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Abstract

Utilizing a statistical mechanics framework, we derive the expression of the equilibrium con-

stant for dimerization reactions. An important feature arising from the derivation is the necessity

to include two-body correlations between monomer’s particles, reminiscent to those recently found

crucial for binding reactions. However in (homo-) dimerizations, particles of the same type as-

sociate, and therefore, self-correlations are excluded. As a result, the mathematical form of the

equilibrium constant differs from the well-known expression given in textbooks. For systems with

large number of particles the discrepancy is negligible, whereas, for finite systems it is significant.

Rationalized by collision probability between monomers, the bimolecular rate for dimer formation

is proportional to concentration the same way correlations are accounted for. That is average

of squared, and not square of averaged, monomer concentration should be considered in such a

way that inconceivable collisions between a tagged particle with itself are excluded. Another con-

sequence emerging from these two-body correlations, is an inhomogeneous function behavior of

system’s properties when scaling-down the system to a regime smaller than the thermodynamic

limit. Thus, averages of properties observed at small systems are different than those observed at

macroscopic systems. When applied to the size-dependent composition of the system, we further

demonstrate the equilibrium concentration of the dimer (or monomer) can be obtained from only

the magnitudes of fluctuations in the system. All predictions are verified by Monte Carlo and

molecular dynamics simulations.
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Introduction

Many, if not all, physical laws formulated for chemical reactions are deduced from macroscopic

observations. A named example is the relation between the rate of an elementary process and

the concentrations of the participating reactants1. As an underlying principle in chemical kinetics,

it laid the foundation of another paramount example, the discovery of the law of mass action2,

wherein the equality between the forward and backward rates at equilibrium was demonstrated. In

its turn, the law of mass action was linked to one more central concept in chemistry, the equilibrium

constant3, K. A case in point, to determine K for the following binding reaction,

A+B 
 AB , (1)

the average concentration, at equilibrium, of the product and that of each of the reactants are

obtained and then the ratio 〈c
AB
〉/(〈c

A
〉〈c

B
〉) is computed, where the brackets indicate either an

average over measurement time or an ensemble average. This expression of K and the correspond-

ing definition of the rate constant of the forward reaction, kfw = 〈fw-rate〉/(〈c
A
〉〈c

B
〉), have been

working faithfully for several generations of chemists without raising any suspicion they might be

only special cases applicable for large enough systems.

Yet with recent advancements of technology experimental studies, able to conduct and moni-

tor associations of the type shown in Eq. 1 in systems with small numbers of reactants, reported

that bound products are observed at higher concentrations than predicted by the expression of K

mentioned above4–11. Different explanations were put forward that include conformational changes

of the unbound molecule(s), non-fluorescent bindings, and missed events due to transient inter-

actions12. Several theoretical studies proposed that small systems, attributed to be stochastic in

nature, are characterized by an equilibrium constant different than that observed for the thermody-

namic limit, a system attributed to be deterministic13–19. Size-dependent equilibrium constant was

also advocated by introducing ’nanoconfinement entropic effects on chemical equilibrium’ applied

only to systems with small number of molecules20,21. Other computational works also reported
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deviations of the bound product’s concentration from that anticipated by the above-mentioned

expression of K 22,23. In these cases, the anomalous behavior was explained by artefacts due to

applications of periodic boundary conditions in finite simulation boxes24–26 or due to neglected

concentration fluctuations in small simulations in the canonical ensemble27,28.

In tackling this issue, we recently argued29 that any intensive property related to a two-body

interaction (such as the concentration of the bound product AB in Eq. 1) changes its average value

upon scaling-down homogeneously the size of the system (i.e., scaling all extensive parameters

specifying the system by the same factor) to, or within, a regime outside the thermodynamic limit.

The reason for this, unlooked for, behavior is the existence of two-body correlations in the system,

and the known expressions of the equilibrium- and rate-constants mentioned above should actually

take the form of K = 〈c
AB
〉/〈c

A
· c

B
〉 and kfw = 〈fw-rate〉/〈c

A
· c

B
〉. In both cases it is the

average of the product, and not the product of the averages, of reactants’ concentrations that

need to be considered. It is likely this concept has been overlooked in the literature because in

all statistical-mechanics textbooks30–32, the ensemble constructed to derive K ignores fluctuations

in the numbers (or densities) of the chemical components, and thereby, can yield an expression

valid only for the thermodynamic limit. Accordingly, literature works that followed ignored these

correlations in reactants’ concentrations when calculating K 33–42.

