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Abstract 

The development of analytical techniques that decode chemical information in complex 

biochemical samples to discriminate different structural components may open the way for 

several new findings.  In this study, principal component analysis (PCA) is carried out using 

an ad hoc Matlab coding that provides a transparent access to multivariate analysis of Raman 

mapping datasets. Here, we illustrated the efficacy of this method to extract meaningful results 

from Raman images of Cannabis sativa trichomes. A large dataset of Cannabis trichome 

comprising of 441 Raman spectra was examined for the first time using our OpenPCA. By 

mapping the chemical distribution in the trichome, we could locate the secretary vesicles in the 

PC score maps generated from the mapped Raman spectra. Black-box PCA solutions available 

in commercial software can be limited by rigid input interfaces which may prevent obtaining 

information by tuning the PCA analysis on selected wavenumber ranges. Hence, the OpenPCA 

scripts facilitate the task of obtaining key information from widely distributed range of 

wavenumbers that are characteristic to a specific cannabinoid, namely Δ9-THC and CBD. 

Overall, the PCA-coding algorithm shows advantages in decoding Raman spectra that could 

be extended to handle all kinds of datasets with simultaneous spatial and chemical details. 
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1. Introduction  

Cannabis sativa from family Cannabaceae is predominantly a dioecious annual herb 

that have significant importance in the industrial and medicinal field [1]. It is widely utilized 

and consumed for manifold purposes including personal-care products, natural fungicides, food 

additives, essential oils, and medical formulations. The cannabinoids are the prime bioactive 

substance in C. sativa and are a promising therapeutic candidate for cancer treatment, 

neurological diseases, appetite disorders, and inflammation [2]. The cannabinoids are secreted 

from trichome structures which are the specialized hairs covering female inflorescences. Three 

kinds of trichomes were observed with different morphologies, namely capitate-stalked, 

capitate-sessile, and bulbous [3]. The abundantly present capitate-stalk of trichomes that 

contains highest cannabinoid levels features a basal cell, secretory cells, several stalk cells, and 

a large sub-cuticular storage cavity [2]. Phytocannabinoids are naturally synthesized in the 

trichomes, and constitute a unique group of terpenophenolics compounds with three leading 

members, namely, tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD). 

Among them, Δ9-THC is considered as an illicit drug because it possesses psychotropic effects 

and hence it is restricted in most countries [4]. However, CBD is a substance with non-

psychoactive nature, and acts as an antagonist to THC effects. Further, CBD displays 

neuroprotective, anti-rheumatoid arthritis, anti-nausea, anxiolytic, anti-spasmodic, and 

anticonvulsant properties [5].  

Despite the medicinal and economic significance of trichomes, cannabinoid levels, 

chemical profile, and its distribution in the trichomes remain uninvestigated and poorly 

understood [6]. To analyse the trichomes and to extract their chemical composition, a powerful 

non-destructive Raman spectroscopy technique was adopted, but no systematic information 

was reported about the spatial distribution of the chemical species in the plant [7, 8]. However, 

the high spatial resolution of confocal micro-Raman spectroscopy (proved for instance in ref. 



[9]) can be applied to the context of Cannabis characterization. One could directly probe 

Cannabis samples such as the trichomes by micro-Raman mapping techniques and gather 

information about the chemical distribution of the cannabinoid substances at the micrometric 

scale. To assign the chemo-markers to the experimental trichome spectra, the Raman spectra 

of pure cannabinoids that are present in high levels and free of other chemicals are now gaining 

momentum and being reported in the literature (see e.g. [8, 10]). Hence Raman mapping is a 

powerful tool that would eventually allow one to detect the presence of specific cannabinoids, 

their spatial distribution, and their concentration in a sample. 

The Raman spectroscopic analysis of the trichome could be useful in several ways. For 

instance, the determination of cannabinoid levels can be employed to design a sensor by which 

the point of maximum maturation of the plant and its best harvesting time can be identified. 

