEL selection 
datasets. We synthesized a DEL (CAS-DEL) of 7,721,415 
compounds. The library contains a carboxy- 
benzenesulfonamide (CBS) building block, which is a known 
binder of several carbonic anhydrase isoforms.70 CAS-DEL 
was selected against three different types of targets: a 
purified carbonic anhydrase II (CA-2), A549 cells with 
relatively high expression level of carbonic anhydrase XII 
(CA-12), and hypoxic A549 cells overexpressing CA-12.71, 72 
The CBS moiety binds to CA-2 and CA-12 with similar 
affinity (Kd: 760 nM and 970 nM, respectively);73 thus, the 
selection data could be compared and were used as the 
model datasets (Scheme 1A). By using a new Maximum A 
Posteriori (MAP) estimation loss function and taking 
chemical structures into account while analyzing the raw 
sequencing data, we show that the ML-based approach was 
able to ignore low-confidence outliers and identify the true 
binders from the noisy cell-based selection datasets, 
thereby facilitating reliable hit picking and clear 
identification of the structure-activity relationship (SAR) 
(Scheme 1B).  



Figure 1. (A) Synthetic scheme for the preparation of CAS-DEL; BB: building block. (B) Structure of 
carboxybenzenesulfonamide (CBS). 

RESULTS AND DISCUSSION:  

Analysis of the chemical space of CAS-DEL. CAS-DEL is 
a 3-cycle peptide library (Figure 1A), which was prepared 
by using the previously reported method with a 106-nt 
single-stranded DNA tag (Table S1).33, 75, 76 The building 
block structures and DNA sequences of CAS-DEL are 
provided in the Supporting Information (Table S2-S6). The 
CBS moiety was included in the 3rd set of building blocks to 
bias the library for carbonic anhydrase binding (BB3; Figure 
1B). To assess the chemical space and structural diversity of 
CAS-DEL, we first applied the Uniform Manifold 
Approximation and Projection (UMAP) to reduce the 
structural dimension of the compounds.77 A comparison of 
the UMAP projection of 1% random sample of CAS-DEL 
(77,214 compounds), 11,274 compounds from the 
DrugBank database,78 and 32,552 compounds from the 
Natural Products Atlas 2.079 showed that CAS-DEL covered 
a denser and more clustered space (Figure 2A), indicating a 
relatively limited chemical diversity. It is reasonable 
considering all CAS-DEL compounds are tripeptides. Next, 
we evaluated the similarity between the library building 
blocks by calculating the Tanimoto similarity on Extended-
Connectivity Fingerprints (ECFP) and their “functional 
class” counterpart (FCFP).65, 74 The Tanimoto similarity 
values of the building blocks used in the three cycles of CAS-
DEL synthesis are plotted as a heatmap (Figure 2B). Most of 
the similarity values between two building blocks are less 
than 0.35, suggesting that CAS-DEL has sufficient diversity 
for the establishment of the neural network model;65 in 
addition, the similarity values between CBS and other 
building blocks are also mostly below 0.35 (Figure 2C). 
Collectively, these results showed that, albeit with a limited 
scaffold diversity, CAS-DEL has sufficient chemical diversity 
to generate the selection datasets for further analysis and 
modeling studies.  

Physicochemical property analyses assess the 
compounds’ suitability for lead development and provide 

guidelines for DEL design and optimization.81 We analyzed 
the CAS-DEL compounds by applying the commonly used 
physicochemical property parameters (Lipinski’s rule of 5 
and the Veber descriptors):82, 83 (1) molecular weight (MW); 
(2) calculated octanol/water partition coefficient (cLogP); 
(3) number of hydrogen bond acceptors (HA); (4) number 
of hydrogen bond donors (HD); (5) polar surface area (PSA); 
and (6) number of rotatable bonds (nRotB) . The histograms 
of the property distributions are shown in Figure 3A. The 
median MW, PSA and nRotB are 507 Da, 155 Å2 and 11, 
respectively, slightly beyond the commonly accepted “drug-
likeness” threshold (MW <500 Da, PSA < 140 Å2 , nRotB < 
10).83 85% of the compounds complied with the criteria of 
HD ≤ 5. For cLogP and HA, the majority (> 95%) of the 
compounds are within the thresholds (cLogP < 5, HA ≤ 10). 
Moreover, we also applied Principal Component Analysis 
(PCA) to compare the chemical space of CAS-DEL with the 
11,274 compounds from DrugBank.78 As shown in Figure 
3B, PCA 1 and PCA 2 represent two linear combinations of 
physicochemical property variables and they account for the 
majority (~95%) variance of the physicochemical 
properties, and the 2D graph also showed the overlap 
between the two components was more than 95%. Taken 
together, these results showed that the physicochemical 
properties of CAS-DEL compounds are suitable for drug 
development.  