Girded with knowledge of the mathematical form of K and kfw for the reaction in Eq. 1,

it seems only trivial to write down the corresponding expressions for the following dimerization

reaction,

2A
 A2 , (2)

where reactant B in Eq. 1 is substituted with another reactant of A in Eq. 2, as,

K ′′ =
〈c
A2
〉

〈c2
A
〉
· c∅ , (3)

for the equilibrium constant, where for consistency with the definition of K stated in Eq. 5 below
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we multiplied the ratio by the standard concentration c∅, and as,

k′′fw =
〈fw-rate〉
〈c2
A
〉

, (4)

for the bimolecular rate constant. That said, it appears unconsciously that the way chemists,

including the writer of these lines29, practice chemistry is deeply rooted in the behavior of macro-

scopic systems. More concretely, the expressions in Eq. 3 and Eq. 4 are incorrect, and although for

systems with large number of particles the errors are negligible, at finite systems they are significant.

Indeed, correlations between reactant’s particles ought to be accounted for in these expressions. In

the binding reactions of Eq. 1 the correlations are between two different types of particles and the

term 〈NA · NB〉, or alternatively 〈cA · cB〉, properly counts these two-body correlations. However,

in Eq. 2 the correlations are between the same type of particles and a term of the form 〈N2
A〉, or

〈c2
A
〉, counts not only correlations between different particles of A but also correlations of a labeled

particle with itself. These latter NA self-correlations are irrelevant for two-body interactions and

should be subtracted to yield a term proportional to 〈NA(NA − 1)〉 or 〈c
A

(c
A
− 1/V )〉. Neverthe-

less, this subtraction is not performed actively but emerges naturally when deriving K as shown

below.
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Results

I. Derivation of the Equilibrium Constant for Dimerizations

We consider the dimerization process shown in Eq. 2 to take place in the gas phase, where the

behavior of all components is assumed ideal. This means except of the reaction described, the

particles do not interact with one another and no higher-order clustering occurs. The equilibrium

constant, K, is defined by,

K = e−∆G∅/RT , (5)

where ∆G∅, the standard Gibbs energy change of the reaction, is the change in Gibbs free energy

when one mole of A dimerize with another mole of A to form one mole of A2, under conditions

in which both the reactant and product are at their standard state of temperature and (partial)

pressure. For all gases, almost always, same values of temperature and pressure define the standard

state. Instead of a standard pressure we will often indicate the corresponding standard concentra-

tion, c∅. Although reported per mole of dimer formation, ∆G∅ is usually measured for a different

(yet macroscopic) number of particles. Given the volume of this reference system, V ∅, the number

of dimers formed in a complete transformation of this reference reaction is N∅
A2
≡ N∅ = c∅V ∅.

For convenience, we choose to perform our derivation in the canonical ensemble. However

in contrast to the binding reaction in Eq. 1, the canonical ensemble for dimerization can not

connect directly monomers at standard conditions to dimers at the same standard conditions. If

the volume on both side of the chemical equation in Eq. 2 is the same, the pressure and thereby

concentration of the 2N∅ monomers will necessarily be twice those of the dimers. To rectify this

situation, the reaction ought to start with a system of monomers in double the volume, thus 2V ∅,

where the pressure and concentration have their standard values, followed by a reversible isothermal

compression to a volume of V ∅. The work of this hypothetical compression43,

W
reversible

P∅,2V ∅→2P∅,V ∅ = −2N∅k
B
T ln

V ∅

2V ∅ , (6)

should then be accounted for when calculating ∆G∅ (see Fig. 1). To put it another way, this

6



Statistical Mechanics of Dimerizations Results
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Figure 1: Projection of the dimerization reaction of the reference system onto an isothermal

pressure-volume diagram. The figure illustrates that in this case, connecting the reactant (2A

monomers) to the product (A2 dimers), both at standard state conditions (purple arrow), via a

description in the canonical ensemble (green arrow) requires an additional process in which the

reactant is reversibly compressed to a volume V ∅ (red arrow).

additional compression step had to be introduced when utilizing the canonical ensemble because

the stoichiometric coefficients of reactant and product in the dimerization reaction (Eq. 2) are not

equal, whereas the conditions, in particular the pressure (or concentration), defining the standard

states are the same.