The development of analytical methods for testing cannabinoid substances could display a 

potential application in law enforcement and forensic applications. In addition, according to 

the legal framework established by governments and regulatory bodies, the farmers would be 

able to distinguish between two varieties of hemp (cultivated for fibre production) or marijuana 

(cultivated for drug and medical purposes) based on the chemical threshold levels, e.g., Δ9-

THC in hemp is ≤ 0.2 % and in marijuana it is > 0.2 % [5].  

Despite its benefits, the decoding of large dataset of Raman spectra is an arduous task 

[11]. Normally, tens to thousands of spectra are collected from pixel scans on a sample to create 

a Raman mapping. As a result, it is often a tedious, time consuming process to decode this large 

data matrix made of a multitude of signal intensities at different wavenumbers [12]. In this 

work, a sample area of 21 µm × 21 µm with a pixel size of 1 µm × 1 µm were scanned to 

acquire 441 spectra as a matrix. Commonly, a wavenumber that is specific to a cannabinoid of 

interest is selected and a Raman image is mapped based on the varying intensity at that point. 

If the chosen wavenumber is a unique characteristic peak of the specific compound of interest, 



with no background interference, the image generated with relation to the scanned area carries 

direct information about the spatial distribution of the chemical species of interest. The 

drawback behind carrying out this method in regular software includes the limited information 

associated with the produced image that corresponds only to the selected wavenumber, and 

may display low signal-to-noise ratio and/or loss of signal. Usually, key information contained 

within the dataset matrix of the Raman spectra is widely distributed throughout the dataset [13], 

and a single-peak data analysis approach may lose significant details. Principal component 

analysis (PCA) is an effective statistical method capable to handle a complex large data matrix 

by reducing the dimensionality while preserving the most critical features [14]. However, 

despite PCA being a well-established analysis tool, it often shows up as a black box in the 

software driving spectrometers, and its true potential may be hard to be fully appreciated. In 

this work, a novel coding approach is presented to introduce PCA in Matlab where the 

background process is observable, open and it is a white box approach. The software coding is 

based on a fully algebraic approach that focuses on the variance-covariance matrix of the 

dataset and its spectral decomposition. This allows the easier control over the multivariate 

dataset, and facilitates the analysis and tuning of the right parameters. In this study, we carry 

out the analysis of a novel dataset of Raman spectra of C. sativa trichomes by the 

implementation of such white-box PCA approach. This work demonstrates the potential of a 

label-free and non-destructive method based on principal component analysis of the micro-

Raman mapping of trichome to understand different structures and chemo-types along with 

their spatial distribution. Nevertheless, this technique is not limited only to Cannabis, but it 

could be amply extended for handling and investigating all kinds of natural or technological 

processes that deal with simultaneous spatial and chemical details. 

2. Materials and methods 

2.1 Experimental 



The Raman spectra of pure THC and CBD cannabinoids were analysed. For micro Raman 

analysis, 5 µL of the Δ9-THC solution (1 mg/mL) prepared with methanol solvent was dropped 

on a glass slide. In the case of CBD, a sample from pure CBD powders was directly used (with 

no solvent preparation) to carry out micro-Raman measurements. The Cannabis seeds were 

obtained from a Cannabis licensed distributor in Oshawa (ON, Canada). The trichomes were 

procured from the grown plant during the flowering phase. The trichome sample was used as 

received to collect the Raman spectra. The scanned area of the trichome was over a grid of 21 

x 21 points, with 1 μm spacing. For the two mappings reported here, each single point Raman 

collection had a duration of 10 sec with either 1 accumulation (sample 1) or 10 accumulations 

(sample 2). 

2.2 Instrumentation 

The Raman Spectra were obtained using a Renishaw Raman instrument equipped with 

a 532 nm laser. The spectra were acquired at a laser power of 1%, with a 50x objective, the 

exposure time was 10 s, 1 - 10 accumulations, and ranged from 100 cm-1 to 4000 cm-1. Raman 

spectrum of methanol was acquired as well for control measurements.  