Cell-based DEL selections lead to higher noise level 
than the selections with purified protein. We conducted 
the selection of CAS-DEL in three formats: (1) with purified 
CA-2 (P dataset); (2) with A549 cells expressing CA-12 (A 
dataset); and (3) with hypoxic A549 cells over-expressing 
CA-12 (OA dataset).72, 84 A “blank” selection was conducted 
with the beads without CA-2, and it was used as the control 
to calculate the enrichment level of the compounds.55, 64 
Previously, Zhu et al. proposed that DEL data noise level was 
dependent on the sequencing depth and the specific 
selection conditions.55 We have conducted three biological 
replicates for each selection and employed sufficient 



Figure 2. Analysis of chemical diversity of CAS-DEL. (A) UMAP projections for (a) 1% random sample of CAS-DEL (77,214 
compounds), (b) 11,274 compounds from DrugBank,78 and (c) 32,552 compounds from the Natural Products Atlas 2.0;79 
color bars represent density levels. (B) Heatmap of Tanimoto similarity between the building blocks of CAS-DEL by using 
ECFP6-counts fingerprints.65, 74, 80 (C) Histograms of Tanimoto similarity between CBS and other building blocks by using 
ECFP6- and FCFP6-counts fingerprints.65, 74

sequencing depth to minimize the impacts of these factors 
and variables. The sequencing data under different 
experimental conditions are summarized in Table 1. To 
compare the reproducibility and the noise level of the 
selections, the raw log-scale reads of two replicates are 
plotted in Figure 4A; scatter plots of log-scale count between 
the replicates of all selection samples are shown in Figure 
S1. Pearson correlation coefficient (PCC) values and 
heatmap were used to evaluate the correlation of the 
replicates (Figure 4B). Replicates of the P dataset showed 
the highest correlation (PCC > 0.98), which is reasonable 
considering the simplicity of the target. As expected, the PCC 
values of the A and OA datasets are above 0.5, which are 
lower than the P dataset but still gave acceptable 
reproducibility.85 Replicates of the P dataset also exhibited a 
high maximal sequence count (2,950 to 3,626 for three 
replicates; Table 1), and the signal was strong enough to 
clearly identify the highly enriched compounds. In contrast, 
the A and OA datasets showed much lower maximal 
sequence counts (143~336 for three replicates; Table 1), 
which are only 1-3 folds greater than the blank control 

Table 1. Raw sequencing read counts of the selections; 
B: the blank control selection; 01-03 indicate selection 
replicates.

experiment 
ID 

total mean max target 

B01 26343500 3.4 114 blank 

P01 16294398 2.1 2,950 CA-2 

P02 11003294 1.4 3,420 CA-2 

P03 16254498 2.1 3,626 CA-2 

A01 25526056 3.3 149 A549 

A02 24226052 3.1 194 A549 

A03 20109579 2.6 143 A549 

OA01 22392907 2.9 220 A549 

OA02 22971879 3.0 283 A549 

OA03 22837349 3.0 336 A549 



 

 

Figure 3. (A) Histograms of physicochemical property distributions of CAS-DEL, including MW, clogP, HA, HD, PSA, and 
nRotB. (B) PCA projection of CAS-DEL compounds (orange) and the 11,274 compounds from Drugbank (blue). PCA 1 and 
PCA 2: two linear combinations of physicochemical property variables. 

selection (Table 1). Moreover, the ratio of the random 
sequencing noise (the boundaries of background noise were 
defined as 85% agreement between the two replicates;55 
Figure 4A) and the maximal counts of the A and OA data sets 
are much higher than the P dataset. Furthermore, the OA 
dataset showed higher maximal sequence count than the A 
dataset, indicating that target overexpression could enhance 
the signal of the enriched compounds and improve the 
signal-to-noise ratio. 

Previously, Kuai et al. suggested that the random noise in 
DEL experiments could be reliably modeled using a Poisson 
distribution.53 Lim et al. used a Poisson ratio test to evaluate 
the consistency of the barcode counts observed in a DEL 
experiment with a hypothesized enrichment ratio, and they 
converted a z-score calculation to a probability score for a 
two-sided alternate hypothesis.64, 86 As shown in eq. 1, k1 and 
k2 are the observed counts from the two experiments (post-
selection and the blank control selection) with two different 
total counts (n1, n2), and R is ratio of the two Poisson rates.86 
This z-score should be modeled by a normal distribution 
with a mean of 0 and variance of 1 (denoted by 𝑁(0,1)). 
Thus, the maximum-likelihood enrichment fold can be 
calculated by solving the equation z = 0 as shown in eq. 2.64  
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In comparison, the traditional method for calculating the 

enrichment fold24, 87 is shown in eq. 3:  
  

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝑓𝑜𝑙𝑑 =
𝑘1𝑛2

𝑘2𝑛1

  (3) 