Once the 2N∅ monomers are compressed to V ∅, we proceed to describe the dimerization

in the canonical (N∅, V ∅, T ) ensemble. Upon the formation of one dimer, the energy of the

system changes by an amount of ε (i.e., ε < 0). Owing to the ideal behavior of the chemical

components, the (interparticle) energy states of the system are uniquely defined by the number of

dimers, NA2 ≡ i, and the canonical partition function of the reference system can be written as,

Q∅ =
N∅∑
i=0

(
q∅
A

)2(N∅−i)

[2(N∅ − i)]!
·

(q∅
A2

)i

i!
, (7)

where the number of monomers, NA, equals 2(N∅ − i). As it should, the sum in Eq. 7 takes

into account all possible energy states of the system. q∅
A

is the single-particle partition function
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of one monomeric particle (which includes only summation over internal energies) and q∅
A2

is

the pair-particle partition function of one dimer A2 (incorporating the exponential e−βε). These

partition functions can be expressed in different forms and are described in details in the Supporting

Information. Because the particles are indistinguishable, the factorials in the denominators of Eq. 7

correct the over-counting when raising the single/pair partition functions to the power of the particle

numbers. Utilizing Q∅, we calculate the Helmholtz free energy change, ∆F
canonical

0→N∅ , for the formation

of N∅ dimers (i.e., at a concentration of c∅) from 2N∅ monomers (at a concentration of 2c∅).

The superscript ’canonical’ denotes this free energy change is calculated only for the process at

constant volume. This change in Helmholtz energy is obtained from the ratio of the probability to

find all particles in the system as dimers, pA2 (i.e., the fraction of the state i = N∅ in the sum

of Eq. 7), to the probability to find all particles as free monomers, p2A (the fraction of the state

i = 0),

∆F
canonical

0→N∅ ≡ F
canonical

i=N∅ − F
canonical

i=0 = −k
B
T ln

pA2

p2A
= −k

B
T ln


(
q∅
A2

)N∅

N∅!
· (2N∅)!(
q∅
A

)2N∅

 , (8)

where k
B
is Boltzmann constant. The corresponding Gibbs free energy change is then,

∆G
canonical

0→N∅ = ∆F
canonical

0→N∅ + V ∅∆P
canonical

0→N∅ = −N∅k
B
T ln

q∅
A2(
q∅
A

)2 − kBT ln
(2N∅)!

N∅!
+ V ∅∆P

canonical

0→N∅ ,

(9)

where ∆P
canonical

0→N∅ is the change in the pressure of the system accompanied the dimerization reaction at

constant volume. To get ∆G0→N∅ , we add W reversible

P∅,2V ∅→2P∅,V ∅ (as computed in Eq. 6) to ∆G
canonical

0→N∅ ,

and continue by applying Stirling’s approximation to the numerator and denominator of the second

term on the right hand side of Eq. 9, that means requiring the reference system to be large,

∆G0→N∅ = W
reversible

P∅,2V ∅→2P∅,V ∅ + ∆G
canonical

0→N∅

= −N∅k
B
T

[
ln

q∅
A2(
q∅
A

)2 + lnN∅

]
+N∅k

B
T + V ∅∆P

canonical

0→N∅ . (10)
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Substituting N∅ with c∅V ∅, and noting for ideal gases the term V ∅∆P
canonical

0→N∅ equals −N∅k
B
T ,

∆G0→N∅ = −N∅k
B
T

[
ln

q∅
A2
/V ∅(

q∅
A
/V ∅

)2 + ln c∅

]
. (11)

We now evaluate the ratio of the partition functions in Eq. 11. Although q∅
A2

and q∅
A
depend on

the size of the system because of the translational partition functions, they can be rendered size-

independent upon division by the volume. Hence if we consider another system for the dimerization

process in Eq. 2, at the same temperature T but with an arbitrary total number of monomers,

N
total
A , and an arbitrary volume, V , the following relation is obeyed,

q∅
A2
/V ∅(

q∅
A
/V ∅

)2 =
q
A2
/V

(q
A
/V )2 , (12)

where q
A

and q
A2

are the single- and pair-particle partition functions of this arbitrary system.

Accordingly, the total partition function is analogous to that of the reference system (Eq. 7),

however, we write it in a slightly different form. The reason is that in the reference system we

assumed the total number of monomers, 2N∅, to be an even number. This is a valid assumption

for the reference system because the contribution of one particle out of an Avogadro’s number of

particles is negligible. Note also that Stirling’s approximation was applied only to the reference

system, and therefore, the arbitrary system can, in principle, be as small as possible (e.g., N total
A

equals 2 or 3). Thus, the assumption of the total number of monomers to be an even number is

not correct for the arbitrary system. As a consequence we set N total
A = NA + 2NA2 = 2N

◦
+ δ,

where N ◦ is the maximum number of dimers that can hypothetically form, and δ equals 0 or 1

depending on whether N total
A is even or odd, respectively. We then write the canonical partition

function for the arbitrary system as,

Q =
N

◦∑
i=0

q2(N
◦−i)+δ

A

[2(N ◦ − i) + δ]!
·
qi
A2

i!
, (13)

where as before, i ≡ NA2 .