The fluorescence background associated with the obtained Raman spectra, especially 

with shorter wavelengths makes it harder to read. To resolve this issue, a completely automated 

software from Renisha, Windows®-based Raman Environment (WiRE), included with the 

Raman spectrometer was applied for the acquisition of the mappings and the removal of 

background signal. In addition, the WiRE has control over both Raman data acquisition and 

data processing options. Thus, the fluorescence background subtraction allows for a clearer 

visualization of the Raman data. However, numerical artifacts could also be introduced in this 

process and should be carefully noted to avoid misleading conclusions. 

2.3 PCA – as implemented in OpenPCA 



The PCA was introduced in 1933 by Harold Hotelling in the context of psicometric data 

analysis [15]. PCA has been widely applied to many fields where multivariate datasets have to 

be dealt with. However, PCA remain as a black box that is poorly understood. A novel coding 

approach is required to introduce PCA in Matlab that allows the background process to be 

observable, and modifiable. The easier approach to introduce PCA, by also taking into 

consideration its numerical implementation in Matlab, is through a fully algebraic approach 

that focuses on the variance-covariance matrix of the dataset and its spectral decomposition. 

Let us introduce first the multivariate dataset matrix Xov, which along each row stores the 

results of one multivariate observation along a given number of variables (Nv). The adopted 

notation for the dataset matrix highlights the different role of row vs. column indexes. The 

different observations are identified in the Xov matrix by the row index (o), whereas the 

different variables of each multivariate measurement (observation) are identified by the column 

index (v). In the context of spectroscopy, each row represents one spectrum, and the different 

variables are the wavenumbers at which the instrument has recorded a given spectral intensity 

(e.g., Raman intensity, or absorbance). Hence, because of the adopted notation, we have the 

following identities: 

𝑿𝑿 =  𝑿𝑿𝑜𝑜𝑜𝑜   (1a) 

𝑿𝑿𝑣𝑣𝑣𝑣 =  (𝑿𝑿𝑜𝑜𝑜𝑜)𝑡𝑡 =  𝑿𝑿𝑡𝑡   (1𝑏𝑏) 

where t indicates matrix transposition. As described later, the variance-covariance matrix 

among the variables of the dataset can be straightforwardly introduced through the matrix of 

the centered dataset, 𝝌𝝌𝑜𝑜𝑜𝑜: 

𝝌𝝌𝑜𝑜𝑜𝑜 =  𝑿𝑿𝑜𝑜𝑜𝑜 −  〈𝑿𝑿𝑣𝑣〉    (2) 

Where 〈𝑿𝑿𝑣𝑣〉 represents the row vector of the average values of the variables over the number 

of No observations, and its v-th element is given by:  



〈𝑋𝑋𝑣𝑣〉 =
1
𝑁𝑁𝑜𝑜

�𝑋𝑋𝑜𝑜𝑜𝑜

𝑁𝑁𝑜𝑜

𝑜𝑜=1

   (3) 

we adopt in Eq. (2) the same abuse of notation used in Matlab: by subtracting a row vector to 

a matrix actually one subtracts the given row vector to each row of the matrix. Hence Eq. (2) 

is implemented in Matlab as simply as chi = X - mean(X), because the Matlab function 

mean(X) gives the row vector corresponding to the average of all the rows of the X matrix – 

which effectively corresponds to averaging out with respect to the available observations (see 

above). By using the cantered dataset matrix, the variance-covariance matrix among the 

variables of the dataset (Σvv) can be introduced as follows: 

𝚺𝚺vv =
1

𝑁𝑁𝑜𝑜 − 1
 𝝌𝝌𝑣𝑣𝑣𝑣𝝌𝝌𝑜𝑜𝑜𝑜    (4) 

Clearly, by definition, Σ is a symmetric matrix, and it is positive definite. Therefore it admits 

spectral decomposition by the orthogonal matrix of its eigenvectors, and the eigenvalues are 

positive quantities [16]. The matrix eigenvalue problem of the variance-covariance matrix is 

written as: 