Hence, maximum-likelihood enrichment prevents zero 
division in computation, which is an advantageous feature 
since the sequencing of the naïve library almost always gave 
zero read for some compounds, presumably due to 
problematic DNA tagging during the library synthesis 
and/or insufficient sequencing depth.55, 60 For blank control 
selections, zero reads also frequently occur since the 
compounds do not bind strongly to the empty beads. 
Therefore, we used the maximum-likelihood enrichment 
value as the primary enrichment fold parameter. However, 
the original Poisson test was designed for only two 
experiments, not for multiple replicates.86 To identify robust 
hits with low false positive rate, we merged the sequence 
counts of the replicates, i.e., the sum of the three 
independent experiments were treated as one dataset, and 
the sum of the counts of the individual compounds were 
calculated and they still followed Poisson distributions.88 
The merged datasets contained higher sequence counts and 



Figure 4. (A) Scatter plots of log-scale sequence counts of the compounds between the two replicates of the (a) P datasets, 
(b) A datasets, and (c) OA datasets; random noise is highlighted with a green square, whose boundary is defined as 85% 
agreement between two replicates.55 (B) Heatmap of the PCC values of the three datasets. (C) Scatter plots of the calculated 
maximum-likelihood enrichment values (y-axis) vs. post-selection sequence count (x-axis); blue: compounds without the 
CBS moiety (“background”); orange: CBS-containing compounds (“CBS”). (D) Cubic visualizations of the top 500 compounds 
based on the calculated enrichments: (a) P dataset, (b) A dataset, and (c) OA dataset. The levels of enrichment folds are 
represented by jet color bars. 

thus conferred higher confidence in the enrichment signal,55 
and they have been employed in our modeling studies. 
Statistical analysis of the calculated maximum-likelihood 
enrichment folds of the three merged datasets are shown in 
Table 2. For the A and OA datasets, the average enrichment 
folds (1.74 and 1.80, respectively) are much higher than the 
P dataset (0.99); the higher average enrichment of the cell-
based selections may be due to the complexity of the cell 
membrane, which resulted in more non-specific 
interactions.55 Overall, this result further demonstrated that 
cell-based selections had significantly higher noise level 
than with purified protein and thus data-denoising is 
important. 

Table 2. Statistical analysis of the calculated maximum-
likelihood enrichment folds of the three merged 
datasets. 

 P A OA 

mean 0.99 1.74 1.80 

std 4.77 2.63 2.45 

min 0.01 0.01 0.01 

max 3273.37 85.85 103.39 

The plots of the calculated maximum-likelihood 
enrichment values vs. post-selection sequence count are 
shown in Figure 4C. We observed that some datapoints lay 
on straight lines emanating from the origin, which is 
reasonable since the datapoints with the same blank-
selection counts (k2) share the same slope value as 
calculated by the following equation: 
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In addition, this also does not affect the calculation of the 
enrichment. In the P dataset, the CBS-containing 
compounds showed higher enrichment values and higher 
post-selection counts than the “background” (compounds 
without the CBS moiety); however, in the A and OA datasets, 
there were many “background” compounds with relatively 
high enrichment, which would mislead hit picking and lead 
to false positives. Figure 4D show the cubic visualizations of 
the top 500 calculated enrichment values of the three 
datasets. In the selection with the purified CA-2, the CBS-
containing compounds were significantly enriched. In sharp 
contrast, no obvious structure-activity relationship (SAR) 



could be identified in the cubic visualizations of the cell-
based selections. We speculated that, although the cell-
based selection data may also contain valuable information 
of the hit compounds, due to the high noise level, hit ranking 
based on the maximum-likelihood enrichment fold would 
still potentially lead to a high false positive rate. 

Maximum A Posteriori (MAP) estimation enrichment 
denoised cell-based selection datasets. Furthermore, we 
propose a new metric approach to analyze cell-based DEL 
selection datasets. Previously, Lim and co-workers reported 
a maximum-likelihood enrichment calculation method 
rooted in the ratio testing of two Poisson rates reported,64 
since the next-generation sequencing data of DEL selections 
corresponds well with a Poisson distribution.53, 89 Inspired 
by this work, we applied Maximum A Posteriori estimation, 
a Bayesian-inference-based method that has been proven to 
be effective in processing noisy and uncertain datasets,90 to 
denoise the cell-based selection data. The ratio of two 
Poisson rates (R) can be modeled by a common exponential 
prior density distribution (eq. 4).51, 86 R can be identified as 
enrichment, since it can represent the ratio of the most likely 
values for these two Poisson distributions (selection with 
the target or the blank control selection). 

 
𝑃(𝑅) = 𝛼𝑒−𝛼𝑅  (4) 

 
The assumption is based on the nature of DEL selection: 

only a small fraction of the library compounds would be 
significantly enriched and considered as useful hits, and the 
majority of the library compounds have no or low binding 
affinities. According to Bayes’ theorem, the posterior 
distribution of R is proportional to the product of the 
likelihood P(𝑧|𝑅) and the prior P(R), written as eq. 5. 