In order to proceed with the evaluation of ∆G0→N∅ (Eq. 11) we multiply and divide the right-
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hand side of Eq. 12 by,

N
◦−1∑
i=0

(i+ 1)

[2(N ◦ − (i+ 1)) + δ]! (i+ 1)!
q2(N

◦−i)+δ
A

qi
A2

, (14)

and obtain,

V ∅
q∅
A2(
q∅
A

)2 = V
q
A2

q2
A

= V

∑N
◦−1

i=0
(i+1)

[2(N◦−(i+1))+δ]! (i+1)!
q2[N

◦−(i+1)]+δ
A

qi+1
A2∑N◦−1

i=0
(i+1)

[2(N◦−(i+1))+δ]! (i+1)!
q

2(N◦−i)+δ
A qi

A2

. (15)

We change the index of the sum in the numerator to j = i + 1 and rewrite the factorials in the

denominator,

V ∅
q∅
A2(
q∅
A

)2 = V

∑N
◦

j=1
j

[2(N◦−j)+δ]! j!
q2(N

◦−j)+δ
A

qj
A2∑N◦−1

i=0
[2(N◦−i)+δ−1][2(N◦−i)+δ]

[2(N◦−i)+δ]! i! q
2(N◦−i)+δ
A qi

A2

. (16)

Given the form of the coefficients of the partition functions in the sum, index j in the numerator

can start from zero and index i in the denominator can end at N ◦ (remembering δ equals either 0

or 1). This yields,

V ∅
q∅
A2(
q∅
A

)2 = V

1
Q

∑N◦

j=0 j
q
2(N◦−j)+δ
A

[2(N◦−j)+δ]!

qj
A2

j!

1
Q

∑N◦

i=0 [2(N ◦ − i) + δ][2(N ◦ − i) + δ − 1]
q
2(N◦−i)+δ
A

[2(N◦−i)+δ]!

qi
A2

i!

= V
〈NA2〉

〈NA(NA − 1)〉
=

〈
c
A2

〉〈
c
A

(c
A
− 1

V
)
〉 , (17)

where the sum in the numerator is the ensemble average of the number of dimers, 〈NA2〉, and the

sum in the denominator is the average of the product of NA(NA− 1), both in our chosen arbitrary

system under equilibrium conditions. Inserting this result into Eq. 11 gives,

∆G0→N∅ = −N∅k
B
T ln

〈
c
A2

〉
c∅

〈c
A
· (c

A
− 1/V )〉

. (18)

Scaling ∆G0→N∅ to one mole of formed dimer yields ∆G∅,

∆G∅ =
NAvogadro

N∅ ·∆G0→N∅
A

= −RT ln

〈
c
A2

〉
c∅

〈c
A
· (c

A
− 1/V )〉

, (19)
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and comparing the resulting expression to the definition of K in Eq. 5 we arrive at,

K =

〈
c
A2

〉〈
c
A
· (c

A
− 1

V
)
〉 c∅ . (20)

Therefore as for the case of binding reaction in Eq. 1, the equilibrium constant for dimerization must

include correlations between the unbound reactants (monomers), however here, self-correlations are

subtracted, that is, the correlation between a tagged particle with itself. Note that if we did not

consider the reversible work for compression (i.e., taking into account only ∆G
canonical

0→N∅) the expression

of K would be the same as that in Eq. 20 but multiplied by a factor of 4.

We would like to point out two special cases. The first is the thermodynamic limit, where

〈NA(NA − 1)〉 → 〈N2
A〉, or alternatively 1/V → 0, and correlations between the reactant are

totally lost. In this case, K ′′ in Eq. 3 and a related expression ignoring all correlations,

K ′ =
〈c
A2
〉

〈c
A
〉〈c

A
〉
· c∅ , (21)

approach K in Eq. 20. The second case is for the smallest system possible, N total
A = 2, where the

system has only two macroscopic states. Despite strong correlations in the system, the two-body

average 〈NA(NA − 1)〉 reduces to a one-body average 〈NA〉, and Eq. 20 can be written as,

K
N

total
A =2

=
fA2

2(1− fA2)
V c∅ , (22)

where fA2 ≡ 〈NA2〉 is the fraction of frames in which the dimer is observed. The relation in Eq. 22

is identical to that derived by Ouldridge et al.27.