𝜮𝜮𝜐𝜐𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐 = 𝑳𝑳𝜐𝜐𝜐𝜐𝝈𝝈𝑠𝑠𝑠𝑠 (5) 

In Eq. (5) σss is the diagonal matrix of the eigenvalues of Σvv and Lvs is the orthogonal matrix 

of the eigenvectors of Σvv. The orthogonality of Lvs implies: 

𝑳𝑳𝜐𝜐𝜐𝜐𝑳𝑳𝑠𝑠𝑠𝑠 = 𝟏𝟏𝜐𝜐𝜐𝜐  (6) 

𝑳𝑳𝑠𝑠𝑠𝑠𝑳𝑳𝜐𝜐𝜐𝜐 = 𝟏𝟏𝑠𝑠𝑠𝑠  (7) 

Therefore, by left-multiplying Eq. (5) by Lsv, and by considering its orthonormality, one 

obtains the spectral decomposition of the variance-covariance matrix: 

𝑳𝑳𝑠𝑠𝑠𝑠𝜮𝜮𝜐𝜐𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐 = 𝝈𝝈𝑠𝑠𝑠𝑠 (8) 

By substituting in the right-hand side of Eq. (8) the definition of Σvv = 𝝌𝝌𝜐𝜐𝜐𝜐𝝌𝝌𝑜𝑜𝑜𝑜 / (No - 1) (cfr. 

Eq. 4), one obtains: 



𝝈𝝈𝑠𝑠𝑠𝑠 =  
1

𝑁𝑁𝑜𝑜 − 1
 𝑳𝑳𝑠𝑠𝑠𝑠𝝌𝝌𝜐𝜐𝜐𝜐𝝌𝝌𝑜𝑜𝑜𝑜𝑳𝑳𝜐𝜐𝜐𝜐         (9) 

Similarly to the definition of a variance-covariance matrix (Eq. (4)), it is then possible to 

identify in the right-hand side of Eq. (9) a structure given by the product of a matrix (defined 

S) by its transpose: 

𝝈𝝈𝑠𝑠𝑠𝑠 = � 1
�𝑁𝑁𝑂𝑂−1

𝑳𝑳𝑠𝑠𝑠𝑠𝝌𝝌𝜐𝜐𝜐𝜐� �𝝌𝝌𝑜𝑜𝑜𝑜𝑳𝑳𝜐𝜐𝜐𝜐
1

�𝑁𝑁𝑜𝑜−1
� = 𝑺𝑺𝑠𝑠𝑠𝑠𝑺𝑺𝑜𝑜𝑜𝑜 =  𝑺𝑺𝑡𝑡𝑺𝑺  (10) 

The rows of such a matrix (Sos) - named the scores matrix - define the observations (o label) 

through the so-called principal components (s label): 

𝑺𝑺𝑜𝑜𝑜𝑜 = � 1
�𝑁𝑁𝑂𝑂−1

𝝌𝝌𝑜𝑜𝑜𝑜𝑳𝑳𝜐𝜐𝜐𝜐�  (11) 

The matrix of the eigenvectors of the variance-covariance matrix (Lvs), which is named the 

loadings matrix, defines the linear relationship existing between each principal component and 

the set of variables. The PCA scatterplot e.g. of the first two principal components (PC1, PC2) 

can be obtained by plotting on the Cartesian xy plane the first column of the S matrix (x 

coordinates) vs. the second column of the S matrix (y coordinates). This plot immediately 

allows judging data clustering or the presence of outliers. Such scatterplots can be of course 

extended to other principal components (i.e., to other columns of the S matrix). Sometimes, the 

scores matrix is normalized in such a way to produce an associated variance-covariance matrix 

(over the s variables) that is a unit matrix. This normalization is simply done as follows: 

𝑺𝑺𝑜𝑜𝑜𝑜′ = 𝑺𝑺𝑜𝑜𝑜𝑜𝝈𝝈𝑠𝑠𝑠𝑠
−12  (12) 

