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Abstract

A common strategy to exploring the properties and reactivity of complex systems

is to use quantum mechanics/molecular mechanics (QM/MM) embedding, wherein a

QM region is defined and treated with electronic structure theory and the remainder

of the system is treated with a force field. Important to the description of electronic

excited states, especially those of charge-transfer character, is the treatment of the

coupling between the QM and MM subsystems. The state-of-the-art is to use a polar-

izable force field for the MM region and mutually couple the QM wavefunction and MM

induced dipoles, in addition to the usual electrostatic embedding, yielding a polariz-

able embedding (QM/MM-Pol) approach. However, we showed previously that current

popular QM/MM-Pol approaches exhibit issues of root flipping and/or incorrect de-

scriptions of electronic crossings in multistate calculations.[J. Chem. Theory Comput.

14, 2137 (2018)] Here we demonstrate a solution to these problems with an integral-

exact reformulation of the Direct Reaction Field approach of Thole and Van Duijnen
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(QM/MM-IEDRF). The resulting embedding potential includes one- and two-electron

operators, and many-body dipole-induced dipole interactions, and thus includes a nat-

ural description of the screening of electron-electron interactions by the MM induced

dipoles. Pauli repulsion from the environment is mimicked by e↵ective core potentials

on the MM atoms. Inherent to the DRF approach is the assumption that MM dipoles

respond instantaneously to the positions of the QM electrons, therefore dispersion in-

teractions are captured approximately. All electronic states are eigenfunctions of the

same Hamiltonian while the polarization induced in the environment and the associated

energetic stabilization are unique to each state. This allows for a consistent definition

of transition properties and state crossings. We demonstrate QM/MM-IEDRF by ex-

ploring the influence of a (polarizable) inert xenon matrix environment on the conical

intersection underlying the photoisomerization of ethylene.

1 Introduction

Electronic polarization1 plays an important role in photo-induced charge-transfer (CT) re-

actions in the condensed phase. It is by no means a small e↵ect and can influence CT-state

energies by over one eV.2 The e�ciency of many photochemical processes such as charge

separation in photosystem II3 and organic solar cells, or singlet fission4 depends crucially on

the energetic position of CT states relative to the photoexcited valence states. Aside from

long-range CT states between separated donors and acceptors, photochemical reactions often

involve states of intramolecular CT character. For example, the prototypical cis-trans pho-

toisomerization reaction of ethylene involves the crossing of a zwiterionic and valence state,5

giving rise to the phenomenon of sudden polarization in the first adiabatic excited state of

ethylene at twisted geometries.6–8 In the condensed phase, polarization of the environment

stabilizes states with CT character, thereby influencing their conical intersections that act

as photochemical funnels. At the same time, charge-transfer states are di�cult to measure

and discern experimentally because of their low oscillator strength, so that theory can make
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important contributions in this regard.

Thanks to recent developments in local correlation methods,9–11 it is becoming possible to

apply high-level electronic structure theory to compute vertical excitations of chromophores

and a su�ciently large part of the surrounding environment. However, compared to energy

calculations, analytical gradients of local correlation methods are much less developed. This

hinders their application to geometry optimizations, conical intersection searches, and ab ini-

tio molecular dynamics simulations. Time-Dependent Density Functional Theory (TDDFT)

is arguably the only ab initio excited-state method currently capable of performing criti-

cal point optimizations and dynamics simulations with large system sizes, but an accurate

description of CT and valence states simultaneously is still a challenge for the method. Fur-

thermore, the need for a full-system quantum mechanical description is questionable for

many photochemical processes of interest, which involve excitations that are localized to one

or more small chromophores, such as in photosynthetic reaction centers12,13 or the green

fluorescent protein.14,15 Then, a high-level quantum-mechanical (QM) description of the

chromophore(s) may be combined with a force field (or molecular mechanics - MM) descrip-

tion of the environment, as long as the coupling between the two regions accounts properly

for steric, electrostatic, dispersion and polarization interactions. The earliest applications of

multi-scale modeling by Warshel and Levitt already found that a microscopic model of the

dielectric medium is very important for describing the stabilization of ionic groups.16

Nowadays, QM/MM simulations with electrostatic and polarizable embedding17 have

become more or less routine for enzymatic reactions, but it is much more challenging to

incorporate dielectric e↵ects in photochemical reactions, since the induced polarization in

the environment needs to be di↵erent for each electronic state. Much of the development of

MM polarizable embedding methods has paralleled work in polarizable continuum models

(PCM). In both PCM and polarizable QM/MM, the most common route to electronic ex-

citation energies and properties follows a linear-response (LR) formalism,18–20 which is the

natural choice for excited-state electronic structure theories that also invoke LR, such as
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TDDFT.21 In the standard formulation of LR polarization, the dynamic response of the en-

vironment arises from the QM region’s oscillating electronic transition density, and therefore

displays a di↵erent response for each excited state. However, within this formulation, the

environment does not respond to changes in the QM region’s charge distribution upon exci-

tation, and therefore LR is not suitable to describe excitations involving significant electron

redistribution, such as found in CT states.22 Furthermore, the use of LR electronic structure

would lead to an incorrect description of the topology of electronic intersections with the

reference state,23 which is problematic for photochemical applications.

As an alternative to LR, in State-Specific Polarization (SS-Pol) models,24 the reaction

field of the solvent is optimized self-consistently together with the density of one specific

electronic state. While solvatochromic shifts of vertical excitations and excited-state min-

ima can be predicted accurately in this manner, problems are encountered close to state

crossings.25 As the reaction field is determined separately for each state, Born-Oppenheimer

states for the same nuclear configuration belong to di↵erent Hamiltonians. Therefore elec-

tronic states are not orthogonal and transition properties are ill-defined. This, combined

with root-flipping issues,25 renders it impossible to optimize conical intersections in solution

with SS-Pol, although the solvatochromic shifts of those photochemical funnels are of great

interest when analyzing ultrafast pump-probe experiments in liquid microjets.26,27 Deriving

the polarization from a state average (with fixed or dynamic weights) of the fields from mul-

tiple excited states25,28 ameliorates some of the problems of SS-Pol, at the cost of losing the

ability to fully describe a di↵erent environment polarization for each electronic state.

The issues with LR and SS-Pol formulations discussed above have motivated a third way,

which includes the environment’s polarization to electronic excitations in a perturbative fash-

ion,29–31 sometimes called corrected linear response.32,33 The idea, which appears to originate

with Thompson and Schenter’s seminal work,29 starts with a fully self-consistent SS-Pol cal-

culation for the ground state, followed by a first-order polarization energy correction for

each excited state due to the di↵erence in the QM region’s field from the ground and excited
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states. As a result, the QM region’s excited-state wavefunctions are polarized by the induced

MM dipoles from the ground state, and all electronic states then arise from a single Hamil-

tonian. Similar ideas have been extended to PCM approaches.31,32 This scheme has been

shown to describe vertical excitations in quantitative agreement with a fully state-specific

approach, while avoiding root flipping issues;30 however, to our knowledge, the description

of state crossings has not been previously explored. Given that SS-Pol exhibits discontinu-

ities even in the electronic ground state,25 which is the starting point of the perturbative

approach, we anticipate problems near electronic crossings. Beyond incorporating QM-MM

polarization, recently, several approaches have emerged to also include Pauli repulsion and

dispersion interactions at the Hamiltonian level.34–37

In this work, we reformulate the Direct Reaction Field (DRF) method, an early QM/MM

polarizable embedding scheme that includes a polarization operator which captures many-

body polarization and dispersion interactions.38–40 The polarization operator models the

fast electronic response of the solvent to the solute charges, while the slow response comes

from the (nuclear) reorganization of the MM region. In contrast to self-consistent reaction

field models for non-equilibrium solvation,18,41 the polarization operator of DRF is not a

functional of the solute wavefunction and therefore independent of any reference state, sug-

gesting that DRF will correctly describe electronic state crossings, which we show explicitly

for the first time in this work for the conical intersection of ethylene underlying its cis-trans

photoisomerization reaction.

