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ABSTRACT 

The sugars that coat the outsides of viruses and host cells are key to successful disease 

transmission, but they remain understudied compared to other molecular features. 

Understanding the comparative zoology of glycosylation - and harnessing it for predictive 

science - could help close the molecular gap in zoonotic risk assessment. 

 

INTRODUCTION 

Due to recent encounters with zoonotic viruses like Ebola virus and SARS-CoV-2, efforts to 

forecast the zoonotic risk of wildlife viruses - and, more broadly, to understand the biological 

constraints on cross-species transmission - are increasingly appealing (Albery et al., 2021). To 

date, most of these efforts rely on easily-observed traits of hosts, like morphology, diet, or 

phylogeny (Albery et al., 2020; Han et al., 2016). Despite their distance from the molecular 

determinants of transmission, these traits can be used to build models that have surprising 

predictive accuracy (Becker et al., 2022).  
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Many microbiologists have expressed a healthy skepticism of these approaches, which often 

entirely lack predictors that consider the molecular biology of hosts or any viral traits, and 

therefore, only coarsely infer the cellular processes of infection through other proxies that are 

correlated across evolutionary space. As a rare exception, genomic approaches are increasingly 

being used to close this gap (Babayan et al., 2018; Mollentze et al., 2021), and can help identify 

salient mechanisms of host-virus interactions (e.g., CpG dinucleotide depletion in vertebrate 

viruses appears to help them evade innate immune responses like the zinc finger antiviral 

protein (Takata et al., 2017)). However, as predictive features, genomic traits are often 

confounded by evolutionary signals (Di Giallonardo et al., 2017; Shackelton et al., 2006), and 

genomic data only offer limited insights into the actual three-dimensional structural 

compatibility of viral and host cell surfaces, a “lock-and-key” type process. This lock-and-key 

interaction not only allows efficient infection of susceptible hosts, but also limits cross-species 

viral transmission. Structural modeling approaches have been used to examine the binding of 

viral proteins and host cell receptors, most recently in the context of research on SARS-CoV-

2, but many of these simulations neglect key information: the glycosylation of these structures. 

Indeed, the handful that do address this aspect have revealed unexpected and important roles 

for glycosylation in these processes including those for SARS-CoV-2 (Casalino et al., 2020; 

Ghorbani et al., 2021; Sztain et al., 2021; Zhao et al., 2020), HIV (Berndsen et al., 2020; 

Ferreira et al., 2018; Lemmin et al., 2017; Stewart-Jones et al., 2016; Wood et al., 2013; Yang 

et al., 2017), and influenza viruses (Kasson & Pande, 2008; Newhouse et al., 2009; Seitz et al., 

2020; Xu et al., 2009).  

 

The sugars, or glycans, that decorate host cell surface macromolecules are often critical ligands 

that viruses associate with to enter cells (Jones et al., 2021). Viral proteins from different virus 
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families exhibit substantial variation in binding affinity towards host glycan receptors, and the 

compatibility between different viral proteins and host glycosylation varies between host and 

virus species, across tissues and organ systems, and even over time or between individuals 

(Jones et al., 2021; Maginnis, 2018; Thompson et al., 2019). Some viral surface proteins 

become glycosylated by host cell machinery during infection, and in the process can mimic 

host cell surfaces or shield proteins from antibody recognition, helping viruses evade the host’s 

immune system (Bagdonaite et al., 2018; Bagdonaite & Wandall, 2018; Watanabe et al., 2019; 

Zhao et al., 2021). The glycans on viral surfaces are also recognised by host glycan-binding 

proteins on immune cells that capture viruses, either preventing or promoting infection 

(Crocker et al., 2007; Erikson et al., 2015). These aspects of host-virus compatibility can create 

or unlock barriers to transmission, but are poorly characterized as an underlying structural 

determinant of host-virus networks because glycan structures are subject to rapid regulation 

and are sometimes perceived as being analytically challenging. We suggest an undertaking to 

describe the comparative zoology of glycoproteins, and their role in structuring the global 

virome. 

 

WHAT SUGARS DO, AND HOW 

Glycans are a key feature of the cell surface and extracellular matrix of eukarya, archaea, and 

bacteria (West et al., 2021). Glycans can be found on proteins or lipids, and technological 

advances (Everest-Dass et al., 2018) in the 21st century have greatly increased our ability to 

identify, characterise, and manipulate glycosylation, which has in turn supported deeper 

insights into the multitude of diverse roles it plays (Moremen et al., 2012). Glycans can 

constitute a substantial proportion of the molecular mass of a protein (Varki, 2017), 

contributing to their biophysical properties and influencing protein targeting, folding, structure 

and secretion (Ohtsubo & Marth, 2006; Varki, 2017). Moreover, glycans are mostly located on 
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secreted proteins and at the cell surface, and are therefore key determinants in molecular 

recognition events (Schjoldager et al., 2020). 

