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ABSTRACT: This Letter describes a concise synthesis of lysergic acid from simple aromatic precursors. The successful strategy 
relies on the coupling, dearomatization, and cyclization of a halopyridine with a 4-haloindole derivative in 6 total synthetic steps from 
commercial starting materials. In addition to highlighting the advantages of employing dearomative retrosynthetic analysis, the design 
is practical and anticipated to enable the synthesis of novel neuroactive compounds.

 
Since Hofmann’s discovery of lysergic acid diethylamide 

(LSD, 1) in 1938, the medicinal wonders of this natural prod-
uct derivative have proven both intriguing and controver-
sial.1,2 For instance, Sandoz Laboratories heralded LSD as “a 
cure for everything” in the 1940s, while US congress, in par-
tial response to counter-culture of the 1960s, made its posses-
sion and use illegal in 1968.3 Despite this ongoing debate, 
some ergoline derivatives such as pergolide (4)4 and lisuride 
(5)5 have found their way to the clinic for the treatment of Par-
kinson’s disease and migraines. These ergolines, in addition 
to the psychedelics dibogaine (3) and 2,5-dimethoxy-4-iodo-
amphetamine (6) are ligands for the 5-HT2A GCPR, a key re-
ceptor responsible for many downstream neuropharmacolog-
ical phenotypes.6 Because of LSD’s therapeutic potential, sev-
eral X-ray crystallographic structures have recently been ob-
tained that enable the design of 5-HT2A ligands capable of 
novel neuropharmacology.7–9 Thus, we maintained that a 
practical synthesis of diverse LSD (1) derivatives would aid 
this burgeoning realm of biomedical research.10,11    

Recently, Olson and coworkers identified that 7, bearing a 
simple change substitution of the benzenoid ring of ibogaine 
(3), showed similar psychoplastogenic effects without the 
psychedelic effects in 3 (Figure 1B). 12 This intriguing discov-
ery, coupled with another study on dimethyltryptamine ana-
logs,13 spurned our curiosity regarding similar substituents ef-
fects on the ergoline scaffold, which have been largely unex-
plored in the neuropharmacology of LSD.14,15 While many er-
goline derivatives have been accessed from natural isolates 
(e.g. 4, 5) via functionalization at chemically “available” sites 
(See Figure 1C), we hypothesized that benzenoid substitution 
would require a short and modular synthesis in order to 

understand the potentially analogous substituent effects ob-
served in 7.  

Figure 1 

(A) 5-HT2A ligands (B) psychoplastogenic tryptamines (C) Ergoline scaffold 
amenable for chemical modification. 
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Figure 2 

Lysergic Acid Retrosynthetic Analyses 

Targeting lysergic acid (2), the synthetic precursor to LSD, 
was a starting point towards synthesizing and validating any 
psychoactive LSD derivatives.16,17,26–35,18–25 This includes the 
controversial short synthesis of 2 reported by Hendrickson25 
which was later disputed by both Nichols36 and Boger.37 Over-
all, two retrosynthetic strategies were considered to allow 
quick access to 2. In a first strategy, it was envisioned that the 
natural product would arise from a late-stage Pd-catalyzed an-
nulation of vinyl bromide 8 via C-H vinylation of the C4 po-
sition of the pendant indole heterocycle.38 Intermediate 8 
would be the product of a Fischer indolization reaction with 
phenylhydrazine (10) and a tetrahydropyridine (not shown) 
synthesized from a dearomatization and reduction sequence 
between  pyridine 9 and Grignard reagent 11.39 If the first 
strategy were inoperable (vide infra), it was also hypothesized 
that a Heck reaction could forge the scaffold of 2 from bro-
moindole 12.32–34 This tetrahydropyridine would be ultimately 
derived from a pyridinium reduction following the coupling 
of iodide 13 and aldehyde 14, both of which are commercially 
available. While both approaches included attractive modular-
ity and brevity, strategy 1 was pursued first. 

Scheme 1 depicts efforts towards 2 implementing strategy 
1. Starting from bromopyridine 9, methylation of the pyridine 
nitrogen with MeOTf generated an intermediate N-methylpyr-
idinium that was trapped with Grignard reagent 11 to produce 
dihydropyridine 15 as the major regioisomer in a 2.6:1 C6/C4 
ratio and in 82% overall yield (59% of 15). From our previous 
studies on the regiochemistry of pyridinium dearomatizations, 
we predicted the combined directing effect of the ester and 
bromide substituents would increase addition at C6.39 Next, 
reduction of the vinylogous carbamate in 15 with LiAlH4 pro-
ceeded in 65% yield to deliver a 1:1 mixture of diastereomers 
of acetal 16. This mixture was deemed inconsequential for the 
synthesis of 2, as the alpha center to the ester is thermodynam-
ically resolvable upon construction of the ergoline frame-
work.20,34 Acetal 16 was then treated with phenylhydrazine 
(10) and a 4% H2SO4/EtOH mixture at elevated temperature 
to afford indole 8 in 59% yield (1.8:1 dr). Notably, this Fischer 
indolization reaction was attempted with a variety of other 
phenylhydrazine derivatives that gave no observable indole 
products. This unexpected result impeded abilities to generate 
modified downstream intermediates (e.g. 18) en route to 2. 