In addition to demonstrating DRF’s utility for photochemical state crossing problems,

we also solve three outstanding issues in the original method: (1) symmetry breaking due

to the use of multipole approximations to integrals of the polarization operator. (2) Neglect

of quantum mechanical Pauli repulsion in the QM/MM Hamiltonian that leads to severe

electron spill-out problems when QM atoms approach polarizable centers. (3) Previous DRF

implementations included the polarization operator only as a perturbative correction, which

introduces artefacts at state crossings. These issues are solved by (1) an integral-exact

5



reformulation (IEDRF). (2) Including e↵ective core potentials (ECPs) on the MM atoms,

to mimic Pauli repulsion. (3) Incorporating the polarization operator directly in the QM

Hamiltonian. The resulting QM/MM-IEDRF method is in principle compatible with any

electronic structure theory, and here we demonstrate its application to Hartree-Fock theory

and multiconfigurational self-consistent field.

The remainder of the paper is as follows. As background, in sections 2.1 and 2.2, we

provide a summary of the state-specific polarizable embedding QM/MM method and a per-

turbative version that is free of root-flipping issues. In section 2.3, we review the original

DRF method before introducing our QM/MM-IEDRF version in section 2.4. Implementa-

tion details are presented in section 2.5. We verify our implementation for a simple diatomic

system in section 3.1 and then in section 3.2 we test the performance of three di↵erent

polarizable embedding schemes in describing potential energy surfaces near the electronic

crossings of ethylene in an inert Xe matrix. Finally conclusions are drawn in section 4.

2 Theory

2.1 State-specific polarizable QM/MM

To provide the context for revisiting the DRF method, we first briefly describe state-specific

polarizable embedding (QM/MM-SS-Pol), which is a popular approach to including the

influence of a (polarizable) environment on a chromophore’s electronic excitations.42,43

Following standard QM/MM partitioning, the system is divided into an “active” region,

where electrons are treated explicitly using quantum mechanics (QM), and the remainder of

the system, which is treated with molecular mechanics (MM) force fields in which atoms are

modeled by classical static charge distributions and induced dipoles.

The QM and MM regions are mutually coupled by the Coulomb interactions arising

from the MM region’s induced charge distributions. The molecular electronic Hamiltonian
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(following an additive scheme) is thus:

ĤSS-Pol = Ĥ0 + V̂SS-Pol + V̂Pauli + Uself, (1)

where Ĥ0 is the Hamiltonian of the QM region in isolation and V̂SS-Pol is the Coulomb

interaction between the QM system and the MM induced dipoles. V̂Pauli is a Pauli-repulsion

operator that models the repulsion of QM electrons from the MM atoms, described below

in more detail. This term is not always included in polarizable embedding, but has been

shown to solve the electron spill-out problem.44 The last term is the self-energy of the MM-

Pol subsystem (the work needed to create the induced dipoles), Uself =
1

2

PN
m µT

m↵
�1

m µm,

where µm 2 R3 and ↵m 2 R3⇥3 are respectively the induced dipole and polarizability of

site m, of which there are N . Electrostatic and mechanical embedding terms, i.e. QM-

MM Coulomb and Lennard-Jones interactions, are also typically added to Eq. 1, and their

inclusion is straightforward. However, since our interest is in the di↵erential solvation of

electronic states of a solute by a frozen polarizable atomic environment, we do not consider

additional embedding terms in this work.

V̂SS-Pol is the key addition to QM/MM-SS-Pol and arises from the interaction between

the induced dipoles and the electrostatic field from the QM particles:

V̂SS-Pol =
NelecX

i

NX

m

r̂i �Rm

|r̂i �Rm|3
· µm �

NQMX

a

NX

m

Za(Ra �Rm)

|Ra �Rm|3
· µm. (2)

Eq. 2 thus modifies the one-electron Hamiltonian and couples the QM region to the induced

dipoles: the dipoles respond to the wavefunction, and the wavefunction responds to the

dipoles.

The induced dipoles are proportional to the total electric field at the MM site, which

arises from the QM region, the MM point charges (not present in this work), and the other
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MM induced dipoles:

µm = ↵m

"
E0,QM

m �
NX

n 6=m

T (mn) · µn

#
. (3)

Here T (mn) is the dipole-dipole interaction tensor which, within the Thole damping scheme,

has matrix elements of the form T
(mn)
↵� = �3(r)�↵�r�3 � �5(r)3r↵r�r�5 (↵, � enumerate the

Cartesian coordinates x, y and z) for the pairwise interaction of dipoles separated by r =

Rm�Rn.45 To avoid the polarization catastrophe, the point dipoles are replaced by smeared-

out charge distributions giving rise to the damping functions �3(r) and �5(r).45 The coupled

nature of the induced dipoles means they must be solved self-consistently, either by iterating

Eq. 3, or expressing it as a matrix equation and solving the linear equation directly by

factorizing the matrix or iteratively e.g. with the conjugate gradient method.

E0,QM

m is the electric field from the QM region, which for a wavefunction variational in all

parameters is:46

E0,QM

m = �
*
 

�����

NelecX

i

r̂i �Rm

|r̂i �Rm|3

����� 
+

+

NQMX

a

Za(Ra �Rm)

|Ra �Rm|3
. (4)

With a self-consistent solution to the induced dipoles (Eq. 3), the total polarization energy

including QM/MM-Pol, UMMPol, and Uself contributions is shown to be:42

Epol =

⌧
 

����
1

2
V̂SS-Pol

���� 
�
, (5)

where the factor of 1/2 arises from the dipoles being induced rather than permanent.

Eq. 4 makes clear where the “state-specific” nature of the polarization comes from: the

MM dipoles are induced by the electric field from a particular QM state, and the induced

dipoles should be found independently for each electronic state, one at a time. Furthermore,

since the induced dipoles alter the one-electron Hamiltonian matrix elements via Eq. 2,

the wavefunction and induced dipoles are coupled in a non-linear fashion, meaning they

should be solved self-consistently. This can be achieved with dual-SCF cycles, which add
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computational expense. Alternatively, the induced dipoles can be optimized simultaneously

with the wavefunction, which to our knowledge has so far been implemented only for ground-

state SCF.47

QM/MM-SS-Pol has the advantage that the polarization response of the environment

to each electronic state of the system is fully captured.22 Its variational nature also sim-

plifies analytical gradients.42 The main limitation of QM/MM-SS-Pol is that the electronic

Hamiltonian itself becomes state specific through Eqs. 2-4. As a result, transition properties

between electronic states are ill defined. Root flipping issues are also common for close-lying

electronic states.25 And even if root-flipping can be avoided, the potential energy surface

(PES), and other properties, exhibit discontinuities at electronic crossings.25 These issues

with QM/MM-SS-Pol are discussed in more detail below for the conical intersection of a

prototypical cis-trans photoisomerization of ethylene in a polarizable inert xenon matrix.