II. Validation by Computer Simulations

To check our derivation, we consider a simple system of Lennard-Jones (LJ) molecules able to

dimerize according to Eq. 2 and let the system propagate by Monte-Carlo (MC) and molecular

dynamics (MD) algorithms. Two series of simulations were performed. In the first, R1, we increased

N
total
A keeping the concentration ctotal

A
= N

total
A /V constant, whereas in the second series, R2, we fixed

N
total
A = 2 and increased V by increasing the length of the cubic simulation box, Lbox. Detailed
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information on the model system and computational methodologies are given in the Computational

Details section below.

Figure 2 displays the equilibrium constant, K, calculated by Eq. 20, together with the value of

K ′ (Eq. 21) and K ′′ (Eq. 3). As indicated by the figure, inclusion of cross-correlations are needed

4 6 8 10 12 14 16 18 20 22 24

L
box

  [nm]

0

60

120

180

240

300

K
  
, 
 K

’ 
 ,
  
K

’’

K’’=
<c

A
2

>

<c
A

2

>

b
K’=

<c
A

2

>

<c
A
>

2
c

ø

c
ø

R2

<c
A

2

>
c

ø

<c
A
(c

A
-1/V)>

K=

2 10 100

N
A

total 

0

60

120

180

240

300

K
  

, 
 K

’ 
 ,

  
K

’’

MC  (K’’)

MD  (K’’)

MC  (K’)

MD  (K’)

MC  (K)

MD  (K)

a

R1

Figure 2: The equilibrium constant K for dimerization defined by Eq. 20 (c∅ ≡ 1 M) for two series

of simulations at: (a) constant ctotal
A

= 0.052 M and as a function of the total number of A particles

(R1), as well as, at (b) constant N total
A = 2 and as a function of the length of the simulation box

(R2). Both series were performed in the canonical ensemble at T = 300 K by Monte-Carlo (MC)

and molecular-dynamics (MD) methods. The values of K ′ and K ′′ defined in Eq. 21 and Eq. 3 are

also shown for comparison. The left-most points in R1 and R2 (N ◦
A = 2, Lbox = 4 nm) represent

the same system. The estimated errors for the values of K are smaller than the size of the symbols.

in order to keep the equilibrium constant constant for all simulations in both series. That means,

self-correlations, 〈c
A
/V 〉, must be subtracted from the correlation term 〈c2

A
〉. Notice, whereas K ′

and K ′′ approach K with increasing N total
A in R1, they approach a different value than that of K

with increasing Lbox in R2. This is because in the former, subtracting 1 from an increasing number

of NA particles will eventually become negligible, whereas, subtracting 1 from a maximum value

of 2 is always significant. Furthermore, in the Supporting Information we show the value of K

calculated by Eq. 20, for a system with a single-site reactant, agrees almost perfectly with that
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obtained by analytical calculations.

The expression of K in Eq. 20 can also be justified from kinetics. The rate of the forward

reaction is proportional to the collision probability between a tagged particle A1 and any other

particle Ai (where i 6= 1), summed over all NA particles. This yield a collision probability that is

a function of the term 〈NA(NA − 1)〉, thereby excluding the impossible event of a collision of a

particle with itself. Hence we write,

〈fw-rate〉 = kfw〈cA(c
A
− 1/V )〉 . (23)

The backward reaction is a simple first-order kinetics and its rate is proportional linearly to dimer

concentration. At equilibrium, there is no change in average concentration of any of the chemical

components, 〈
dc

A2

dt

〉
= −1

2

〈
dc

A

dt

〉
=
〈
kfwcA(c

A
− 1/V )− kbwcA2

〉
= 0 , (24)

and if we define K as the ratio between forward and backward rate constants and render its value

dimensionless via c∅, we recuperate Eq. 20. In fact, plotting (Fig. 3) the rate constant of the

forward reaction, kfw, defined in Eq. 23, together with k′′fw (Eq. 4) which includes self-correlations,

and that ignoring correlations all together,

k′fw =
〈fw-rate〉
〈c
A
〉2

, (25)

mirrors the results presented for the corresponding expressions of K.

III. Predicting Compositions from Fluctuations

The main difference between thermodynamics and statistical mechanics is that the latter incorpo-

rates fluctuations in the values of the system’s properties. The magnitudes of these fluctuations

depend on the parameters specifying the system, and generally, can be used to extract information

on the system. For the dimerization reaction considered here, we demonstrate now the information

that can be extracted from fluctuations is the composition of the system. To represent fluctuations
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Figure 3: Rate constants of dimerization (Eq. 2) for (a) R1 series, and (b) R2 series, ob-

tained from MD simulations. The top panels show the rate constant in the forward direction,

kfw defined in Eq. 23, whereas the lower panels the rate constant in the backward direction,

kbw = 〈bw-rate〉/〈c
A2
〉. For comparison, we also present k′fw and k′′fw defined in Eq. 25 and Eq. 4.