 

Glycans exhibit tremendous structural diversity (Spiro, 2002). Unlike proteins, whose 

sequences can be predicted from gene sequences, the biosynthesis of glycans is not directly 

template-driven; glycans are built, modified and trimmed by an extensive network of co-

expressed enzymes that are differentially expressed in cells and tissues, and can be affected by 

factors intrinsic and extrinsic to the cell. Glycan structures are therefore specific to various 

organisms, tissues, and cells, and the resulting structures can be highly heterogeneous, 

imparting additional complexity to the structural and functional properties of proteins 

(Schjoldager et al., 2020). 

 

Glycans act as receptors, coreceptors or attachment factors for numerous viruses (Thompson 

et al., 2019) including HIV, dengue (Raman et al., 2016), MERS-CoV (Park et al., 2019), 

influenza (Shinya et al., 2006), and SARS-CoV-2 (Yang et al., 2020). For example, both avian 

and human-adapted influenza viruses bind to glycans that terminate with sialic acid, but avian 

influenza preferentially binds to sialic acid with α2-3-linkages, while human-adapted influenza 

prefers α2-6-linkages, which are expressed in the human upper respiratory tract (Kuchipudi et 

al., 2009; Shinya et al., 2006). When avian-origin influenza lineages jump directly into humans, 

infections mostly become established in the lower lungs where cells express α2-3-linkages, 

leading to rare infections that are generally more severe but less transmissible (Stevens et al., 

2006). Animal bridge hosts that can be infected by different influenza subtypes (including 

avian species) or express both types of sialic acid - for example, swine - provide an environment 

where viral lineages may directly undergo mutation to adapt to α2-6-binding (Thompson & 

Paulson, 2021), or where human and avian lineages co-circulate and undergo reassortment 
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(Figure 1A). These hosts therefore provide an evolutionary stepping stone for avian lineages 

to switch to α2-6-binding, opening a transmission route for harmful zoonoses and producing 

more transmissible strains that pose epidemic or pandemic threats in humans (Chothe et al., 

2017). 

 

In cases like these, glycosylation is a key driver of host range and zoonotic risk, but one that is 

often neglected or folded into the “black box” of host-virus interactions and evolutionary 

dynamics in systems that are less well-characterized than influenza. However, the general 

importance of glycosylation in host-pathogen interactions is well established (Suenaga & 

Arase, 2014; Watanabe et al., 2019). Given that potential differences in glycosylation presence 

and structure can have profound effects on molecular interactions, we suggest there is a clear 

need to measure the glycomes of potential hosts as part of broader efforts to describe viral 

ecology and emergence. 
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Figure 1. Glycosylation underlies the evolutionary shift towards zoonotic emergence of 
influenza. A. When avian influenza makes the jump directly to humans, preferential binding 
to α2-3-linked sialic acid expressed in the lower lung leads to rarer infections that can be more 
severe but less transmissible. In intermediate hosts that express both α2-3-linked and α2-6-
linked sialic acid, viruses can undergo an evolutionary shift that facilitates emergence in 
humans, who express α2-6-linked sialic acid in the upper respiratory tract. B. An array of 
different tools can be used to study the glycosylation profiles of tissues, cells or proteins from 
a global level down to the glycan level. Figure created with BioRender (biorender.com). 
 

CHARACTERIZING GLYCANS AT DIFFERENT SCALES 

The inherent structural complexity and heterogeneity of glycans across species, individuals, 

organ systems, tissues, and even time and space make them an analytically challenging subject. 

Additionally, and in contrast to other biomolecules, they can have extraordinarily high 

structural complexity due the variety of monosaccharide building blocks and the multiple ways 

they can attach to each other, both in bond configuration (α and β) and in the positions of the 

inter-saccharide linkages within the molecules (Cummings, 2009). Nevertheless, a number of 

techniques can be used individually or in combination to characterise protein glycosylation, 

with mass spectrometry being a powerful and widely used tool that can be incorporated at 

various levels (Figure 1B). Generally, the overarching aim of glycosylation analyses is to 

deduce one or more of the following: the monosaccharide composition of the glycans, the order 

and branching of monosaccharides in a glycan, the types of glycosidic linkages and 

monosaccharide anomericity, or the location of the glycosylation sites on a protein. The 

functional roles of glycans can also be assessed by measuring non-covalent interactions 

between specific proteins and glycans. A global view can be obtained from antibody or lectin 

binding to selectively identify glycan epitopes or motifs in tissues, cells and proteins. Lectins 

can be used in array-based platforms (Gao et al., 2019) enabling high-throughput analyses with 

the caveat that they do not provide comprehensive structural information. The most effective 

way to obtain structural details of glycans is to use a glycomic workflow whereby the glycans 

are chemically or enzymatically released from glycoproteins. The released glycans are 
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typically chemically labelled with fluorescent tags and analysed by liquid chromatography or 

capillary electrophoresis with a mass spectrometer used for enhanced detection (Everest-Dass 

et al., 2018). These methods for studying the glycome can provide monosaccharide 

composition and sequence information, and at times, linkage position. Coupling these 

analytical techniques with enzymes that cleave specific monosaccharide linkages provides 

additional precise structural information. 