2.2 State-specific perturbative polarizable QM/MM

Given the issues of ill-defined transition properties and root flipping in QM/MM-SS-Pol, as

mentioned in the introduction, some excited-state polarizable embedding schemes instead

treat the polarization response to an electronic excitation in a perturbative fashion. The

usual approach starts with a fully self-consistent QM/MM-SS-Pol calculation for the ground

state, followed by a 1st-order polarization energy correction for each excited state due to the

di↵erence in the QM region’s fields from the ground and excited states. Since this treats

the ground state and excited states di↵erently, and is expected then to not describe their

conical intersections correctly, an alternative perturbative approach (PTPol) we test here

treats all states on equal footing. First, the ground- and excited-state QM wavefunctions

are found from a non-polarizable QM/MM calculation with point-charge electrostatic em-

bedding, defining the zeroth-order states, | (0)

I i = | QM/MM

I i, where I is the electronic state

of interest. Then, for each state, the polarization energy is found from Eqs. 2-5, using the

zeroth-order wavefunctions to find the QM electric fields (Eq. 4) and expectation energy
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(Eq. 5).

We show below that the PTPol approach avoids root flipping and PES discontinuities;

however, it introduces a new issue of an incorrect description of the topology of a conical

intersection: near the crossing, the lower and upper cones intersect each other. This prob-

lem could be anticipated from similar issues that arise in state-specific perturbation theory

treatments of multireference electronic structure,48 and is expected to a✏ict other previous

perturbative approaches to excited-state polarizable embedding.

2.3 Direct Reaction Field

Given the issues with state-specific and perturbative treatments of polarizable embedding

for electronic excited states, we now turn our attention to the DRF method of Thole and

Van Duijnen.38 The DRF polarization operator can be derived starting from the classical

polarization energy for a set of polarizable sites according to Applequist’s dipole interac-

tion model49 and replacing the electronic fields by their corresponding quantum mechanical

operators. We briefly review the original formulation of DRF, before introducing our modi-

fications as integral-exact DRF.

2.3.1 Dipole Interaction Model.

The distribution of free charges of the whole system consists of electrons and classical point

charges, Qc which comprise both the nuclei in the QM region and the partial charges of the

MM atoms (zero in this work), of which there are Ncharge = NQM +NMM:

⇢(r) = �
NelecX

i

�(r � r̂i) +

NchargeX

c

Qc�(r �Rc). (6)

As in the QM/MM-SS-Pol model, MM dipoles are induced by the electric fields due to

the free charges (now indicated by the symbol fm, to avoid confusion with Eq. 4, which have
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a slightly di↵erent form):

fm[⇢] =

Z
d
3
r ⇢(r)

Rm � r

|Rm � r|3C(|Rm � r|), (7)

as well as the field generated by the other induced dipoles. C(r) is a cuto↵ function that

removes the singularity of the fields at r = Rm, which we will define below for IEDRF. In

the original DRF model, C(r) = 1.

According to the dipole interaction model,45,49 the total polarization energy is given by

Upol = �1

2
fT [⇢]Af [⇢], (8)

where the electric fields at the polarizable sites from Eq. 7 are stacked in the R3n supervector

f , and

A =

0

BBBBBBB@

↵�1

1
T (12)

. . . T (1N)

T (12) ↵�1

2
. . . T (2N)

...
...

. . .
...

T (1N)
. . . . . . ↵�1

N

1

CCCCCCCA

�1

(9)

is the e↵ective dipole polarizability supertensor of the MM region. A�1 consists of 3 ⇥ 3

blocks for each pair of polarizable sites (m,n). The diagonal contains the inverse of the

isotropic atomic dipole polarizabilities ↵m = ↵m13⇥3 and the o↵-diagonal blocks T (mn) are

the dipole field tensors as defined above.49 The inclusion of dipole-dipole interactions in A

captures the many-body nature of polarization, while being defined purely in terms of the

atomic polarizabilities and the geometry of the MM region. Eq. 9 is solved by brute-force

inversion. Future work will explore iterative approaches.

2.3.2 DRF polarization operator

The charge density of Eq. 6 is inserted into the expression for the electric fields acting on the

polarizable sites, Eq. 7, and the resulting fields are grouped into electronic (e) and nuclear
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(or point charge, q) contributions:

fm[⇢] =
NelecX

i

f̂ (e)
i,m + f (q)

m , (10)

where a little hat has been placed on the electronic fields to emphasize that these are one-

electron operators. The fields from all point charges and nuclei are combined into a single

vector f (q)
m . Substituting this quantum-mechanical expression for the fields into Eq. 8 gives

the additional polarization operator. Furthermore, since DRF assumes the MM dipoles

respond instantaneously to the location of the QM electrons (indicated by the delta functions

in Eq. 6), the method accounts for both polarization and dispersion interactions between

the QM and MM regions. Since Upol depends quadratically on the fields, the polarization

operator contains both one- and two-electron contributions.

The DRF polarization operator thus has the general form:

V̂DRF =
1

2

X

i,j 6=i

ĥ
(2)(i, j) +

X

i

ĥ
(1)(i) + h

(0)
. (11)

These terms account for the indirect electrostatic interactions between charged species, me-

diated by the polarizable sites. The two-electron operator contains the e↵ective interaction

between di↵erent electrons i and j, via their induced polarization of the MM system:

ĥ
(2)(i, j) = �

NX

m,n

f̂ (e)T
mi Amnf̂

(e)
nj with i 6= j, (12)

while the one-electron operator accounts for the e↵ective interaction of an electron i with

the nuclei or point charges, as well as its self-interaction:

ĥ
(1)(i) = �

NX

m,n

f (q)T
m Amnf̂

(e)
ni � 1

2

NX

m,n

f̂ (e)T
mi Amnf̂

(e)
ni . (13)

Due to their opposite signs, the fields from the electrons screen the fields from the nuclei. The

12



polarization energy due to the classical point charges is a (geometry-dependent) constant,

h
(0) = �1

2

nX

i,j

f (n)T
i Aijf

(n)
j . (14)

This term therefore includes the classical polarization energy from the MMPol force field, as

well as the polarization energy from the QM nuclei.

The polarization operator (Eq. 11) is added to the electronic Hamiltonian containing the

kinetic energy, electron-nuclear attraction, electron repulsion, nuclear-nuclear repulsion and

any Coulomb potential fromMM point charges. E↵ectively this corresponds to a modification

of the one- and two-electron integrals. Because of the polarizable environment, the Coulomb

interaction in vacuum, |r � r0|�1, has been replaced by a screened interaction,

1

|r � r0| �
1

2

NX

m,n

rm
r3m

C(rm) ·Amn ·
r0
n

r
03
n

C(r0n), (15)

where rm = Rm � r and r0
n = Rn � r0 are the distance vectors from the electrons to the

polarizable sites m and n. Since A is positive-definite, the screened Coulomb interaction in

the polarizable environment is weaker than in vacuum. This modifies the whole electronic

structure inside the QM region and particularly stabilizes charge-transfer states.