we adopt the notation of Lebowitz et al.44 and define the cross fluctuations between quantities ζ

and η as,

L(ζ, η) = 〈ζη〉 − 〈ζ〉〈η〉 , (26)

and their relative magnitude by,

l(ζ, η) =
L(ζ, η)

〈ζ〉〈η〉
. (27)

We now look at the following difference in our system,

l(NA2 , NA2)− l[NA2 , NA(NA − 1)] =
1

〈NA2〉

[〈N2
A2
〉

〈NA2〉
− 〈NA2NA(NA − 1)〉
〈NA(NA − 1)〉

]
, (28)

and evaluate the term inside the square brackets. Utilizing the partition function defined in Eq. 13

and recalling that i ≡ NA2 and NA = N
total
A − 2NA2 = 2N

◦
+ δ− 2i, the first term can be written

as,

〈N2
A2
〉

〈NA2〉
=

1
Q

∑N◦

i=0 i
2 q

2(N◦−i)+δ
A

[2(N◦−i)+δ]!
·
qi
A2

i!

1
Q

∑N◦

i=0 i
q
2(N◦−i)
A

[2(N◦−i)]!
·
qi
A2

i!

=

∑N◦−1
j=0 (j + 1)2 q

2(N◦−j)+δ
A

[2(N◦−(j+1))+δ]!
·

qj
A2

(j+1)!∑N◦−1
j=0 (j + 1)

q
2(N◦−j)+δ
A

[2(N
◦−(j+1))+δ]!

·
qjA2

(j+1)!

, (29)
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where in the second equality we skipped the terms corresponding to i = 0, changed the index of

the summation to j = i− 1, and multiplied and divided the ratio by q2
A
/q

A2
.

Similarly, we can express the second term inside the square brackets in Eq. 28 by,

〈NA2NA(NA − 1)〉
〈NA(NA − 1)〉

=

1
Q

∑N◦

i=0 i[2(N
◦ − i) + δ][2(N

◦ − i) + δ − 1]
q
2(N◦−i)+δ
A

[2(N◦−i)+δ]!
·
qi
A2

i!

1
Q

∑N◦

i=0[2(N ◦ − i) + δ][2(N ◦ − i) + δ − 1]
q
2(N◦−i)+δ
A

[2(N◦−i)+δ]!
·
qi
A2

i!

=

∑N◦−1
i=0 i(i+ 1)

q
2(N◦−i)+δ
A

[2(N◦−(i+1))+δ]!
·

qi
A2

(i+1)!∑N◦−1
i=0 (i+ 1)

q
2(N◦−i)+δ
A

[2(N◦−(i+1))+δ]!
·

qi
A2

(i+1)!

, (30)

where the second equality is realized by letting index i in the sum end at N ◦ − 1 (again, δ is a

binary parameter of 0 or 1) and rewriting the factorials. Now we subtract the second term from

the first tern in the square brackets of Eq. 28 by noting the denominators of the two terms are

equal,

〈N2
A2
〉

〈NA2〉
− 〈NA2NA(NA − 1)〉
〈NA(NA − 1)〉

=

∑N◦−1
i=0 (i+ 1)

q
2(N◦−i)+δ
A

[2(N◦−(i+1))+δ]!
·

qi
A2

(i+1)!∑N◦−1
i=0 (i+ 1)

q
2(N◦−i)+δ
A

[2(N◦−(i+1))+δ]!
·

qi
A2

(i+1)!

= 1 , (31)

and obtain a ratio that equals one. Consequently, Eq. 28 reduces to,

l(NA2 , NA2)− l[NA2 , NA(NA − 1)] =
1

〈NA2〉
, (32)

or to a similar expression specifying the average concentration of the dimer,

〈c
A2
〉 =

1

{l(NA2 , NA2)− l[NA2 , NA(NA − 1)]}V
. (33)

In Fig. 4 we examine the validity of Eq. 33 by computing these relative fluctuations and compare

the predicted values of 〈c
A2
〉 to those obtained by direct counting of dimers. The agreement is

excellent, nevertheless, there are two points with noticeable discrepancies. They appear in R1 series

by MD simulations for the two largest N total
A values (64 and 128), which we conjecture to arise due

to insufficient simulation time to yield accurate averages for the relative fluctuations. Note in R1

series all extensive parameters specifying the system are scaled by the same factor, and therefore,
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Figure 4: Average concentrations of dimers, 〈c
A2
〉, for (a) R1 and (b) R2 series of simulations. Along

results obtained from direct counting of the number of dimers, we also predict the concentrations

from the relative fluctuations, l(NA2 , NA2) and l(NA2 , NA[NA − 1]), in the system as described in

Eq. 33.

if average quantities of the system were homogeneous functions then 〈c
A2
〉 would be constant.