 

𝑃(𝑧|𝑅) =
𝑒−

𝑧2

2

√2𝜋
  

𝑃(𝑧, 𝑅) = 𝑃(𝑧|𝑅)𝑃(𝑅) 

𝑃(𝑅|𝑧) =
𝑃(𝑧, 𝑅)

∫ 𝑃(𝑧, 𝑅)𝑑𝑅
∝ 𝑃(𝑧, 𝑅) (5) 

 
Hence, the negative log-likelihood function of the 

posterior distribution can be written as eq. 6. 
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2
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To maximize the posterior likelihood, we can minimize 

eq. 6 by solving eq. 7 to calculate the Maximum A Posteriori 
(MAP) estimation enrichment folds of all library 
compounds.  
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The parameter α determines the prior density 
distribution of 𝑅 and is considered as an L1 regularization 
rate. Different α values represent different strengths of the 
L1 regularization and will lead to different estimates of the 
enrichment values. A large α value will lead to a relatively 
low average of enrichment values; however, the compounds 
with high-confidence enrichment values will be less affected 
and thus become more outstanding among all library 
members. Figure 5A shows the effect of different 𝛼 values 
on the merged DEL datasets. Using the MAP enrichment 
metric, the “background” compounds without the CBS 
moiety (Figure S2) exhibited significantly lower enrichment 
values, whereas the “CBS” compounds showed relatively 
higher enrichment values because of their high-confidence 
counts. Therefore, the new metric is effective to identify the 
true binders from the noisy cell-based selection data. PR-
AUC (Precision-Recall curve-Area Under Curve) and ROC-
AUC (Receiver Operating Characteristic curve-Area Under 
Curve) are commonly used to evaluate the performance of a 
machine learning algorithm on a given dataset.91 The 
definitions of Precision, Recall and Fall-out are shown in eq. 
8 ~ eq. 10.92 Here, they were used as the evaluation 
indicators to present the results of the binary decision 
problem (hits or not) of the DEL datasets. A higher PR-AUC 
or ROC-AUC score means a better performance to 
distinguish the “positive” and “negative” compounds.91, 92 
Precision rate is one of the most important evaluation 
indicators for DEL data analysis since the false positives 
would mislead the follow-up hit validation, which is labor 
and resource intensive. For DEL selections, even with a high 
signal-to-noise ratio, different settings of the 𝛼 values 
would change the distribution of the enrichment calculation, 
suggesting that the MAP metric may also be applicable to the 
selections with purified proteins. Figure 5B shows a larger 
𝛼  value led to higher PR-AUC and ROC-AUC scores, and 
interestingly, at least to some extent, larger 𝛼 values led to 
the better performance. As for the optimal 𝛼  value, as 
proposed by Kómár and Kalinić,51 the expectation of the 
enrichment values should be 1. This assumption was 
supported by the data shown in Table 2: the average 
enrichment fold in the P dataset (with minimal noise) was 
0.99, indicating that in an ideal situation, the expectation of 
all enrichment folds in a DEL selection is likely to be ~1. 
Therefore, we chose 𝛼 = 1 as the regularization rate in 
further studies. 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

=
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (8) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (9) 

 
𝐹𝑎𝑙𝑙 − 𝑜𝑢𝑡 = 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒

=
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (10)  

  



Figure 5. (A) Boxplots of the MAP enrichment values using different α values on the (a) P dataset, (b) A dataset, and (c) OA 
dataset; Background: compounds without the CBS moiety; CBS: CBS-containing compounds. (B) PR and ROC curves of the 
three datasets: (a, d) P dataset; (b, e) A dataset; (c, f) OA dataset. Different 𝜶 values are represented in different colors as 
shown. PR curves: x-axis, precision; y-axis, recall. ROC curve: x-axis, recall; y-axis, fall-out. 

ECFP-based deep neural network (ECFP-based DNN) 
using MAP loss function effectively denoises cell-based 
selection datasets and facilitates SAR identification. 
Although the new regularized MAP metric can denoise the 
noisy cell-based selection datasets, it only takes the raw 
sequencing data into account and focuses on the 
identification of individual molecules. Machine-learning 
(ML)-based quantitative structure-activity relationship 
(QSAR) modeling considers the molecular structure and the 
selection data simultaneously, and it may correlate the 
compound’s structure with the potential target-binding 
affinity, thereby facilitating hit ranking for follow-up hit 
validation.93 First, the CAS-DEL compounds were 
transformed into an extended-connectivity fingerprint 
(ECFP).74 The ECFP features, in the form of a bit vector, 
represent the presence of particular substructures, which 
can be calculated by using the Python package RDKit.94 
ECFPs are designed to represent both the presence and the 
absence of functionalities, since both are crucial for 
analyzing molecular properties.66 Koch et al. suggested that 
neural fingerprints based on fully connected layers and 
ECFPs could enhance ligand-based virtual screening, 