The polarization operator is seen to factorize into products of one-electron terms. As

a result, one-electron field integrals of the form (µ|fm|⌫) are needed. In the original DRF

implementation, these integrals were approximated by a Taylor expansion of the polarization

operator up to first order about arbitrary expansion points.40 The advantage of such an

approach is that the resulting field integrals are recast in terms of overlap and dipole matrix

elements, which can be pre-calculated for a given nuclear configuration. Typically, the

expansion points were chosen to be the QM atoms, but issues of symmetry breaking were

noted.40 Because of these issues, in addition to anticipated complications in a formulation

of analytical gradients, we instead present an exact implementation of the integrals below.

A second issue, noted in the original DRF method,38 is that the polarization operator
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diverges to negative infinity at the location of each polarizable site. This divergence can

lead to severe overpolarization as a QM atom approaches a polarizable site. The origin of

the problem is both a break-down of the inherent dipole approximation at short distance

(the MM atoms could more accurately be described by finite charge distributions) and the

neglect of explicit Pauli repulsion between the MM atoms and QM electrons. The original

DRF approach of approximating the field integrals by a local Taylor expansion avoids the

divergence issue.38 Since we will evaluate the field integrals exactly, we must address the

overpolarization issue in another way, which we discuss below.

Finally, more recent implementations of DRF included the polarization operator in a

perturbative fashion,40 similar to the PTPol approach we described above. Furthermore,

apart from the very first application,38 the DRF operator was combined with the SS-Pol

operator in a weighted fashion, in order to recover the QM/MM dispersion energy expected

from a generalization of Alexander’s upper bound to non-spherical systems.40,50 Since our

interest is in a description of polarizable embedding for electronic state crossings, for which

we show both SS-Pol and perturbative approaches exhibit artefacts, we will instead retain

the original form of the DRF operator, and include it directly in the solution of the electronic

structure problem. These developments are described below, which we name the integral-

exact direct reaction field (IEDRF).

2.4 Integral-exact direct reaction field

2.4.1 Polarization Integrals.

Many of the integrals needed to express the polarization operator exactly in a basis of Carte-

sian Gaussian functions have appeared in the literature in the context of core-polarization

potentials.51 For a single polarizable site, these are of the three-center type and have been

solved by Schwerdtfeger and Silberbach.52

The integrals of the field operators occurring in Eqs. 12 and 13 between basis functions
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µ(r) and ⌫(r), of which there are NAO, have the form:

F
↵
µ⌫(R) = (µ|R↵ � r↵

|R� r|3C(|R� r|)|⌫), (16)

where the Cartesian component ↵ = x, y, z of the field from an electron at position r is

evaluated at a polarizable site at position R. Here, r↵ means the ↵ Cartesian component of

the electron’ position. The cuto↵ function C(r) = (1� e
�ar2)q, with a cuto↵ exponent a > 0

and an integer cuto↵ power q > 0, removes the divergence of the polarization operator and

ensures the existence of the otherwise divergent integrals of the form (µ|r↵r�r�6
C(r)2|⌫),52

that arise from same-site terms in Eq. 13. In this work, we use a = 0.0625 Bohr�2 and q = 2

to match the electron-xenon potential of Jonin (see below for more details);53 however,

excitation energies are insensitive to these parameters as long as a is large enough. The

second term in Eq. 13 contains four-center integrals. We use the resolution of identity

trick54 to turn them into products of three-center integrals:

(µ|rm↵rn�

r3mr
3
n

CmCn|⌫) ⇡
X

⇢,�

(µ|rm↵

r3m

Cm|⇢)
�
S
�1
�
⇢�
(�|rn�

r3n

Cn|⌫), (17)

where Cm = C(rm), and S⇢� = (⇢|�) is the overlap matrix. In principle, the four-center

integrals could be evaluated in a density-fitting-like approach using an auxiliary basis, but

we found that the primary basis gave satisfactory accuracy. The same-site integrals (m = n)

in the one-electron Hamiltonian, on the other hand, have the form:

I
↵�
µ⌫ (R) = (µ|(R� r)↵(R� r)�

|R� r|6 C(|R� r|)2|⌫), (18)

and can be evaluated analytically.52 Complete details of our integral evaluation algorithm

and its e�cient implementation on CPUs and GPUs are provided elsewhere,55 with open-

source code available.56

For notational convenience, we collect the field integrals of Eq. 16 into a supervector of
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length 3N :

F (e)
µ⌫ = (Fµ⌫(R1), . . . ,Fµ⌫(Rm), . . . ,Fµ⌫(RN))

T
, (19)

for each atomic orbital pair, µ⌫. Similarly, the integrals of Eq. 18 are combined into a

supertensor of length 9N :

Iµ⌫ = (Iµ⌫(R1), . . . , Iµ⌫(Rm), . . . , Iµ⌫(RN))
T
. (20)

The electric fields from the nuclei and point charges (if present),

F (R) =
X

c

Qc
Rc �R

|Rc �R|3C(|Rc �R|) (21)

are likewise collected into a supervector:

F (n) = (F (R1), . . . ,F (Rm), . . . ,F (RNpol
))T . (22)

Note: we use the same damping function, C(r) (defined above) for the electronic and nuclear

fields, so that for a neutral molecule, the fields cancel appropriately at short and intermediate

range.

For a given geometry, the vectors F (e)
µ⌫ , F (n), and I are calculated once and stored in

memory. The memory requirements for this are NAO
2⇥12⇥N +3⇥N . All matrix elements

of the IEDRF polarization operator can be assembled from this information.

2.4.2 Pauli Repulsion

Since the magnitude of the polarization operator, �1

2
↵r

�4, is larger than even the Coulomb

potential near atomic centers, over-polarization and electron-spill-out problems, which can

also a✏ict electrostatically embedded QM/MM calculations, become even more severe (see

below). These issues can be traced to a neglect of explicit Pauli repulsion between the MM

atoms and QM electrons and become most apparent when di↵use basis functions are used.
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To mimic the missing Pauli repulsion, repulsive one-electron pseudopotentials are placed on

the MM atoms as described in Ref. 44. These prevent the leakage of electron density into

the MM region and provide short-range repulsion between QM and MM atoms.

The total Pauli repulsion potential is taken to be a sum of e↵ective core potentials

(ECPs) on each MM atom, V̂Pauli =
PNMM

m V̂
ECP

m . To achieve this, we extended the e�cient

GPU implementation of ECPs in TeraChem57 to allow ECP centers on MM atoms. ECP

parameters for Xe were taken from the model of Jonin et al. which, when combined with a

one-electron polarization potential of the form of Eq. 13, were fit to reproduce di↵erential

phase shifts from ab initio relativistic elastic electron scattering calculations.53

2.4.3 Total Hamiltonian

We are now in a position to define the total QM Hamiltonian for the QM/MM-IEDRF

method used in this work:

ĤIEDRF = Ĥ0 + V̂DRF + V̂Pauli, (23)

where the individual terms have the same meaning as previously defined. In addition to

the modified polarization operator, we note that compared to the SS-Pol Hamiltonian given

in Eq. 1, the polarization self-energy, Uself, is absent, since it is included implicitly in the

polarization energy expression of Eq. 8.