It is then straightforward to show that the variance-covariance matrix associated to 𝑺𝑺𝑜𝑜𝑜𝑜′  is a unit 

matrix: 

(𝑺𝑺′)𝑡𝑡𝑺𝑺′ = �𝝈𝝈𝑠𝑠𝑠𝑠
−12𝑺𝑺𝑠𝑠𝑠𝑠� �𝑺𝑺𝑜𝑜𝑜𝑜𝝈𝝈𝑠𝑠𝑠𝑠

−12� =  𝝈𝝈𝑠𝑠𝑠𝑠
−12𝝈𝝈𝑠𝑠𝑠𝑠𝝈𝝈𝑠𝑠𝑠𝑠

−12 = 1     (13) 

 

3. Results and discussion 



3.1 Spectroscopic characterization of Δ9-THC and CBD 

The volatile nature of Δ9-THC makes it hard to control the formation of solid samples that tend 

to sublimate (which is why Δ9-THC is supplied as methanol solution). To our fortune some 

microcrystalline aggregate was stable for just enough time to perform a Raman mapping. 

Unfortunately, the replication of the same conditions to obtain the microcrystals was not 

succeeded anymore and only this single Raman data set was obtained on Δ9-THC. The reason 

behind this finding could be hypothesized to the presence of a nucleation site created from a 

piece of dirt on the glass slide that prevented evaporation. This is the reason behind the lack of 

data with respect to pure cannabinoid samples. Most of the Raman mapped area did not belong 

to Δ9-THC, therefore the obtained Raman data set was processed by PCA to get 2D Raman 

mapping image. Cluster analysis was performed to evaluate the variation in the Raman signal 

with respect to the position of the laser spot in the measurement. Matlab was used to perform 

multivariate analysis and to plot the spectra. The Raman spectrum of the ephemeral sample of 

Δ9-THC and CBD is shown is Figure 1 along with its chemical structure that displays very 

sharp and defined peaks, most likely due to the ordered crystalline state of the sample. It is 

remarkable to note that X-ray diffraction data of Δ9-THC was not available in the literature 

owing to its volatile nature. The peaks corresponding to CH stretching modes observed at 2847, 

2913, 2990 and 3056 cm-1 are not highly structure-specific markers, but the expected peaks for 

both aliphatic (2847, 2913, 2990 cm-1) and aromatic (3056 cm-1) structures were observed. The 

OH stretching modes that should be observable around 3500 cm-1 were not detected. The 

fingerprint region of the spectrum is observed in the range of 200 to 1800 cm-1 that contains 

the characteristics collective modes of the molecule. All the Raman spectra of Δ9-THC found 

in literature show only the fingerprint region, so the comparison will be limited to this range of 

frequencies [8, 17, 18]. The Raman spectrum of Δ9-THC recorded in this work with a 532 nm 

laser and the reference Raman spectra retrieved from 633 nm laser spectrum in the study of 



Islam et al. (2020) [18] show similar strong peaks close to 1002, 1087 and 1605 cm-1, however 

the relative Raman intensities in our Δ9-THC Raman spectrum significantly differ from those 

reported, for instance, in ref. [8]. We believe that this is caused by the joint effect of the laser 

polarization and uncontrolled crystalline orientation of the ephemeral Δ9-THC sample. The 

intense peak at 1002 is assigned to the breathing of the aryl group. The bands observed in the 

1600 – 1670 cm-1 range are assigned to the ring stretching of the aryl group and to the stretching 

of the C=C bond in one of the rings of THC [18]. The shifting of the bands compared to the 

previous reports can be caused by many different factors: the wavelength of the light used for 

the analysis, the different aggregation states of the samples, and the effect of the solvents from 

which the sample was obtained [19, 20]. The other peaks in the fingerprint region is assigned 

as follows: 715 cm-1 CH deformation, 1032 cm-1 C-C stretching, 1437 cm-1 CH3 twist and bend 

[21]. 