 

A limitation of glycomic approaches is that protein- and site-specificity is lost with glycan 

release. Nevertheless, these techniques are the most powerful for providing the basic 

information about glycan structure that will likely form the basis of future predictive models 

(see below). This is because the same glycan structures or epitopes can often be found on many 

different sites and proteins from the same cell, because they share the same glycan biosynthetic 

pathways. In addition, a key benefit of glycomics, compared to proteomics or glycoproteomics 

(the study of proteins and glycosylated proteins, respectively), is that analysis of released 

glycans does not typically require prior knowledge of the genome. Although glycan 

biosynthesis is non-template driven and millions of possible glycan structures can be predicted 

(Cummings, 2009), there are comparatively few glycan structures actually observed on 

glycoproteins (Werz et al., 2007), and these can be predicted or de novo structurally determined 

without knowledge of the genome (Kellman & Lewis, 2021). If the annotated genome is 

available, genomic and phylogenetic profiling of glycan metabolism enzymes can greatly assist 

or validate glycomic approaches (McVeigh et al., 2018), especially where the glycan profiles 

from species contain structures that have not yet been defined (West et al., 2021). Furthermore, 

mass spectrometry glycoproteomics can also be used to identify and measure peptides with 

attached glycans. In this case, fine structural detail of the glycan structure is lost but the site of 

attachment and the level of site occupancy is retained. 
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BUILDING GLYCOSYLATION INTO PREDICTIVE SCIENCE  

Understanding the landscape of host glycosylation might help scientists build better predictive 

tools to understand the broader rules of viral cross-species transmission or even the special case 

of zoonotic risk. This could be accomplished in a number of ways, most of which are untested. 

Glycosylation could be represented as data in several ways, ranging from simple (e.g., the 

presence or absence of a specific set of glycan structures) to complex (generating quantitative 

features using graph representations of the glycan structure (Alonso et al., 2018)). These data 

can then be used several ways. For example, recent attention on SARS-CoV-2’s use of the 

ACE2 receptor has sparked the development of models that predict host susceptibility based 

on receptor sequences (Fischhoff et al., 2021), but glycosylation is a missing element; 

incorporating glycan structures as receptor or co-receptor “metadata” might help researchers 

better understand viral attachment (Figure 2A). For instance, sialic acid and heparan sulfate are 

key cell surface glycans that are co-receptors for SARS-CoV-2 (Clausen et al., 2020; Nguyen 

et al., 2021). Conversely, from the host perspective, specific glycans may promote viral entry 

as is the case for SARS-CoV-2, where site-specific glycans of ACE2 have been implicated in 

receptor-viral binding (Zhao et al., 2020). Thus similar glycosylation might help explain 

pathogen sharing between different animals (Figure 2B), and (according to some preliminary 

evidence (Burkholz et al., 2021)) might even help unpack some of the microbiology inside the 

black box “phylogenetic distance effect” that broadly structures the viral sharing network 

(Albery et al., 2020). If viral glycosylation helps evade host immune system detection, these 

dimensions of similarity may help explain how particular bridge host “stepping stones” are 

possible, including in cases of zoonotic emergence. (During early characterization, glycan 

motifs or structures can even be proactively searched to identify homology in human and 

animal hosts, and linked to viruses where glycan-binding preferences have been established). 
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Similarly, understanding the role of viral mutations that alter the viral surface glycoproteins 

(Figure 2C) may lead to more targeted insights about how glycosylation relates to zoonotic risk 

(as in the example of influenza and sialic acid; Figure 1A). 

 

Figure 2. Adding glycosylation to microbiology-smart modeling. A. Different animals have 
different combinations of glycans, which may help unpack how specific glycans contribute to 
susceptibility to a given pathogen. In this example, species B’s lack of glycans 4 and 5 could 
explain its lack of susceptibility to the pathogen. B. When the mechanism is understood in 
better detail, the glycosylation of a single structure (e.g., the ACE2 receptor) might help predict 
cross-species transmission potential for a specific virus (e.g., SARS-CoV-2) - if the structural 
similarity of a given glycan can be converted into machine-readable features. C. Understanding 
mechanisms in greater detail may improve other kinds of predictions about cross-species 
transmission: for example, mutations in the hemagglutinin structure of influenza viruses limit 
their binding efficiency to the glycosylation of human sialic acid receptors, allowing prediction 
of the zoonotic potential of specific influenza A strains based on a few point mutations. Figure 
created with BioRender (biorender.com). 
 