2.5 Implementation of IEDRF

We implemented QM/MM-IEDRF, as defined in Eq. 23, in a development version of Ter-

aChem.58 We take advantage of TeraChem’s clever formulation of many electronic structure

methods in terms of e↵ective Coulomb and Exchange matrices, allowing IEDRF to be im-

plemented by modifications to these matrices.
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2.5.1 Core Hamiltonian

We start by considering the modifications to the core Hamiltonian. These arise from the

one-electron terms of IEDRF (Eq. 13), which in the AO basis have the following matrix

elements:

(µ|ĥ(1)|⌫) = �F (n)AF (e)
µ⌫ � 1

2

X

⇢,�

�
S
�1
�
⇢,�

F (e)
µ⇢ AF (e)

�⌫

+

 
1

2

X

⇢,�

�
S
�1
�
⇢�
F (e)

µ⇢ diag(A)3⇥3F
(e)
�⌫ � 1

2

NX

m=1

3X

↵,�=1

A
↵�
mmI

↵�
µ⌫ (Rm)

!
,

(24)

where we are using the supervector notation defined above. Subscripts µ, ⌫, ⇢, � represent

AO indices, m and n index polarizable sites, and ↵, � run over Cartesian components x, y, z.

In the second term of Eq. 24, the same-site contributions (m = n) are treated with the

resolution-of-identity trick discussed above.54 The last term in brackets removes these and

replaces them by the exact integrals for m = n. diag(A)3⇥3 contains only the diagonal 3⇥ 3

blocks of A.

Thus, IEDRF’s contributions to the core Hamiltonian are constructed entirely from the

precalculated F (n), F (e), and I vectors defined above. In addition, the Pauli repulsion

potential, V̂Pauli, adds to the core Hamiltonian. To include Pauli contributions, we extended

TeraChem’s existing algorithm59 to allow ECP centers on MM atoms.

2.5.2 Two-electron contributions

In addition to the one-electron contributions to the molecular electronic Hamiltonian de-

scribed above, IEDRF has two-electron contributions, (µ⌫|ĥ(2)|��), from the operator de-

fined in Eq. 12. These can be evaluated e�ciently by noting the operator factorizes as a

tensor product of the same one-electron field operators that arise in Eq. 13. As a result, the

full two-electron matrix does not need to be stored (which would introduce a storage cost

that scales as N4

AO
)), but rather, the matrix elements of ĥ(2) can be formed on-the-fly from

F (e) in an integral-direct fashion.
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In particular, we take advantage of TeraChem’s formulation of many electronic structure

methods, including HF60 and CASSCF,61 in terms of contractions of e↵ective Coulomb- and

exchange-like matrices with generalized density matrices.58 Then, the two-electron contribu-

tions of IEDRF can be implemented as corrections to the e↵ective Coulomb and exchange

matrices:

�Jµ⌫(P ) =
X

��

(µ⌫|ĥ(2)|��) P��

= �
X

mn

X

��

Fm,µ⌫AmnFn,��P��

(25)

and

�Kµ⌫(P ) =
X

��

(µ�|ĥ(2)|⌫�) P��

= �
X

mn

X

��

Fm,µ�AmnFn,⌫�P��,

(26)

where P�� is an element of a generalized density matrix. The contractions in Eqs. 25 and 26

are evaluated as e�cient matrix-matrix multiplications using GPU kernels.

3 Results

3.1 Sodium-xenon dimers

To verify our implementation of the IEDRF polarizable embedding schemes, we consider

a simple dimer of a sodium atom (cation or neutral) interacting with a xenon atom, with

the former treated at a QM level and the latter treated as a polarizable MM atom. This

system was chosen for two reasons: (i) the Na+ - Xe potential at large internuclear separation

should be dominated by charge-induced dipole interactions, which have a particularly simple

�0.5↵/r4 form. This molecule then serves as a test that the 0e, 1e, and 2e contributions in

IEDRF sum correctly in Eq. 11. (ii) Na0 - Xe is a Van der Waals complex, so its potential

19



should be dominated by �C6/r
6 dispersion interactions at large internuclear separation.

Furthermore, the equilibrium distance results from a balance of repulsion at short range and

attraction at long range, and is therefore a sensitive test of IEDRF’s description of Pauli

repulsion, polarization damping, and dispersion interactions.

We computed ground-state potential energy curves of Na+ - Xe and Na0 - Xe at the

restricted Hartree-Fock QM/MM-IEDRF level. We used the aug-cc-pV5Z basis62 with f, g

and h functions removed since TeraChem does not yet support them and because we expect

them to have a negligible contribution to the RHF wavefunction of this high-symmetry

system. Given the very di↵use nature of the Na0 valence orbital, as we demonstrate in the

supporting information we found it necessary to include basis functions on the Xe atom,

even when it was treated at the MM level (i.e. contributing zero electrons). For this,

we used Xe’s aug-cc-pV5Z-PP basis63 with f, g and h functions removed. The need to

include basis functions on Xe with alkali-metal solutes was noted also by Salem.64 The

Xe polarizability was set to the experimental value of ↵Xe = 4.048 Å3.65 QM/MM-IEDRF

results were compared to those from restricted coupled-cluster with singles, doubles and

perturbative triples,66 abbreviated as CCSD(T)/aug-cc-pV5Z,Xe=aug-cc-pV5Z-PP, using

Molpro 2015.1,66–68 with all angular momentum functions retained.

Figure 1 shows potential energy curves for a sodium cation interacting with a neutral

xenon atom. Considering that none of the parameters in the QM/MM-IEDRF model (solid

black curves) were adjusted to reproduce the full-system CCSD(T) results (dashed blue

curves), we view the agreement as very good. The CCSD(T) dissociation energy is quantita-

tively reproduced by QM/MM-IEDRF, while the equilibrium distance is slightly too short,

presumably as a result of an underestimate of short-range repulsion. Panel (b) shows that

�↵Xe/(2R4) behavior, expected for a charge-induced-dipole interaction, is recovered at the

large-distance asymptote. This gives us confidence that our QM/MM-IEDRF implementa-

tion is correct.

Next, we consider the potential energy curves of a neutral sodium atom interacting
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Figure 1: (a) Potential energy curves of a sodium cation interacting with a xenon atom as a
function of internuclear separation, R. The solid black curve shows QM/MM-IEDRF results,
where the Na+ is treated as the QM region at the RHF level and Xe at the MM-IEDRF level
(see inset molecular graphic). The dashed blue curve shows full-system CCSD(T) results.
The zero of energy is taken to be the dissociation limit at the same level of theory. (b)
As for panel (a), but showing the absolute value of the potential on a log-log plot. Green
circles show the expected potential energy resulting from a point charge interacting with a
polarizable atom.

with a neutral xenon atom, shown in Figure 2. Since the components of this system are

absent of any permanent multipoles, any long-range attractive interaction arises solely from

dispersion forces between the neutral atoms. We see from Fig. 2(a) that QM/MM-IEDRF

(solid black curve) does indeed predict an attraction at long range, and thus the method

captures dispersion interactions. Compared to CCSD(T) results (dashed blue curve), the

minimum in the potential energy curve predicted by QM/MM-IEDRF appears at a distance

that is somewhat too large (5.75 Å versus 5.10 Å), leading to a well that is too shallow.
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However, given the very weak interactions in this Van der Waals complex, the precise location

of the potential well is very sensitive to the treatment of Pauli repulsion and short-range

polarization, and we view the overall qualitative agreement between QM/MM-IEDRF and

CCSD(T) as encouraging.
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Figure 2: As in Fig. 1, but for a neutral sodium atom interacting with a xenon atom. The
green circles in panel (b) show the expected potential energy resulting from the C6 dispersion
interaction.