proving that ECFPs contain sufficient information for model 
training.95 Thus, we chose ECFP as the representation of the 
chemical structures, and the obtained fingerprints were 
used as the inputs of a deep neural network (DNN) model 
implemented by the PyTorch python package.96 The basic 
architecture of the model is shown in Scheme 2. We 
performed the standard model training procedures.97 The 
whole dataset was split into a train-set, a valid-set, and a 
test-set with a ratio of 8:1:1. Dropout and early stopping 
were used to avoid overfitting. The weights of the model 
were updated by a backpropagation approach.98 
Hyperparameters such as hidden layer size, batch size, and 
learning rate of the model were tuned by using a Bayesian 
Optimization approach (Table S7).99 The configurations and 
hyperparameters used in models are shown in Table S8. 
Outputs of the model are predicted enrichment values of the 
compounds, which can be considered as the denoised 
enrichment values, because the predicted enrichments not 
only depend on the raw counts data but are also influenced 
by the chemical structures of the compounds. As discussed 
above, we used 𝛼 = 1 as the final regularization rate to train 
the MAP model on the DEL datasets, and the model trained



Figure 6. Cubic visualizations (A, B) of the top 500 predicted enrichment values for all the models trained on the OA and A 
datasets, respectively. The levels of the predicted enrichments are indicated by color bars. SAR features are highlighted 
with red (code C-197) and blue (code B-34) arrows, respectively. The atom-centered Gaussian visualizations of the 
representative compounds produced by the baseline model and MAP model are shown in (C) and (D), respectively. The 
arylsulfonamide substructures are highlighted in red rectangles (C, D); the 2,4-dinitro-aniline moieties represented by code 
B-34 of the A dataset (D) are highlighted in blue rectangles. The numbers indicate building block numbers; sequencing 
counts of the post-selection (with target) and the blank control selection (empty beads) are annotated. 

Scheme 2. Model architecture of the ECFP-based deep 
neural network (DNN), which contains one input layer, one 
hidden layer with 256 neurons, and one output layer. See 
details in Table S8. 

with an unregularized loss function (𝛼 = 0) was used as a 
baseline model. 

Plots of the predicted MAP enrichment values vs. the 
post-selection sequence count of all models are shown in 
Figure S3. Cubic visualizations of the top 500 predicted 
enrichments for all models are shown in Figure 6A-6B. For 

the OA dataset, the “positive” arylsulfonamide (CBS, code C-
197) was found to be the most distinctively identified 
structural moiety with both the baseline model and the MAP 
model. However, for the A dataset where the target CA-12 
had a relatively lower expression level, the difference 
between the baseline and MAP models began to appear: the 
baseline model predicted that code B-34 (blue rectangle, 
Figure 6D), a 2,4-dinitro-aniline moiety, as the most 
distinctively enriched substructure, whereas the MAP 
model further increased the significance of the CBS 
substructure. To visualize the SARs learned by the models 
and evaluate the model’s performance, the atom-centered 
Gaussian visualizations of the top predicted compounds for 
the model were generated using the RDKit package.94 
Substructures with high weights contributing to enrichment 
are highlighted in green, and the color intensity corresponds 
to the level of contribution to the predicted enrichment. We 
chose a compound with a high predicted enrichment from 
each of the two datasets. For both models, the 
arylsulfonamide substructure was identified as a strongly 
enriched moiety. However, with the A dataset, the MAP 
model showed better performance because it decreased the 
significance of the 2,4-dinitro-aniline (code B-34) structure 
and enhanced the significance of arylsulfonamide as shown 
in Figure 6D. The top 50 compounds with high enrichment 
predicted by all the models are listed in Table S9, 
demonstrating that the MAP model may rank the 
compounds that contain the true “positive” substructures to 
decrease false positive rate.  



Figure 7. (A) Boxplots of the enrichment values obtained by the following methods for the test set compounds of the OA 
dataset: a) maximum likelihood calculation; b) normalized fold change (𝑭𝒏);60 c) fitness produced by the Deldenoiser51; d) 
calculated MAP Enrichment (α = 1); e) DNN (baseline, α = 0); and f) DNN (MAP loss, α = 1); background: compounds without 
the CBS moiety; CBS: CBS-containing compounds. (B) Boxplots of the enrichment values obtained by the same methods for 
the test set compounds of the A dataset. (C, D) Bar plots of AUC of PR curves (C) and ROC curves (D) for the two datasets.  

Furthermore, for comparison, we tested two published 
methods to process the cell-based selection datasets, 
including the open-source package Deldenoiser51 and the 
normalized fold-change (𝐹𝑛 ) scores (eq. 11) proposed by 
Gerry et al.60 (Figure S4-S5).  