Most of these examples are still hypothetical, but in limited cases, these types of model-based 

exploration have shown tremendous promise. For example, a recent study used graph 
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representations of glycans and multiple kinds of advanced machine learning (graph 

convolutional neural networks and natural language models) to predict host identity and glycan 

immunogenicity, and was able to predict influenza and rotavirus binding affinity for host 

receptors from different species (Burkholz et al., 2021). Studies like these are exciting proofs-

of-concept, and point to the idea that feature representations of glycans may eventually be 

useful as part of a broader palette of cell- and virus-level trait predictors used to make even 

more advanced (and crucially, microbiology-driven) machine learning or network models. 

 

In order to power these kinds of approaches, more data is needed about the “global glycome.” 

While the human glycome is well studied (Jia et al., 2020), the glycomes of animal reservoirs 

are severely understudied - a major problem when, for example, host range is extensive (e.g., 

influenza A virus can infect captive and wild animals including birds, dogs, cats, pigs, horses, 

bats, seals and even some reptiles (Short et al., 2015)). Where existing glycomic datasets are 

unavailable, transcriptomics coupled with experimentally-defined and predicted glycan 

biosynthetic pathways could help fill the gaps (Dworkin et al., 2022; Kellman & Lewis, 2021) 

while existing glycomic datasets can be used to train models. When expanding existing 

datasets, wild reservoir populations should be a priority for experimental glycosylation 

analyses, particularly those that are endemically infected, at the human-animal interface and 

those likely to act as an intermediate “mixing vessel” for cross-species transmission. Tissues, 

cells and fluids that are the routes of entry for infectious agents or are predicted to be involved 

in tropism and systemic spread should be a focal point of analysis. These may include the 

mucosal epithelial tissue of the gastrointestinal, urogenital and respiratory tracts and cells of 

the skin, lymphatic system and blood vessels. The types of data to be incorporated from these 

sample types could range from global glycome analyses to precise glycan structure and site 

occupancy information. Ultimately, the types of experiments conducted will be determined by 
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the capabilities of the laboratory. In depth protocols are available for global structural (Jensen 

et al., 2012; Li et al., 2020) and protein- and site-specific (Hart & Wells, 2021; Kolarich et al., 

2012; Oliveira et al., 2021; Remoroza et al., 2021; Riley et al., 2020) characterisation of 

glycans. Given the versatility of liquid chromatography mass spectrometry to study 

glycosylation, this approach seems most accessible with costs predicted to be in the low to 

medium range depending on the level of structural characterisation achieved. With unlimited 

sample availability and technical resources, multiple tissues from multiple species could be 

characterized and this data used for modeling. Tissue types may be limited due to the 

requirements for lethal or non-lethal sampling, the ability to dissect out specific tissues, or even 

the capacity to sample all species, though many field researchers have suitable samples already 

collected and in storage. As with most field work, sample availability will be dictated by each 

situation, but a balance should be struck between accessible biofluids (such as blood) and 

relevant tissues (such as lung tissue for respiratory viruses). On the other hand, given the ever-

growing frequency of glycomic and glycoproteomic techniques (lectin-arrays or mass 

spectrometry-based), it is possible that the analytical work could be accomplished 

collaboratively at low to medium cost as part of broader comparative zoology and viral 

ecology. Critically, depositing the datasets generated by this work into existing public 

repositories like GlycoPOST and GlyTouCan, which is becoming standard practice in the 

glycobiology field (Rojas-Macias et al., 2019), will allow their value to grow exponentially for 

comparative and predictive research. 

 

Recent viral epidemics and pandemics have highlighted a need for increased surveillance at the 

animal-human interface and forward planning of biochemical countermeasures ("Emerging 

zoonoses: A one health challenge," 2020; Lurie et al., 2020; Munir et al., 2020). Characterizing 

the global glycome will help microbiologists and ecologists understand the broader dynamics 
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of viral ecology, and these data could also easily be applied to understanding other pathogens. 

Moreover, as work during the COVID-19 pandemic has highlighted, understanding 

glycosylation as a viral phenotype is a key part of understanding pathogenesis and developing 

effective countermeasures (Shiliaev et al., 2021; Uraki & Kawaoka, 2021), and we suggest that 

building more glycomics into viral surveillance is a feasible, cost-effective, and impactful way 

to expand the body of basic science that forms the basis for epidemic preparedness. 
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