The observation that dispersion interactions are captured by QM/MM-IEDRF is further

supported by a log-log plot of the potentials in Figure 2(b), which shows the potential

energy decays approximately as the expected �C6/R
6 at large R (dotted green line), albeit

with a C6 coe�cient that is about 25% larger than the value that results from a fit to the

CCSD(T) potential. This slight overestimate of dispersion interactions is consistent with

the findings of Ángyán and Jansen that DRF Hamiltonians provide an upper bound to
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dispersion interactions, and their accuracy will improve as the ionization energy of the QM

region increases relative to the ionization energy of the MM region.69

3.2 Ethylene in an inert Xe matrix

Having verified our implementation of QM/MM-IEDRF, we turn next to its ability to de-

scribe solvation e↵ects on an electronic crossing. To that aim, we consider a minimal energy

conical intersection (MECI) involved in the prototypical cis-trans photoisomerization of ethy-

lene. The particular S0-S1 MECI we consider has a twisted-pyramidalized structure (tw-pyr),

shown in Figure 3. The tw-pyr distortions bring about an intersection between states of bi-

radical (CH·
2
-CH·

2
) and zwitterionic (CH+

2
-CH�

2
) character,70,71 and are believed to dominate

the non-radiative pathway taken by ethylene.72–74

The charge separation in the zwitterionic state of ethylene should be energetically stabi-

lized by a polarizable environment, while the biradical state should be largely unperturbed,

resulting in a di↵erential solvation of these states, and an influence on their conical intersec-

tions. Indeed, the e↵ect of environment on ethylene’s electronic states away from the conical

intersection (CI) seam has been explored previously with the original DRF method.75 For

twisted geometries without pyramidalization, a polarizable environment can break the sym-

metry of the otherwise equivalent pair of zwitterionic states, leading to the phenomenon of

sudden polarization of the first excited state.6–8 We extend this work to explore the influence

of environment on the CI.

We consider a simple polarizable environment of an inert Xe matrix. This was chosen

as it has an optical dielectric constant (resulting from electronic polarization) that is repre-

sentative of most organic solids/liquids (✏1 ⇠ 2.2),76 while being absent of any permanent

dipoles that would complicate our interpretations. While solvents such as chloroform and

water might be expected to have a larger influence on the electronic states of ethylene,

their interactions arise predominantly through the static charge distributions of the solvent

molecules, which can already be described quite well with (non-polarizable) QM/MM. The
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focus of this paper is particularly on the treatment of electronic polarization of the environ-

ment and its influence on the description of CIs, which will be displayed even in a simple Xe

matrix.

3.2.1 Computational details

We built a molecular model starting from the ground-state structure of gas-phase ethy-

lene optimized at the 2-state-averaged complete active space self-consistent field level with

a two-electron in two-orbital active space (⇡ and ⇡
⇤ orbitals) using the 6-31G basis (SA-2-

CASSCF(2,2)/6-31G). The molecule was then placed at the center of a 15-Å radius spherical

droplet of 200 randomly placed Xe atoms using Packmol.77 We quenched to a cluster repre-

sentation of a solid matrix by optimizing the Xe positions at a full-system QM level with the

PBE0 functional,78,79 D3-BJ dispersion corrections,80 and the LANL2DZ basis and ECPs,81

while freezing the ethylene atoms. The resulting optimized ethylene/Xe200 system represents

the initial Franck-Condon (FC) geometry, and is shown in Fig. 3(a).

Next, we replaced the Xe atoms with an MM description, either with QM/MM (where

QM and MM particles are coupled only via V̂Pauli), QM/MM-SS-Pol, QM/MM-PTPol, or

QM/MM-IEDRF embedding. The Xe polarizability was set to the experimental value of

4.048 Å
3

,65 and the ethylene solute was treated as the QM region at the SA-2-CASSCF(2,2)

level. Except where otherwise noted, we included the Pauli repulsion operator, V̂ Pauli, in

all embedding calculations. The ECP parameters from Jonin et al.53 were used to allow a

direct comparison to QM/MM-IEDRF results.

To mimic an ultrafast photoisomerization reaction following vertical excitation to the

⇡⇡
⇤ state of ethylene, we performed a S0/S1 MECI optimization at the QM/MM SA-2-

CASSCF(2,2)/6-311[2+,2+]G(2d,2p) level (described below). The Xe atoms were frozen,

which is justified by the ultrafast timescale of ethylene’s non-adiabatic transition (< 45 fs74)

and the high mass of Xe. The resulting geometry is shown in Fig. 3(b) and is consistent with

the gas-phase tw-pyr MECI of ethylene found previously.72–74 Since analytical gradients for
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(a) Franck-Condon

(b) MECI

Figure 3: Critical-point molecular geometries of ethylene in an inert Xe matrix. Ethylene
is represented as a licorice structure with turquoise carbon and white hydrogen atoms. Xe
atoms (pink spheres) that obscure the view of ethylene have been removed for purposes of
visualization. Molecular graphics were generated with VMD 1.9.4.82

DRF are not yet available, the MECI was not refined further for the polarizable embedding

calculations. Instead, the double-coned PES were plotted in the branching plane of the

QM/MM MECI while freezing the Xe atoms. This allowed us to explore the qualitative

impact of the polarizable environment on ethylene’s CI.
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3.2.2 Vertical excitation

We start by considering the convergence of the vertical excitation energy of ethylene with

respect to basis set for the ground-state structure, i.e. the FC geometry. It is well known

that the di↵useness of gas-phase ethylene’s vertical S1 state (⇡⇡⇤) is sensitive to the choice

of basis due to Rydberg-valence (RV) mixing.83–86 In addition to standard basis sets, we

thus consider very di↵use basis sets, 6-311[n+,n+]G(2d,2p), which correspond to the 6-

311++G(2d,2p) basis augmented with n�1 extra sets of di↵use functions following an even-

tempered progression by scaling the di↵use functions’ exponents by 1/3.87 Results for gas-

phase ethylene and ethylene in an inert Xe matrix computed with QM/MM and QM/MM-

IEDRF embedding are presented in Fig. 4. Since gas-phase ethylene at its FC geometry has

zero net dipole, polarization of the Xe environment is negligible and the QM/MM-SS-Pol

and QM/MM-PT-Pol results (not shown) are indistinguishable from the QM/MM results.
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Figure 4: Convergence of ethylene’s vertical S1 properties with basis set. Gas-phase results
(black curves) are compared to ethylene in an inert Xe matrix, treated with di↵erent embed-
ding approaches. Solid curves indicate the vertical excitation energy (left axis) and dashed
curves represent the second moment of the excited electronic charge density in the direction
perpendicular to the molecular plane (right axis).