 

𝐹𝑛 =
𝜆𝑝𝑜𝑠𝑡−𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

−

𝜆𝑏𝑒𝑎𝑑𝑠_𝑜𝑛𝑙𝑦
+  (11) 

 
A direct comparison of these methods is shown in Figure 

7. The distribution of the enrichment values of the 
“background” and “CBS” compounds in the test set was used 
to evaluate the performance of the methods. For all the 
datasets, the MAP model exhibited the best performance in 
distinguishing the “background” and “CBS” compounds 
(Figure 7A-7B). We also used PR curve and ROC curve as 
validation metrics (Figure S6), and the AUC scores are 
shown in Figure 7C- 7D. Again, the MAP model gave the best 
performance, especially with the A dataset. Collectively, 
these results demonstrate that the combination of machine 
learning and the new enrichment metric is effective on 
processing the noisy cell-based DEL selection datasets and 
could facilitate reliable hit and SAR identification. 

Virtual screening for evaluating the performance of 
ECFP-based DNN model. We reason the model trained on 
the A and OA datasets may be more than a data denoising 
method and could also be a hit-predicting model for virtual 
screening.65 To evaluate whether the model could be applied 
to unknown datasets, we conducted a virtual screening 
using the high-confidence data extracted from ChEMBL (an 
human carbonic anhydrase-12 (hCA-12) dataset).100 The 
compounds with reported activities for hCA-12 were 
downloaded from the ChEMBL database (release 30,  

Table 3. Number of compounds in each activity class 
(active, intermediate or inactive). 

 
accessed on May 24th, 2022). After processing with the 
primary filter (only reserving the compounds with reported 
Ki and IC50 values),101 a dataset of 3,472 unique inhibitors 
with activity records was obtained. As shown in Figure 8A, 
the activity distribution of the hCA12 dataset is rather 
uneven. Over 70% of the reported activities are below 100 
nM, whereas the number of the compounds with higher 
values is relatively small, presumably because of the 
tendency not to publish negative results.101 Plot of the UMAP 
projection showed that the chemical spaces of CAS-DEL and 
the hCA-12 dataset poorly overlapped (Figure 8B), 
indicating that the hCA-12 dataset contained new structures 
dissimilar to CAS-DEL. 

Next, we assigned labels to the hCA-12 dataset with the 
following rule: the compounds with the reported IC50 or Ki 
values in the processed dataset below 20 nM are considered 
“active”; and the compounds whose IC50 or Ki’s are above 
100 nM are “inactive” (Table 3). To obtain a balanced 
dataset for binary classification, we removed the 
“intermediate” compounds (IC50 or Ki between 20 and 100 
nM) and obtained a final valid dataset containing 1,479 
“active” compounds and 993 “inactive” ones (ratio: ~6:4). 
First, the PR and ROC curves indicated that the model   

activity for hCA-12 
(Ki or IC50) 

counts total 

< 20 nM (active) 1,479 

3,472 20-100 nM (intermediate) 1,000 

>100 nM (inactive) 993 



Figure 8. (A) Activity distribution of the hCA-12 dataset (Ki or IC50). (B) UMAP projection of 1% of the CAS-DEL compounds 
(orange) and 3,472 compounds from the hCA-12 dataset (blue). (C) Boxplots of MAP enrichments of all monosynthons in 
the OA and A datasets. (D) Bar plots of the AUC of PR and ROC curves for all models. OA_Baseline: baseline model trained 
with the OA dataset; A_Baseline: baseline model trained with the A dataset; OA_MAP: MAP model trained with the OA 
dataset; A_MAP: MAP model trained with the A dataset. (E) The maximum common substructure (MCS) of the top 200 
compounds with high enrichments predicted by the A_MAP model in the hCA-12 dataset.  

trained with the A dataset gave slightly better performance 
than the ones trained with the OA dataset (Figure S7). The 
aggregation data demonstrated that the MAP enrichments 
of all monosynthons from the OA dataset have higher 
average and lower variance than the A dataset (Figure 8C), 
indicating that high protein expression may improve signal-
to-noise ratio of DEL selections and enrich the ligands with 
moderate affinities, whereas low target expression may 
identify the ligands with high binding affinities.58 As shown 
in Figure 8D, the MAP model trained on the A dataset has the 
highest PR-AUC and ROC-AUC scores among all the trained 
models. Moreover, the atom-centered gaussian 
visualizations of an example compound with high predicted 
value in the hCA12 dataset indicates that the 
arylsulfonamide structure contributes most significantly to 
the enrichment prediction (Figure S8). In addition, for the 
model with the best performance, we explored the 
maximum common substructure (MCS) of the top 200 
compounds with high predicted enrichment values.102 As 
shown in Figure 8E and S9, the model also clearly identified 
the arylsulfonamide substructure as the most important 
substructure that contributes to the enrichment. Next, we 
transformed the regression MAP model to a classification 
model by setting the predicted enrichment to 1 as the 
threshold, and the confusion matrix of the best model is 
shown in Table 4, so that the performance could be 
visualized and calculated easily. The Precision (defined in 
eq. 8), Recall (defined in eq. 9), and F1 score (defined in eq. 
12) 92 are 75.9%, 41.4%, and 0.536, respectively. The recall 
rate is relatively low, presumably because the hCA-12 
dataset had more diverse structures dissimilar to CAS-DEL, 
so that the model may not be able to recognize these 
unknown structures. Nevertheless, the precision rate is 
acceptable, suggesting that the MAP model trained on the 

cell-based dataset is effective on performing a virtual 
screening with unknown chemical compound datasets. 
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