The CBD sample is a pure crystalline powder and it provides a very neat FT-Raman spectrum 

with sharp and well-defined peaks. Our spectrum compares well with literature data [8] but it 

also reports the signal in the CH stretching region. Out of the whole spectrum of CBD,  the 

peaks at 1433 and 1662 cm-1 in the fingerprint region and the peak at 2927 cm-1 in the high 

frequency region are predominant and could be clearly recognized. The peak at 1433 cm-1 is 

ascribed to the vibrations of the hydroxyl (OH) group, hexene ring stretch, and CH bend of the 

benzene ring [18]. The peak at 1662 cm-1 corresponds to the C=C stretch in cyclohexane [22]. 

In both Δ9-THC and CBD, the high frequency region between 2500 and 3600 cm-1 is ascribed 

to the CH (around 3000 cm-1) and OH (around 3500 cm-1) stretching vibrations. Δ9-THC and 

CBD have similar chemical structures. Compared to Δ9-THC, CBD has a strong peak at 1433 

cm−1 which can be used to distinguish CBD from Δ9-THC. 

 

3.2 Spectroscopic characterization of trichomes 



Glandular trichomes are the structures that are observed covering the surface of each floral 

inflorescence of C. Sativa and are the site of production of metabolites (cannabinoids). We 

examine here by micro-Raman spectroscopy how information may be collected about the 

chemical composition and microscopic spatial distribution of cannabinoids in trichomes. Here, 

we aim to differentiate the structure of secretary vesicles in the whole trichome using Raman 

spectroscopy based on the expected variation in the cannabinoids levels. According to 

Livingston et al. [6] some regions in the trichomes can be identified as the secretory vesicles 

that are characterized by the presence of higher level of cannabinoids than others. The bright 

field image of trichome samples 1 and 2 is depicted in Figure 2a and 2d, respectively. The 

average spectrum computed over the two mapped areas of the trichomes is reported in Figure 

2c and 2f for sample 1 and 2, respectively. An intense Raman peak at 1295 cm-1 is observed in 

the average spectra of both samples. Based on literature [8], such Raman signal can be assigned 

to a few cannabinoids (THC, THCA and CBGA) that exhibit a strong Raman peak in this 

position of the spectrum. The Raman map generated with such peak (1295 cm-1) of the Raman 

spectra of both trichome samples is reported in Figure 2b and 2e and demonstrate the 

information which could be obtained from direct inspection of the data at a particular 

wavenumber, with no advanced dataset processing. 

 

3.3 PCA of the micro-Raman mapping of a Cannabis trichome 

The PCA of the Raman spectra of the map can identify the most important variations of the 

spectra across the dataset, which can be used to produce unsupervised grouping of image pixels 

on the basis of their Raman signature, which reflects the chemical composition in that location. 

Once the PCA scripts are run in the Matlab environment, a screeplot in the logarithmic scale is 

obtained which allows to identify the most relevant principal components (PCs) as shown in 

Figure 3a (screeplot of sample 1). The screeplot is a representation of the principal variances 



in the multivariate dataset, where the principal components are sorted by decreasing principal 

variance (i.e., by decreasing eigenvalues of the covariance matrix).  In Figure 3a it is noticed 

how quickly the principal variances decrease along the screeplot. For this reason, just the 

loadings along the first four PCs were analyzed. The components starting from PC5 have been 

neglected since their variance is very low compared to the previous PCs. 

At first, the Raman analysis of sample 1 is presented. The PC loadings were investigated to 

obtain the chemical information behind different PCs. The scoremaps and loadings of PC1 to 

PC4 are reported in Fig. 3f. The loadings of PC1 to PC3 convey chemical information, whereas 

PC4 mostly displays an undulatory behaviour over a noisy signal. The PC1 loadings clearly 

display an intense fluorescence background, which is less evident in the PC2 loadings. In PC1 

and PC2 it is not possible to fully decouple the fluorescence and Raman contributions, as PC1 

and PC2 are both characterized by a fluorescence and a Raman component. However, while in 