Considering first the gas-phase vertical excitation energy (solid black curve), we find the
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inclusion of di↵use basis functions causes the vertical excitation energy to drop significantly

going from 6-311G** to 6-311++G**. Further augmentation with di↵use functions leads to

an excitation energy of 7.36 eV with the 6-311[3+,3+]G(2d,2p) basis, which is lower than the

gas-phase experimental value of 7.66 eV.88 This is an artefact of RV mixing, which is sensitive

to the treatment of electron correlation. CASSCF(2,2) largely neglects dynamic electron

correlation and �⇡ correlation, which are known to contract the ⇡⇡
⇤ state of ethylene,86,89

and thus in the large-basis limit, CASSCF(2,2) predicts an S1 state that is too di↵use. This

is confirmed by considering the second moment of the excited-state charge distribution, hx2i,

where x is the direction perpendicular to the molecular plane, and the origin is taken to be

the center of mass of ethylene. hx2i is plotted as the dashed curves in Fig. 4, where the

gas-phase result (black dashed curve) is seen to progressively increase with the addition of

di↵use basis functions, reaching a value of 35.9 Bohr2 for the 6-311[3+,3+]G(2d,2p) basis,

which is significantly larger than the theoretical best estimate of hx2i = 17± 1 Bohr2.86

Given the issue of excessive RV mixing in the large-basis limit of gas-phase ethylene

treated with CASSCF(2,2), we will instead focus on the inert Xe matrix results. Considering

the QM/MM calculations (blue curves in Fig. 4), in which the influence of the Xe atoms

on ethylene is only via the Pauli repulsion operator, V̂Pauli, we see for basis sets without

di↵use functions (i.e. 6-31G** and 6-311G**) that the results are indistinguishable from the

gas-phase results. This indicates that ethylene resides in a solvent void in the Xe matrix that

negligibly perturbs states of pure valence character without charge separation, as expected for

an inert matrix environment. Upon extending the basis with di↵use functions, the QM/MM

excitation energy is seen to lower in a gradual fashion, converging at 9.26 eV with the 6-

311[2+,2+]G(2d,2p) basis. Clearly, Pauli repulsion from the Xe environment is correctly

destabilizing ethylene’s Rydberg states and preventing excessive RV mixing, as confirmed

by hx2i (dashed blue curve) retaining a value consistent for valence states, even in the large-

basis limit. It should be noted that due to the neglect of dynamic electron correlation in the

CASSCF(2,2) electronic structure, the ⇡⇡
⇤ excitation energy is considerably overestimated
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compared to experiment, even in the large-basis limit. Nevertheless, the structure and

topography of ethylene’s S0-S1 MECI is similar to that found with high-level multireference

perturbation theory.72–74 Furthermore, we expect the relative changes to the PES due to

environment polarization to be captured correctly with our choice of electronic structure.

We next consider the performance of QM/MM-IEDRF on the vertical excited-state prop-

erties of ethylene (green curves in Fig. 4). For all basis sets, we find the inclusion of the

IEDRF polarization operator consistently lowers the S1 excitation energy by ⇠0.2 eV. Since

neither QM/MM-SS-Pol nor QM/MM-PTPol display this stabilization, it must result from

dispersion interactions between ethylene and Xe which, as discussed above, are approximately

captured by DRF methods. In other words, the increased di↵useness and polarizability of

ethylene’s S1 ⇡⇡
⇤ state relative to its ground state leads to stronger dispersion interactions

with the Xe matrix in its excited state, thus lowering the excitation energy.

To our knowledge, the strength of dispersion interactions between Xe and electronically

excited ethylene has not been previously explored. Given the issues of RV mixing in the large-

basis limit of gas-phase ethylene, we can only compare our DRF predictions to the QM/MM

results. Pauli repulsion is likely overestimated in the latter, since the Jonin potential was fit

to reproduce electron-Xe scattering in the presence of a DRF-like polarization potential,53

which has considerable short-range attraction. We thus caution against interpreting the

absolute magnitude of stabilization seen by QM/MM-IEDRF relative to QM/MM as repre-

senting the strength of dispersion interactions between ethylene and Xe, and a more detailed

benchmarking of dispersion interactions is beyond the scope of this study. Nevertheless, it

is interesting to note that the experimental absorption spectrum of ethylene in Ar and Kr

matrices exhibits smaller, but similar order of magnitude, red shifts compared to the gas

phase,90 as would be expected due to the lower polarizabilities of these atoms compared

to Xe. These di↵erential dispersion-interaction e↵ects are completely missed by QM/MM,

QM/MM-SS-Pol, and QM/MM-PTPol embedding.

Finally, we demonstrate the importance of treating Pauli repulsion by removing V̂Pauli
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from the QM/MM-IEDRF Hamiltonian (purple curves in Fig. 4). For compact basis sets

(6-31G** and 6-311G**), the results match the full QM/MM-IEDRF results (green curves),

but once di↵use basis functions are included, we find compared to even the gas-phase results,

the excitation energy drops lower and hx2i grows larger. These findings are associated with

an excessive attraction between ethylene and Xe due to the polarization operator alone that

causes a variational collapse of the first excited state to that of a very di↵use 3s Rydberg-like

state, even if the initial guess to the CASSCF active space comprises the valence ⇡ and ⇡
⇤

orbitals. Thus, if di↵use basis functions are used in a QM/MM-IEDRF calculation, it is

imperative to include explicit QM-MM Pauli repulsion.

Since we found convergence of QM/MM and QM/MM-IEDRF excited-state properties

with the 6-311[2+,2+]G(2d,2p) basis, we used this for the remainder of the study. We note

however that qualitatively similar results are seen when the smaller 6-311G** basis is used,

consistent with ethylene’s excited state having valence character when embedded in the inert

Xe matrix environment.

3.2.3 S0-S1 conical intersection

We turn now to the S0-S1 MECI of ethylene in an inert Xe matrix. Fig. 5(a) plots the S0 and

S1 PES in the branching plane of the CI, computed at the QM/MM SA-2-CASSCF(2,2)/6-

311[2+,2+]G(2d,2p) level. We find the features of the CI are in qualitative agreement with

previous multireference theory.72,91 In particular, the MECI geometry has tw-pyr charac-

ter and the gradient di↵erence, g, and derivative coupling, h, vectors (shown at the top

of the figure) are dominated by torsion and pyramidalization respectively. The energy of

the MECI is 5.30 eV relative to the FC S0 energy, which is somewhat higher than previous

gas-phase multireference theoretical values that range from 4.42 to 4.71 eV,72–74 presumably

due to the lack of dynamic electron correlation at the SA-2-CASSCF(2,2) level. Despite the

overestimate in energy, the topography of the MECI has a peaked character, in agreement

with previous theories that account for dynamic electron correlation,92 thus we expect the
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relative changes to the PES resulting from polarization of the environment will be qualita-

tively correct. To simplify a direct comparison between the di↵erent polarizable embedding

schemes, we do not reoptimize the MECI for each scheme, but rather recompute the PES in

the vicinity of the QM/MM-optimized MECI along its branching plane, i.e. using the same

geometries.

