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ABSTRACT: Small molecules that modulate the 14-3-3 protein-protein interaction (PPI) network represent valuable therapeutics 
and tool compounds. However, access has been lost to 14-3-3 PPI molecular glues of the cotylenin class, leading to investigations 
into practical chemical syntheses. Here we report a concise synthesis of (–)-cotylenol via a 10-step entry into the 5-8-5 cotylenin 
binding region using a convergent fragment coupling and Claisen-ene cascade. 

The fusicoccanes comprise a family of 5-8-5 tricyclic 
diterpenoids produced by phytopathogenic fungi.1 Their phy-
totoxic activity originates in modulation of plant 14-3-3 PPIs 
with phosphoprotein clients.2,3 Conservation of the 14-3-3 
signaling hub across eukaryotes leads the fusicoccane class to 
exhibit activity in human cells as well, where phenotype de-
pends on selective stabilization (or disruption4) of complexes 
between 14-3-3 and its numerous clients.5 One important 14-3-
3 PPI stabilizer, cotylenin A (1),6 suppresses the self-renewal 
ability of human chronic myeloid leukemia (CML) cells and 
significantly decreases levels of the tumorigenic transcription 
factor c-Myc.7,8 The mechanism remains unknown. Cotylenin 
A stabilizes several 14-3-3/client PPIs and a comprehensive 
understanding of its interactome is absent. Dissection of these 
interactions may advance the cotylenin chemotype towards 
therapeutic applications, analogous to the development of 
novel IMiD molecular glues.9  

Unfortunately, access to material by isolation has become a 
substantial barrier to industry and academia alike.10 Whereas 
fungal metabolites can be simple to access by fermentation, 
the producer organism of 1, a Cladosporium species, no longer 
proliferates in culture, prompting the total synthesis of 1 or 
reliance on mimics that require multistep semisynthesis (e.g. 2 
in 14 steps from fusicoccin A).11 One total synthesis of coty-
lenin A has been reported to date (25 steps, 0.15%),12 along 
with two syntheses of its aglycon, cotylenol (3)13 (21–32 steps, 
<1–3.9% yield).14 Here we report a short synthesis of 3 that 
may allow us to replenish supplies for the community.  

Prior synthetic work by Takeshita and Nakada revealed that 
assembly of the Δ1,2-alkene with E-configuration (e.g. 4, Fig-
ure 1) enabled efficient cyclooctene formation via ene or α-
arylation reactions.12,14 Access to cyclization precursors, how-
ever, required 28 and 17 steps, respectively, due to the ex-
treme steric congestion that flanks the alkene. Quick access to 
the 5-8-5 core with native A- and C-ring functional groups 
became a top priority, as this region nestles among 14-3-3 
helices, whereas the C7-9 bridge binds surface waters.15 We 
thought two heavily functionalized, encumbered fragments 
could be easily assembled if the greatest transition state repul-
sion occurred in an intra-molecular process via scaffold rear-
rangement. A Claisen reaction would benefit from 1) exo-
thermicity of C=O bond formation to offset this steric repul-

sion, 2) good models to understand and control product stereo-
centers using substrate configurations16 and 3) chemoselectivi-
ty.17 Analysis of Claisen transition states and experimental 
feedback (SI and Scheme 2) eventually suggested allyl vinyl 
ether 5 as the required starting material, which could arrive in 
convergent fashion from prefunctionalized A and C rings. 18  

 
Figure 1. Fusicoccanes like cotylenin A function as molecular glues 
between 14-3-3 proteins and phosphoprotein clients (from PDB: 3e6y, 
Ref. 3). Resupply of material might be accomplished by steric rear-
rangement to enable union of highly functionalized fragments.  

Synthetic efforts began with known alcohol 6, scaled to 50 
mmol over 4 steps and 56% yield from (–)-limonene.19 
BF3·OEt2-mediated allylic substitution with 4-
chlorothiophenol cleanly afforded thioether 7. To generate the 
C-11 quaternary center with an appropriate coupling handle, a 
[2,3]-Wittig rearrangement of the corresponding sulphonium 
ylide20 was effected by generation of dichlorocarbene in the 
presence of 7 to deliver intermediate 8, which converted dur-
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ing chromatography on hydrated silica gel (78:12 w/w 
SiO2/H2O) to thioester 9 in 83% yield (single diastereomer by 
1H and 13C NMR). Use of sodium tert-butoxide in place of 
potassium base resulted in higher conversions and yields, ei-
ther via lower rate of alkoxide addition to dichlorocarbene or 
slower α-elimination resulting in less homodimerization.21 
This route scaled easily: we prepared >10 grams of this func-
tionalized C-ring coupling partner in a single pass.	