+
1

𝑅𝑒𝑐𝑎𝑙𝑙

         (12) 

 

Table 4. Confusion matrix of the best performing model 
(MAP model trained with the A dataset).  

 predicted negative predicted positive 

inactive 
798 

(True negative, TN) 

195 

(False positive, FP) 

active 
866 

(False negative, FN) 

613 

(True positive, TP) 

CONCLUSIONS 

Methodology development for DEL selections against 
complex biological targets has progressed significantly in 
recent years, but it presents even more challenges in data 
processing due to the increased noise level in the selection 
dataset. Cell-based DEL selections follow the similar 
thermodynamic principle as the ones with purified proteins, 
but the complexity of cell membrane and the abundance of 
the target protein, which is often in the low nanomolar 
range,33 make the reliable identification of true binders and 
SAR highly difficult. Here, we show that the MAP-based 
enrichment metric could denoise the DEL datasets and 
obtain high-confidence enrichment values. Moreover, the 
combination of deep learning and the MAP loss function 
provided better performance on predicting the enrichments 
of library compounds, therefore reducing the risk of 
recovering false positive hits from cell-based selections. 
Finally, the model trained by the cell-based selection 



datasets can also be used for virtual screening, which may 
be applied as a complementary computational method for 
DEL selections against complex biological targets.103  

There are several aspects that warrants further 
development. First, truncated and byproducts are inevitable 
in DELs,51, 52, 63 and they are not considered in the MAP 
metric or MAP model; second, CAS-DEL only contains the 
tripeptide scaffold and has limited chemical diversity,81 
which makes it difficult to be generalized to unknown 
datasets and probably has led to the relatively low recall 
rate in our virtual screening study; third, the framework 
used in the project is a traditional fully connected network, 
a different and more complex machine learning method may 
lead to better performance.68 Thus, future work will include 
modeling DEL datasets with larger scale and higher 
chemical diversity and adapting more advanced machine 
learning models that can take truncated and byproducts of 
DELs in consideration.51, 52 In summary, we show that the 
approach of ECFP-based DNN model with MAP loss function 
can be applied to effectively process and denoise cell-based 
DEL selection datasets, and the method may also be suitable 
for other types of complex biological targets,11 and this 
approach also demonstrated its potential for in silico 
screening of chemical libraries. 

METHODS. 

Library design and synthesis. The carbonic anhydrase-
specific DNA-encoded library (CAS-DEL) was prepared by 
using the previously reported method.33, 75, 76 The library 
was constructed with 195 amino acids as the cycle-1 
building blocks, 201 amino acids as the cycle-2 building 
blocks, and 197 amino acids as the cycle-3 building blocks. 
The arylsulfonamide building block CBS was encoded in 
cycle-3 (BB3-197). More details of CAS-DEL design and 
synthesis are provided in the Supplementary Information. 

Chemical diversity analysis. UMAP projections were 
generated by using the UMAP package.77 2,048-bit radius-3 
ECFPs of a random 1% of CAS-DEL, 11,274 compounds from 
the Drugbank database,78 and 32,552 compounds from the 
Natural Products database were used for UMAP embedding. 
The parameters used in UMAP training were the same as 
reported by Lim et al. (metric = “jaccard”, n_neighbors = 15, 
min_dist = 0.1, n_components = 2).64 Tanimoto similarities 
of all building blocks’ ECFPs were calculated with the 
publicly available Python package RDKit.94 

Simple property parameters of all CAS-DEL compounds 
were generated by using RDKit. The parameters include the 
following molecular descriptors: molecular weight MW < 
500 Da; calculated octanol/water partition coefficient ClogP 
< 5; number of hydrogen bond acceptors HA ≤ 10; number 
of hydrogen bond donors HD ≤ 5); and Veber descriptors 
(polar surface area PSA < 140 Å2; number of rotatable bonds 
RotB ≤ 10).82, 83 The principal component analysis used for 
dimensionality reduction was performed with the scikit-
learn package.104 

Selection with the immobilized CA-II. Carbonic 
anhydrase 2 (CA-II; Sigma, cat.# C2522, 200 pmol) in a 
sodium bicarbonate buffer (0.2 M NaHCO3, 0.5 M NaCl, pH 
8.3) was immobilized to the NHS-activated Sepharose 4 fast 
flow matrix (Cytiva, Cat.# 17090601, 15 μL) following the 
manufacturer’s protocol. The resulting CA-II-linked beads 
were capped with 100 μL 0.1 M Tris-HCl (pH 8.5) at 4 °C for 
4 h. The beads were washed with 100 μL 0.1 M Tris-HCl (pH 
8.5) three times and 100 μL 0.1 M NaAc, 0.5 M NaCl (pH 4.5) 

three times. The washing steps were repeated twice, 
followed by washing with 100 μL PBS (50 mM sodium 
phosphate, 100 mM NaCl, pH 7.4) twice. 