Considering next the QM/MM-SS-Pol result in Fig. 5(b), we see that the inclusion of

MM polarization alters the energies of S0 and S1 (blue and red surfaces respectively) relative

to each other, such that the expected crossing point shifts to a geometry that is displaced

largely in the +h direction. However, we observe two artefacts in the QM/MM-SS-Pol PES

in the vicinity of the crossing that make a precise determination of the crossing point impos-

sible, which will be deferred to the QM/MM-IEDRF calculations discussed below. Firstly,

the variational QM/MM-SS-Pol procedure on S1 fails to converge for several geometries in

the neighborhood of the crossing, indicated by the white area on the upper surface. The

convergence issues can be traced to the well-known root-flipping problem,25 wherein the

electronic character of the adiabatic S1 state cycles between biradical and zitterionic charac-

ter between iterations of the MM dipole updates. Secondly, the same root-flipping problem

leads to a derivative discontinuity (kink) on the S0 surface, even away from the true CI. For

these reasons, QM/MM-SS-Pol can not be used to study electronic crossings.

It has been suggested that a perturbative treatment of MM polarization can be used to

avoid the root-flipping issues seen with QM/MM-SS-Pol, since the influence of the induced

MM dipoles back on the QM system is ignored. We explore this in Fig. 5(c), using the

QM/MM-PTPol method described in Section 2.2. Away from the crossing point, we find

that the PES agree quantitatively with the predictions of QM/MM-SS-Pol, justifying the

neglect of re-polarization of the QM region by the MM induced dipoles. However, while

avoiding root flipping, QM/MM-PTPol exhibits its own artefacts in the vicinity of the cross-

ing point. In particular, the S0 energy is observed to be higher than S1 in the vicinity of

the crossing! This issue is reminiscent of similar artefacts observed with state-specific mul-
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Derivative coupling, h: Gradient difference, g:

Figure 5: Potential energy surfaces (red: S1, blue: S0) of ethylene in an inert Xe matrix in
the vicinity of its MECI, plotted in the branching plane formed from the derivative coupling,
h, and gradient di↵erence, g, vectors (shown as arrows overlaid on the MECI structures at
the top of the figure and scaled to a root mean squared displacement of 1.5 Å. Xe atoms not
shown). Each panel shows the PES computed with a di↵erent level of embedding theory but
for the MECI geometry and branching plane of the QM/MM system. The white shaded areas
of the S1 surface in panel (b) indicate regions for which the QM/MM-SS-Pol calculations
failed to converge.

tireference perturbation theory electronic structure in the vicinity of state crossings,48 and

can be traced to a breakdown of perturbation theory for degenerate reference states and the

neglect of the perturbation’s influence on electronic couplings between the reference states.

This rules out the use of perturbative approaches to environment polarization (as currently
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formulated) for the study of electronic crossings. It is possible that a reformulation of PTPol

in terms of quasi-degenerate perturbation theory could solve this issue, although this is not

explored here.

Finally, we consider QM/MM-IEDRF’s description of the PES, shown in Fig. 5(d). Here

we see the shape of the PES is in qualitative agreement with QM/MM-SS-Pol, but encour-

agingly absent of any artefacts. Due to a di↵erential solvation of the electronic states, their

crossing point is displaced approximately to h = 0.005, g = �0.002 Å; however, since the CI

was not reoptimized at the QM/MM-IEDRF level and instead evaluated for the QM/MM

geometries, we observe a weakly-avoided crossing with a gap of 0.006 eV rather than a true

conical intersection. In addition to a change in the relative energies of the S0 and S1 surfaces,

we also observe an approximately uniform reduction of ⇠0.08 eV in the energies of both S0

and S1 states relative to the FC ground state at the QM/MM-IEDRF level compared to the

QM/MM-SS-Pol level, and this presumably arises from dispersion interactions stabilizing

the biradical and zwitterionic states by roughly the same amount.

We can understand the qualitative change to the PES and the displacement of the crossing

point seen with inclusion of environment polarization by considering the charge distribution

of the S0 and S1 states in the vicinity of the CI. This is explored in Fig. 6, which plots the

dipole moment magnitude for S0 (panel a) and S1 (panel b), in the same branching plane

considered in Fig. 5. We find that the S0 dipole decreases significantly in the direction of

increasing derivative coupling and to a lesser extent in the direction of decreasing gradient

di↵erence, consistent with a change in electronic character from zwitterionic to biradical on

the ground state. The S1 state then has a change in electronic character in the reverse of

the ground state. That the derivative coupling direction dominates the change in electronic

character is consistent with it corresponding largely to pyr motion, which strongly modulates

the energy of the zwitterionic state relative to the biradical state. As a result, the influence

of a polarizable environment is to di↵erentially stabilize S1 compared to S0 in the direction of

(+h,�g), and this explains why the electronic crossing is seen to displace in that direction.
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It should be noted that the influence of environmental electronic polarization on the

features of the CI PES is rather modest, and this can be understood from the relatively

small dipole of ethylene in its zwitterionic state (⇠5 Debye), which arises from the charge

separation occuring between two directly bonded carbon atoms. As a result, the di↵erential

stabilization of ethylene’s electronic states due to environmental polarization is of a similar

order of magnitude as di↵erential dispersion interactions, suggesting that for small solutes,

both interactions should be included. We expect a greater influence of environmental elec-

tronic polarization on molecules with longer ranged charge separation, such as in the purple

bacteria reaction center.13

(a) S

(b) S

Figure 6: Variation in the state dipoles (shown as false color maps) of ethylene in an inert Xe
matrix in the vicinity of its MECI, plotted in the branching plane formed from the derivative
coupling and gradient di↵erence vectors (see Fig. 5).
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4 Conclusions

An integral-exact version of the DRF polarizable embedding method has been proposed and

implemented in a development version of TeraChem.58 It incorporates many-body polariza-

tion interactions between the QM and the MM regions and works for both ground and excited

states simultaneously. The polarization Hamiltonian is derived by converting the classical

polarization energy from the dipole interaction model into a quantum-mechanical operator.

The exact evaluation of polarization integrals paves the way for analytical gradients and cou-

plings,93 which are needed for e�cient geometry optimizations, conical intersection searches,

and ab initio molecular dynamics.

Compared to other formulations of polarizable embedding, QM/MM-IEDRF has a num-

ber of attractive properties: (1) The same Hamiltonian is used for all electronic states,

avoiding problems with state-specific or perturbative solvation models near crossings of elec-

tronic states. (2) Since the matrix elements of the core Hamiltonian and electron-electron

repulsion integrals are modified with operators that depend only on the QM and MM nuclear

positions (and not additional dipole degrees of freedom), the approach is compatible with

any wavefunction-based electronic structure method such as Hartree-Fock, Configuration

Interaction or Complete Active Space Self-Consistent Field, and furthermore avoids costly

iterations between wavefunction and dipole updates. (3) As in the original DRF method,

dispersion interactions with the environment are captured approximately.

We demonstrated QM/MM-IEDRF’s ability to robustly describe potential energy sur-

faces in the vicinity of an electronic crossing for ethylene embedded in a inert Xe matrix.

Treating Xe as a polarizable environment leads to a di↵erential stabilization of ethylene’s

states of zwitterionic character compared to those of biradical character, leading to notice-

able changes to the location of the electronic crossing point. We thus expect that the method

will find broad use in the modelling of photochemistry in complex environments, for cases

where a description of electronic polarization of the environment is necessary.
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