Preparation of the A-ring began with acyloin cyclization22 of 
dimethylglutarate, followed by a Zn(OTf)2-catalyzed Mukai-
yama aldol reaction with dimethoxymethane. The tert-alkyl 
silyl ether was cleanly deprotected with Montmorillonite K10 
in methanol to ketone rac-10. Separation of enantiomers by 
preparative supercritical fluid chromatography (SFC) provided 
an inexpensive and expedient means to access pure enantio-
mers ((R)- and (S)-10) to explore downstream chemistry (ab-
solute configuration assigned by derivatization and X-ray 
crystallography, see SI). Condensation with Tris-NHNH2 pro-
duced hydrazone (R)-11 and set the stage for coupling the A 
and C ring fragments.  

	
Scheme 1. Rapid assembly of A- and C-ring fragments with native 
functionality preinstalled. 

Generation of alkenyl organometallics from A-ring hydra-
zones proved difficult. Originally, we had protected the C3 
alcohol as its silyl ether (12, Scheme 1c), but we found that 
Shapiro reactions consistently resulted in retro-[1,4]-Brook 
rearrangements to generate a vinyl silane (13). Additional n-
BuLi did not allow reaction of 13 with thioester 9 but did re-
sult in engagement of the corresponding carboxaldehyde (14, 
see SI), either via the silate or organolithium, to yield 15. Un-
fortunately, major diastereomer 15 was unproductive in the 
synthesis according to classic Claisen rearrangement models 
(see Scheme 2 and SI). Attempts to circumvent Brook rear-
rangement by incubation of unprotected alcohol (R)-11 with 
>3 equivalents of n-BuLi for 1 h at 0 °C were unsuccessful: no 
9 was consumed. Transmetallation to copper,23 however, 
proved effective. Ultimately, we found that addition of 1 

equivalent potassium tert-butoxide along with 3 equivalents of 
n-BuLi, followed by subsequent additions of Lipshutz’s (2-
thienyl)CuCNLi complex24 and thioester 9 (0.83 equiv.), 
yielded fragment union product 17 in 63% yield (10% of 9 
was recovered). The parent thiophenyl ester gave low yield 
and conversion, but its 4-chloro analog enhanced performance 
by analogy to its role in Liebeskind–Srogl coupling.25 

Luche reduction (NaBH4, CeCl3•7H2O) at -78 °C then gave 
diol 17 as a single diastereomer in 84% yield. Reduction of 
this extremely hindered ketone relied on directing effects from 
the C3 tertiary alcohol, i.e. C3 silyl ethers prevented reduction, 
and the C3 epimer (from (S)-11) delivered the corresponding 
C1 (S) epimer (20:1 dr) under Luche conditions. 

Reliable access to diols 15 and 17 allowed us to explore 
Claisen rearrangement.  Unfortunately, C1 vinyl ether for-
mation was not straightforward. Steric hindrance about the C1 
alcohol obstructed reaction with alkenyl electrophiles using 
palladium or mercury catalysis. High temperature or acid-
catalyzed Johnson- and Eschenmoser-Claisen variants caused 
complex decomposition (Scheme 2a). The limited number of 
enol and ynol ethers available via Waser's reagent,26 esterifica-
tion/silylation or oxa-Michael addition did not translate to 
successful Claisen rearrangements (Scheme 2b), likely due to 
prohibitively high barriers relative to decomposition pathways.  

The allylic, tertiary alcohol at C3 proved especially sensi-
tive to elimination, but its excision was futile: although sub-
strate 18 underwent efficient [3,3]-rearrangement, the product 
alkene possessed the wrong alkene configuration for cycliza-
tion to 3 (Scheme 2c).27  
Scheme 2. Narrow window of opportunity for Claisen rearrangement. 
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Scheme 3. Completion of cotylenol (–)-3 via a stereoselective Claisen-ene cascade cyclization. 