To the CA-II-linked beads, 80 μL PBST buffer (50 mM 
sodium phosphate, 100 mM NaCl, 0.05% v/v Tween 20, pH 
7.4), 5 μL PBST-HS buffer (50 mM sodium phosphate, 100 
mM NaCl, 0.05% v/v Tween 20, 0.2 mg/mL herring sperm 
DNA, pH 7.4) and 15 μL 10 μM library (107 copies of each 
molecule for each selection) were added. The selection was 
incubated at 4 °C for 4 h. After binding, the beads were 
washed with 100 μL PBS 5 times. 100 μL H2O was added to 
the beads, and the suspension was heated to 95 °C for 20 
mins to elute the bound molecules. After PCR amplification, 
all replicates were quantified, validated with Sanger 
sequencing, and then submitted for high throughput 
sequencing. 

Cell-based selections. CA-12 is a membrane-associated 
homodimeric ectoenzyme, which is hypoxia-induced and 
upregulated in many types of cancers.84 Normal A549 cells 
were maintained in DMEM medium supplemented with 
10% (v/v) fetal bovine serum at 37 °C in a humidified 5% 
(v/v) CO2 atmosphere. To obtain CA-12 overexpressed cells, 
A549 cells were cultured in hypoxic atmosphere with 
hypoxia cultivation72 (AnaeroPack; Mitsubishi Gas 
Chemical) at 37 °C for 36 hours. 

Cell-based DEL selections were performed following our 
previous reported method.33, 105 In brief, cells were detached 
with 2 mL trypsin for 3 - 5 min. After complete detachment, 
6 mL media was added. Cells were centrifuged for 5 min at 
1,000 rcf to remove the supernatant and washed twice with 
cold PBS. Then, the cells were dissolved in PBS to reach 3 
million cells per mL. After being split in 1 mL aliquots into 
1.5 mL Eppendorf tubes, cell suspensions were centrifuged 
at 500x g for 3 min at room temperature. The supernatant 
was discarded, and the cells were dissolved in a 200 µL 
selection buffer (PBS, containing ~200 pmol CAS-DEL). The 
selection process was performed for 1.5 h at 4 °C in an 
incubator.  

After incubation, the selection samples were centrifuged 
to remove the supernatant. After being washed twice with 
1x PBS buffer (pH = 7.4), the cells were dissolved in 40 µL 
PBS and eluted by heating the cells in 1x PBS to 95 °C for 10 
min, centrifuged 15 min at 13,000 rpm to retain the 
supernatant that contained the library members. After PCR 
amplification, all samples were quantified by qPCR, 
validated with Sanger sequencing, and then submitted for 
high throughput sequencing. 

Preprocessing of sequencing data. All raw data (fastq 
files) were transformed into processed datasets of clean 
reads by using a custom method reported by Neri et al.106 
For different post-selection datasets, the summation of the 
the three replicates’ reads was calculated for reducing the 
sequencing noise. The primary maximum-likelihood 
enrichment values were calculated by solving the equation 
z = 0. 
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The new maximum A Posteriori estimation (MAP) 
enrichment values of all compounds with different 
regularization rate ( 𝛼)  were calculated by solving the 
following equation. 
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The calculation of normalized fold-change (𝐹𝑛 ) scores 

proposed by Gerry et al.60 was shown in the following 
formula, where λ- and λ+ denote the lower and upper 
boundaries of 95% confidence intervals of the Poisson 
distribution. Fitness values of CAS-DEL were obtained by 
using the open-source package Deldenoiser.51 

 

𝐹𝑛 =
𝜆𝑝𝑜𝑠𝑡−𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

−

𝜆𝑏𝑒𝑎𝑑𝑠_𝑜𝑛𝑙𝑦
+  

 
All calculations were implemented in Python.  
Model training and hyperparameter optimization. 

Baseline models and MAP models were implemented by 
using the PyTorch python package.96 The DEL dataset was 
randomly split into train-set, valid-set, and test-set, with a 
ratio of 8:1:1. Hyperparameters such as hidden layer size, 
dropout, and learning rate of the model were optimized with 
Bayesian optimization-based99 hyperparameter search 
using the Python package pyGPGO.107 Early stopping was 
used to avoid overfitting and reduce training time.  

In silico validation. The virtual screening dataset with 
high-confidence assay data was extracted from ChEMBL.100 
Compounds with the activity reported for hCA-12 were 
downloaded from the ChEMBL database (release 30, 
accessed on May 24th, 2022). The filtered data is provided 
in Additional file 1 (see in Associated Content). 

ASSOCIATED CONTENT 

More details on preparation of CAS-DEL, DNA sequences, plots 
of processed data, and other experimental details (Supplement 
Information). Filtered hCA-12 dataset (Additional file1)  
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