PC1 it is the fluorescence component to be more intense, in PC2 it is the Raman contribution 

to be dominant. Hence, with a little degree of approximation, when considering the associated 

scoremaps we may assume that PC1 describes the areas of the trichome that are more 

fluorescent, whereas PC2 indicates the areas with stronger Raman signal. Since the 

fluorescence signal is less strongly related to the chemical structure of the compounds than it 

is the Raman signal, one may expect to get chemical information out of PC2. The PC1 to PC4 

scoremaps were obtained with the Matlab PCA scripts and are also reported in Figure 3. In the 

scoremap, each single measurement point in the Raman mapping experiment is represented as 

separate pixel whose colour shade identifies the score value. The scoremaps are a 

representation of the spatial variation of the Raman spectra along a specific principal 

component – for instance high PC1 score values indicate a strong fluorescence, whereas a high 

PC2 score indicates an overall strong Raman signal. By inspecting a given scoremap associated 

to a given Raman peak one may infer the local changes of the cannabinoid levels in the 



trichome sample. In the first scoremap (Fig. 3f), we could observe three dark spots. Since the 

PC1 loading displays the same shape as the average spectrum the PC1 can be regarded as the 

overall strength of the signal (which includes a strong fluorescence background). To be more 

precise, this indicates the overall variation that arises from the different point to point focusing 

on the curved bulb of the trichome surface. In the second scoremap, we can identify a central 

dark region. However, since it is a complex data set with the combination of several chemical 

species, it is difficult to interpret this structure more precisely. Therefore, using the PCA scripts 

in Matlab, the range of wavenumber is selected from 1580 cm-1 to 1700 cm-1, which contains 

a characteristic peak of cannabinoids observed in both THC and CBD. The Fig. 3g represents 

the PC1 and PC2 scoremap and loadings within the selected 1580-1700 cm-1 wavenumber 

range. The PC1 scoremap does not include very specific chemical information as the loading 

looks similar to the average spectra (Fig. 3d), hence this scoremap can be associated with the 

florescence background over the Raman spectra. In the PC2 scoremap three dark circular spots 

are observed that indicate high concentration of cannabinoids, while the bright regions 

corresponds to low concentration (the negative scale of the PC2 score is due to the negative 

sign of the peaks in the PC2 loadings). The dimensions of the dark spots are about 8-12 µm. 

This compares well with the dimension of the vesicles in the C. Sativa trichome. In general, 

THC is accumulated in this specific region of the trichomes called vesicles. Based on literature 

[6] the dimension of the vesicles in the trichomes can be of the order of 10 µm, which is 

compatible with the size of the dark region in scoremap 2. We may conclude that the dark 

regions, which are characterized by a higher accumulation of cannabinoids, represent the 

vesicles of the trichomes. In addition, the region of the most intense peak in the trichome 

spectra 1280-1310 cm-1 containing the sharp band at 1295 cm-1 was analyzed. Also in this case 

we ignore PC1 (see above). The PC2 loadings show that the spectral change with respect to the 

average spectrum follows a pattern where the peak get more narrow and intense. The 



corresponding scoremap displays three bright circular regions that confirms the accumulation 

of cannabinoid substances in the trichome, which can be attributed to the presence of the 

secretary vesicles. 

 

In Fig 4a we report the screeplot of the trichome sample 2 obtained from the PCA analysis of 

the Raman spectra over the full wavenumber range. The associated PC1-4 loadings and 

scoremap are reported in Fig. 4f. As for sample 1 the first scoremap (Fig. 4f) displays little 

chemical information since the corresponding PC1 loading is mainly interpreted as signal 

background. In the second scoremap, we can identify a few circular dark spots that could be 

associated to the overall presence of chemical species. To extract more details about the 

specific chemical species we selected the wavenumber range that contains characteristic peaks 

of cannabinoids (1600-1700 cm-1). The Fig. 4b and d represents the screeplot and average 

spectrum corresponding to this range. Fig. 4g represents scoremap and loadings of PC1 and 