	
Alkene geometry was rationalized by transition states that 
reduced 1,3-diaxial interactions independent of C1 configu-
ration by placement of the C-ring in a pseudo-equatorial 
position (see Scheme 2e for transition states). Consistent 
with this model, fully substituted A-ring 20 led to the target-
ed alkene geometry, but the incorrect (S)-C6 configuration. 
In this case, repulsion between the C3 position and the C-
ring (A1,2 strain) forced the C-ring into a pseudo-axial posi-
tion and led the alkenylether to engage the C6 si-face.16 
These data confirmed the necessity of C1 (R)-configuration 
and led us to conclude the alternative alcohol 17 would 
maintain a pseudo-axial C-ring but access the C6 re-face, 
allowing completion of 3, assuming the Claisen transition 
state energy did not exceed the barrier to decomposition 
pathways like elimination. 
 As explored in Scheme 1, copper(I)-mediated coupling 
of rings A and C advanced material quickly to alcohol 17. 
Despite the repeated difficulty of forming enol ethers from 
17, we found the combination of N-methylmorpholine 
(NMM) and methyl propiolate to engage the extremely en-
cumbered alcohol with ease at 0 °C in good yield, likely 
through the alkoxide/enammonium cage pair.28 The methyl 
ester was crucial to allow Claisen rearrangement: its absence 
(Scheme 2b) yielded no product. But polarization imparted 
by the ester allowed thermal reaction of 22 in silylated glass 
to provide, to our surprise, the full 5-8-5 ring system 23 via a 
stereoselective Claisen rearrangement/ ene reaction14 cas-
cade.29 C1 (R) configuration and A-ring sterics translated 
cleanly to C6 (R) configuration and the requisite E-alkene.  
 A simple sequence then converted 23 to cotylenol (3). 
First, uneventful oxidation of the β-hydroxyester, followed 
by decarboxylative formaldehyde aldol and elimination 
yielded enone 24. Second, introduction of the C7–9 stereo-
centers required differentiation of the prochiral faces at each 
carbon. In the long term, stereochemistry and substitution 
pattern at these positions will likely prove negotiable since 
this region points toward surface waters on 14-3-3 proteins. 
In the short term, mechanism of action studies require access 
to 3 specifically. In contrast to prior syntheses,12,14 α-

hydroxylation of 24 at C9 proved efficient (96%) and  highly 
stereoselective (>20:1 dr), whereas reported oxidations of 
related cotylenol intermediates delivered mixtures of C9 
epimers (2.7–1.5:1).12,14 We suspected the rigid conformation 
enforced by the all-sp2 C7–9 bridge of 25 (the potassium 
enolate of 24) allowed reagents to avoid the i-Pr substituent 
but not the bridgehead methyl on the opposite face.30 Late 
stage intermediates of prior syntheses possessed pseudo-
equatorial methyl groups at C7, which may twist the enolate 
relative to 25 to expose the internal face. Diimide reduction 
did not have to contend with either substituent and ap-
proached from the exterior face with similarly high dr (93:7). 
Finally, Nakada's protocol for directed reduction12 furnished 
3 in 83% yield and 96:4 dr without recourse to C3 alcohol 
protection/ deprotection as used previously. 
 In conclusion, we have developed the shortest synthesis 
to date of cotylenol (16 steps, 9% yield from (R)-11/9 con-
vergence) by accessing its hindered Δ1,2-alkene via merger of 
fully functionalized A- and C-rings followed by a Claisen-
ene cascade reaction. Steps scale well and we have already 
saved 1 gram of 22 from these studies with more material en 
route. The cotylenol and cotylenin A chemotypes are par-
ticularly important among 14-3-3 fusicoccanes because, un-
like other members, they are no longer available by fermen-
tation. We hope to leverage this synthesis to build a focused 
library of molecular glues to selectively stabilize partners 
within the 14-3-3 interactome: for this long-term goal, spe-
cific access to 1 or 3 is not crucial, but quick entry to privi-
leged scaffold 23 (10 steps, 11%) may enable extensive ex-
ploration of cotylenin chemical space.31 As seen in crystal 
structures of 1 and 3 bound to 14-3-3,3,13 and as suggested by 
the pharmacology of 2 (Figure 1),11 the diterpenoid core 3 
may play a greater role in binding than the modified sugar 
motif. However, 1 and 3 hold great value for interrogation of 
the mechanism behind reduction of c-Myc in CML cells. 
Whereas multiple aspects of 14-3-3 signaling may be affect-
ed, the possibility that 1 enhances c-Myc degradation via 14-
3-3-promoted polyubiquitination32,33 has captured our imagi-
nation. 
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