This is not the case at finite systems and instead there is a rising divergence from a horizontal line

with scaling-down the size of the system, the same as that observed29 for the binding reaction of

Eq. 1. However for (homo-) dimerization, odd values of N total
A (3 and 5) exhibit strong reduction

in 〈c
A2
〉, breaking up the continuous curve, simply because in these cases it is unfeasible to pair

all particles simultaneously whereas for even numbers of N total
A it is. Although it is clear this odd

effect diminishes with increasing numbers of particles, these two points are the only evidence we

have because other odd numbers were not considered.
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Discussion

There are two points we would like to discuss. The first concerns the concept reported in the

literature of a size-dependent equilibrium constant. As follows from our treatment, K is a quantity

defined not for the system we have at hand but for a macroscopic system at agreed conditions of

temperature and pressure (or concentration) as specified in Eq. 5. Thus at constant temperature, it

has a fixed, or constant, value regardless of the size of system we choose to work with. It has been

known for a long time that K can be extracted utilizing other systems, for example with different

concentrations, by applying a relation such as the one shown in Eq. 21. For finite systems this

relation yields different values, yet, there is no justification to claim the value of K is now different.

One might argue that it is not possible to obtain K from systems that are too small. Contrary

to this statement, a main conclusion of current and previous29 papers is that K can be retrieved

from a system of any size, including a system with the smallest possible number of particles. To

this end, the employment of a general relation between K and equilibrium properties of the chosen

system (e.g., Eq. 20) is required.

The second point concerns the ascription made in the literature of small systems as stochastic,

and of macroscopic systems as deterministic, in character. It is likely this attribution is not related

to the forces/algorithm propagating the system, but to the fact that if we measure a property of

a small system at different points in time we obtain different values, whereas, for a macroscopic

system the results are always almost the same. This is obvious; an average over space, or number of

particles, in macroscopic systems is sufficient to yield converged quantities, whereas, finite systems

require an ensemble large enough, or repetitive instantaneous measurements spanned over long-

enough period of time, to yield convergence. That means, sufficient statistical data is necessary,

however even when this condition is met, it is not to say average values obtained from large and

small systems are the same. On the contrary, and in contrast to the thermodynamic limit, another

main conclusion of current and previous29 works is that properties of chemical equilibriums involving

two-body interactions are not homogeneous functions.
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Conclusions

In this paper we derive the expressions of the equilibrium constant, Eq. 20, and of the rate of

the forward bimolecular reaction, Eq. 23, ought to be used in dimerization reactions of the type

presented in Eq. 2. These expressions account for cross-correlations between reactant particles

and are, therefore, different from those presented in textbooks. Nevertheless, they do reduce

to the textbooks’ well-known expressions for large enough (macroscopic) systems. In this case,

correlations between reactant particles vanish and the contribution of self-correlations becomes

negligible. An important effect of the underlying two-body interactions, is that in a regime outside

the thermodynamic limit (thus, for small systems), scaling the system homogeneously will change

the average values of intensive properties, such as the concentration of dimer or monomer. We

further derive a relation connecting these size-dependent concentrations to relative fluctuations in

the systems.
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Computational Details

The model system consists of A molecules where each molecule is represented by two sites, a and

h, ’covalently’ bonded with a bond-length of 0.25 nm as shown schematically in Fig. 5. The role

h
h

a

h

h

a
a

a

A

A
A2

Figure 5: A model system for dimerization between two A molecules. These A molecules consist

of uncharged LJ, a and h, atom-sites covalently bonded to each other. The distance of this

intramolecular bond is fixed in the MC simulations to a value of 0.25 nm whereas it oscillates

around this value, due to a harmonic potential, in the MD simulations. The interaction between

the a sites is strongly attractive, whereas the other two intermolecular interactions are repulsive

(see Table 1).

of the h atoms is to prevent any clustering of the molecules, apart from dimer formation. All

atom-sites have zero charge, qa = qh = 0.0 e, and their intermolecular interactions are modeled

by Lennard-Jones (LJ) potentials truncated at a distance of 2.0 nm. The different σ and ε LJ

parameters in this system, specified in Table 1, describe essentially repulsive interactions between

all sites except for a strong attraction between the a atoms. Based on the location of the first

Table 1: LJ parameters between the different atom sites for a system of A(a− h) molecules.