PC2. As mentioned earlier, the scoremap of PC1 does not include any specific chemical 

information and may be associated with the overall background. We notice a large dark spot in 

the PC2 scoremap. Since the dimensions of the observed dark area is 20 µm, this compares 

with the size of a trichome structure [6]where the presence of chemical species make it Raman 

active. The PC3 loading does not show background (fluorescence) contributions. In the PC3 

scoremap we can observe three dark spots with a size of about 8-10 µm that is compatible with 

the size of vesicles [6]. The same pattern was observed for the PCA analysis in the restricted 

wavenumber region comprinsing the high intensity Raman peak (1270-1290 cm-1), see Fig. 4c, 

e, and h. The reproducible pattern observed in the scoremaps computed with different spectral 

ranges confirms the accumulation of cannabinoids in those regions. 

4. Conclusions 



Raman mapping of chemically complex samples can provide access to chemical compositional 

information though the analysis of the spatial variation of the Raman signal. This is very 

tedious to do manually and it is greatly simplified by applying principal component analysis to 

the dataset. The OpenPCA framework offers a way to carry out routine PCA analysis of Raman 

mappings, customising the spectral range and the selection of the principal components of 

interest. By plotting the scores of selected PCs on the map, one can easily spot regions of the 

samples where chemical variations occur, as they are witnessed by the changes is the Raman 

markers of given species. This method was implemented to spot the vesicles structures in the 

cannabis trichome head based on the rich accumulation of cannabinoids. This could open the 

doors to post-process various datasets that deals with chemical heterogeneity and its spatial 

distribution. 
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Figure 1. Pure cannabinoid spectra: the Raman spectrum of the ephemeral crystal of Δ9-
tetrahydrocannabinol and the Raman spectrum of the pure cannabidiol; (inset - chemical 
structure of Δ9-THC and CBD). 

 

  

 

 



Figure 2 

    

   

Figure 2. Trichome sample 1: (a) Bright field image of the sample, (b) Map of the Raman 
intensity of the peak at 1295 cm-1 and (c) average Raman spectrum over the mapped area of 
the trichome sample. Trichome sample 2: (d) Bright field image of the sample, (e) Map of the 
Raman intensity at 1295 cm-1 and (f) average Raman spectrum over the mapped area of the 
trichome sample. 
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Figure 3 

 

   

   

   

   

Figure 3. PCA analysis of trichome sample 1: (a) Screeplot of the Principal Components in the 
logarithmic scale on the y axis: variance of the dataset as a function of the PC index(s), (b) 
Screeplot of the filtered dataset in the spectral range 1580-1700 cm-1, (c) Screeplot of the 
filtered dataset in the spectral range 1280-1310 cm-1; (d) average spectrum in the region 
between 1580-1700 cm-1, (e) average spectrum in the region between 1280-1310 cm-1; (f) 
Scoremaps and loadings of PC1, PC2, PC3 and PC4, (g) Scoremaps and loadings of PC1 and 
PC2 of the filtered dataset in the spectral range 1580-1700 cm-1 and (h) Scoremaps and loadings 
of PC1 and PC2 of the filtered dataset in the spectral range 1280-1310 cm-1. 
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 Figure 4 

   

    

    

      

      

Figure 4. PCA analysis of trichome sample 2: (a) Screeplot of the Principal Components in the 
logarithmic scale on the y axis: variance of the dataset as a function of the PC index(s), (b) 
Screeplot of the filtered dataset in the spectral range 1600-1700 cm-1, (c) Screeplot of the 
filtered dataset in the spectral range 1270-1290 cm-1; (d) average spectrum in the region 
between 1600-1700 cm-1, (e) average spectrum in the region between 1270-1290 cm-1; (f) 
Scoremaps and loadings of PC1, PC2, PC3 and PC4; (g) Scoremaps and loadings of PC1, PC2 
and PC3 of the filtered dataset in the spectra range 1600-1700 cm-1; and (h) Scoremaps and 
loadings of PC1, PC2 and PC3 of the filtered dataset in the spectral range 1270-1290 cm-1. 
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