 
 

Scheme 1 

First-Generation Approach to Lysergic Acid 

With 8 in hand, our efforts focused on the C–H annulation 
to close the last six membered ring found in lysergic acid (2). 
Initially, following prior precedent for this kind of transfor-
mation,38 the only observable product was annulation at the 
C2 position of the indole heterocycle (not shown). Attempts 
to sterically deter this undesired cyclization were thwarted by 
an inability to properly functionalize or protect the indole ni-
trogen under basic conditions. Presumably, this was due to the 
base sensitivity of the tetrahydropyridine ring found in 8, 
where attempts to deprotonate the indole nitrogen resulted in 
non-productive decomposition pathways.40 Further efforts to 
effect annulation of the vinyl bromide using Ni-catalysis or 
radical propagation39,41 (e.g. PET, Bu3SnH and AIBN) also 
largely resulted in hydrodebromination of 8. Additionally, 
while a reductive coupling tactic might have been possible 
through an intermediate such as 18, the Fischer indolization 
of 16 was only operable with phenylhydrazine (10), disallow-
ing access to benzenoid-functionalized indole congeners of 8. 
With an unproductive annulation tactic and a limited Fischer 
indolization reaction, the second strategy outlined in Figure 1 
became more attractive for the synthesis of 2. As the same 
final ring-closing strategy would be needed, a tactical change 
in the placement of the halogen would likely allow for a more 
competent and reliable annulation. 

Scheme 2 outlines the forward implementation of the sec-
ond retrosynthetic strategy towards 2. Starting from io-
dopyridine 13, magnesium–halogen exchange42,43 generated a 
heterocyclic nucleophile that was trapped with commercial al-
dehyde 14 to afford an intermediate alcohol (not shown) in 
85% yield. Exposure of this intermediate to Et3SiH and TFA 
cleaved the Boc protecting group and reduced the benzylic al-
cohol to generate indole 19 in good yield on gram scale. The 
next step in the synthesis involved the key reductive dearoma-
tization of the pyridine to a tetrahydropyridine. In the event, 
Boc protection of 19 followed by in situ methylation of the  
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Scheme 2  

Second-Generation Approach to Lysergic Acid 

pyridine nitrogen resulted in an intermediate pyridinium salt. 
This unisolated intermediate was treated with NaBH4 to 
smoothly generate dihydropyridine 20 in 56% yield. Isomeri-
zation of the enoate with LiTMP gave a 1:1.6 diastereomeric 
mixture of 12a and 12b, of which the latter was poised for the 
key Heck annulation.31,34 Conveniently, 12a can be converted 
to 12b upon its re-exposure to the isomerization conditions 
with an identical diastereomeric outcome. Treatment of 12b 
with a catalytic amount of Fu’s Pd0 complex44 (generated in 
situ) allowed for facile generation of 21 in excellent yield 
along with 22a and 22b, two diastereomeric alkene isomers, 
in a 5.8:1:1 ratio, respectively. While similar transformations 
have been reported,31,33,34 low yields and/or stoichiometric 
amounts of Pd have been required to effect this annulation, 
attesting to its challenging implementation. The stereochem-
istry of the center alpha to the ester in 12b was crucial to the 
success of this reaction, allowing for syn-beta-hydride elimi-
nation to proceed following migratory insertion of the putative 
arylpalladium(II) intermediate. Finally, saponification and 
isomerization of the mixture of 21, 22a, and 22b was executed 
as previously reported to generate lysergic acid (2) in 52% 
yield.20 
     The successful generation of 2 spurned our expansion of 
this synthetic platform towards the generation of new lysergic  
Scheme 3 

Synthesis of 12-chlorolysergic acid 

 
acid derivatives with novel benzenoid substitution. As a proof 
of principle, we adapted our synthesis to the generation of 12- 
chlorolysergic acid. Starting from iodopyridine 13, magne-
sium halogen exchange followed by addition to aldehyde 14b 
(See Supporting information for synthesis) resulted in an in-
termediate benzylic alcohol that was reduced to give biaryl 23 
in modest yield over 2 steps. Methylation and reduction of the 
intermediate was followed by Boc protection of the indole 
proceeded in 81% yield (over 2 steps) to afford 24 . This in-
termediate was subjected to base-mediated isomerization to 
give a 1:2 ratio of  25a/25b  in 83% yield. The minor unde-
sired isomer (25a) could again be recycled to afford higher 
quantities of 25b, which proceeded through the Heck cycliza-
tion in excellent yield to generate a enoate 26 in 57% yield. 
Hydrolysis of this mixture gave 12-chlorolysergic acid (27) in 
good yield.  
     In conclusion, concise syntheses of lysergic acid (2) has 
been accomplished in 6 steps and 12% overall yield from 
commercially available materials (13 and 14). Central to the 
efficiency of this approach was the strategic and redox-eco-
nomic utilization of heteroaromatic starting materials as func-
tionalized precursors to the ergoline core. While this strategic 
approach was initially thwarted by an insurmountable tactical 
conundrum, the inversion of polar synthons enabled the con 
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struction of the final tetracyclic core. Furthermore, the synthe-
sis of 12-chlorolysergic acid was accomplished through adap- 
tation of the successful second-generation approach. We con-
tend that this modular platform will enable the synthesis and 
investigation of efficacious psychoplastogenic LSD deriva-
tives valuable to drug discovery and psychotherapy. We assert 
that the novel molecular space unlocked by this synthetic 
blueprint holds great promise for the increased utilization of 
psychedelics and their derivatives as new neuropharmacolog-
ical treatments. 
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