σ [nm] ε [kJ/mol]

a · · · a 0.15 47.0

h · · ·h 0.85 0.1

a · · ·h 0.40 0.1
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minimum of the radial distribution function between the a atoms, the dimeric state is defined

for raa < 0.3 nm. Despite the introduction of the protective site h in each molecule A, we did

encounter, albeit seldomly, clusters larger than two. These higher order clusters occurred more

often in the MD than in the MC simulations, due to the flexibility of the covalent bond in the

former, with a percentage of particles involved in these aggregates lower than 0.1 % and 0.03 %,

respectively.

All simulations were conducted in the canonical ensemble (N total
A , V, T ) at a temperature of

T = 300 K. The total number of A molecules in the system, N total
A = NA + 2NA2 , and/or the

volume V of the cubic box, varied systematically within two series of simulations. In the first series,

labeled R1, we increased N total
A from 2 to 128 and, concomitantly, V such that the concentration

ctotal
A

= N
total
A /V is constant at 0.03125 molecules/nm3 (∼ 0.052 M). In the second series of

simulations, R2, we considered only two molecules of A, N total
A = 2, and increased V by increasing

the box length, Lbox, from 4.0 nm to 24.0 nm. Periodic boundary conditions were applied along

all three Cartesian axes.

Both series of simulations were conducted by Monte-Carlo (MC) and molecular dynamics (MD)

techniques. The MC simulations45,46, which output configurations in the canonical ensemble, were

performed by an in-house code executed in double-precision. The Metropolis acceptance criteria47

was applied to either accept or reject trial moves. Each trial move starts by randomly selecting

one A molecule which is then displaced, in each of the three Cartesian-axes, and rotated around

each of the two axes perpendicular to the molecular axis. The displacements and rotations are

performed as rigid bodies. Their magnitudes and directions were determined randomly from a

uniform distribution with maximum values of 0.4 nm for displacements along each of the Cartesian-

axes, 0.1 for cos θ when rotating around angle θ (0 ≤ θ ≤ π), and 0.314 rad for rotations around

angle φ (0 ≤ φ ≤ 2π). These trial moves resulted in acceptance-ratios that varied from 0.17, for

the system N
total
A = 2 in R1, to 0.98, for the system with Lbox = 24.0 nm in R2. The number of

trial moves applied for each simulation was inversely proportional to the size of the system. For
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example the data collection stages ranged from 4 · 1012 moves for N total
A = 2 to 1.25 · 1011 moves

for the largest system of N total
A = 128.

The MD simulations were conducted by the software package GROMACS version 4.6.548

(single-precision). A time step of 0.002 ps was employed to integrate the equations of motion and a

mass of 10.0 amu was assigned to the a and h atom sites. The a−h ’covalent’ bond was modeled by

a harmonic potential with bond-length of 0.25 nm and force-constant of 2·105 kJ/(mol·nm2). The

temperature was maintained by applying the Nosé-Hoover thermostat49,50 with a chain-length51

of 2 and a coupling strength set to 0.1. The equations of motion were propagated by the velocity-

Verlet algorithm in which the kinetic energy is determined by the average of the two half-steps.

Equilibration time of at least 1 µs was conducted prior to data collection for each system, whereas,

the time period for collecting data ranged from 400 µs for N total
A = 2 to 29.6 µs for N total

A = 128.

To analyze the dynamics of the forward and backward reactions we had to simulate again R1

and R2 series by MD. However, this time the trajectories were saved more frequently; from a

frequency of every 20 steps for N total
A = 2 (or Lbox = 4.0 nm) to a frequency of every step for

N
total
A ≥ 8 (R1) or to a frequency of every 1000 steps for Lbox = 24.0 nm (R2 series). These

frequencies corresponded to, approximately, the lowest frequencies for which trial calculations of

the rate constants were not affected upon an increase of the trajectory-saving frequency. At the

same time, the duration of trajectories were shorter than those mentioned above and for R1 ranged

from 12 µs for the smallest system to 300 ns for the largest system in R1, or to 600 ns for the

largest system in R2. To keep the size of the trajectories manageable, each run was split into

multiple (10 − 60) runs. The rates of the forward and backward reactions were calculated by

counting the number of transitions per period of time divided by V . A transition between the two

states is identified when the distance between a sites of two molecules crossed the cutoff-value of

0.3 nm. To avoid counting return-trajectories originating from transient species in the proximity

of the transition state, we introduced a buffer-zone of 0.05 nm on either side of the cutoff such

that if a particle is already bound, raa needs to be larger than 0.35 nm to consider a transition,

21



Statistical Mechanics of Dimerizations Computational Details

whereas if it is unbound, raa needs to be smaller than 0.25 nm to count a transition. Nevertheless,

the effect of including this buffer zone is rather negligible.
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