
1 

 

AROPS: A Framework of Automated Reaction 

Optimization with Parallelized Scheduling 

Yixiang Ruan, Sen Lin, Yiming Mo* 

ABSTRACT 

With the development of automated experimental platforms and optimization algorithms, 

chemists can easily optimize chemical reactions in an automated and high-throughput fashion. 

However, the modules in existing automated experimental platforms are operated in a predefined 

way without orchestrating with the optimization algorithm, thus leaving room for further efficiency 

improvement. Here, we introduced a framework of automated reaction optimization with 

parallelized scheduling (AROPS) to realize the integration of optimization algorithm and module 

scheduling. AROPS relies on a customized Bayesian optimizer to solve multi-reactor/analyzer 

reaction optimization problems with three different scheduling modes to arrange tasks for various 

experimental modules. In addition, a mechanism based on probability of improvement (PI) for 

discarding unpromising on-going experiments was developed to facilitate freeing-up valuable 

experimental resources in parallelized optimization. We tested the performance of AROPS using 

a hardware emulator on three typical benchmark reactions encountered in organic synthesis, 

illustrating that AROPS can trade off optimization time and cost according to the chemists’ 

preference. 
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INTRODUCTION 

Reaction optimization is an essential routine task for both medicinal chemistry and process 

chemistry in the pharmaceutical industry.1 However, optimizing a chemical transformation is 

challenging owing to its diverse design space, high complexity, and strong nonlinearity. It is 

estimated that a design space with three continuous variables (e.g., reaction time, temperature, or 

stoichiometry) and one categorical variable (e.g., catalysts, ligands, or additives) has more than 

107 combinatorial configurations.2 Therefore, reaction optimization is excessively expensive and 

time-consuming, which sometimes becomes the rate-determine step during the synthesis 

development. 

One-factor-at-a-time (OFAT) optimization3 (i.e., varying only one factor at a time) and factorial 

design4 are the most preferred reaction optimization approaches due to their simplicity for post 

data analysis. These approaches may only give a sub-optimal outcome despite their easy 

implementation. Recently, with the development of the high-throughput experimentation (HTE) 

technology,5–7 exhaustive search of all combinations of reaction condition variables has become 

possible, such that finding the global optima is feasible within a reasonable experimental budget. 

In addition, the experimental data generated during the screening process can be used to establish 

the corresponding chemical reaction database, benefiting building data-driven prediction models.8–

10 However, although HTE platform can accelerate the reaction screening speed by 2-3 orders of 

magnitude compared to the manual execution, the practical and accessible scale of reaction 

screening enabled by state-of-the-art HTE technology is still limited to thousands of reactions per 

day due to the cost and time constraints. 

Fortunately, automatic reaction optimization (the combination of optimization algorithms and 

automated experimental platforms) has been proved to be able to complete optimization with 
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reduced time and cost. Over the years, researchers have been exploring this field to expedite 

reaction optimization. Nelder–Mead Simplex,11–13 stable noisy optimization by branch and fit 

(SNOBFIT) algorithm,14,15 and the mixed-integer nonlinear program (MINLP) algorithm16–19 were 

developed and implemented to optimize various chemical reactions using the automated flow 

experimental platforms. Moreover, machine learning algorithms like covariance matrix 

adaption−evolution strategy (CMA-ES) and deep reinforcement learning were also used to 

optimize microdroplets reactions.20 However, these algorithms mentioned above all follow a 

sequential fashion (i.e., only generate one experimental candidate at a time after the previous one 

has been finished), such that it is not well suited for modern parallelized experimental platforms. 

On the other hand, Bayesian optimization (BO), a surrogate model-based global optimization 

algorithm typically used in optimizing expensive black-box functions,21,22 is well compatible with 

the sequential or parallel optimization fashion (i.e., generating single/multiple candidate 

experiments simultaneously).23,24 In addition to its outstanding performance in tuning hyper-

parameters in machine learning models,25 Bayesian optimization has also been successfully 

employed for a variety of applications across chemical reaction optimization, such as high-

throughput virtual screening,26 rational solvent selection,27 the discovery of battery electrolytes,28 

carbon nanotube synthesis,29 and photocatalysts selection.30 Doyle and coworkers combined two 

parallel Bayesian optimizations (i.e., Kriging believer algorithm and Thompson sampling) with 

HTE platform to realize batched parallel reaction optimization, which can significantly shorten 

optimization elapsed time compared to traditional sequential optimization.31 

Although the combination of modern parallelized experimental platforms and Bayesian 

optimization algorithm has been shown to improve the efficiency of reaction optimization, two 

new problems arise: (1) The maximum achievable throughput of each module in automated 
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experimental platforms for processing samples is inconsistent. The module with lowest throughput 

acts like the shortest board in Cannikin Law that limits the overall system throughput. (2) There is 

no general scheduling method to ensure the efficient cooperation of multiple experimental devices 

in multiple stages in the optimization process. 

To tackle the challenges above, we developed a framework of automated reaction optimization 

with parallelized scheduling (AROPS) to make more efficient use of automated synthesis 

screening platform to accelerate the chemical reaction optimization. AROPS is composed of two 

modules including Bayesian optimizer and parallelization scheduler, responsible for proposing 

new candidate experiments and assigning devices for executing experiments, respectively. Monte-

Carlo Bayesian optimization was employed to optimize reaction, which can find high-quality 

acquisition function optimal solutions with fewer evaluations compared to heuristic algorithms 

like Kriging believer and constant liar.33 In addition, AROPS provides three different scheduling 

schemes with optional experiment discarding mechanism, which can be selected according to users’ 

preference to time cost or reagent consumption. A multi-reactor/multi-analyzer automated 

synthesis screening platform simulator was constructed to evaluate the optimization algorithm 

under various scenarios. Based on this simulator, we comprehensively evaluated AROPS’ 

performance on three benchmarks that covered typical types of reaction mechanism, dataset, 

optimization objective, and design space encountered in organic synthesis. 

METHOD 

Bayesian optimizer. Searching for the optimal conditions of chemical reactions can be regarded 

as analogous to finding the optimal values of unknown objective functions: 

 𝒙∗ = argmax
𝒙∈𝜒

𝑓(𝒙) (1) 
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where 𝒙 denotes the d-dimensional input feature vectors representing reaction conditions, 𝒙∗ is the 

optimal conditions, 𝜒 is the d-dimensional design space (i.e., 𝒙 ∈ 𝜒 ∈ ℝ𝑑), and 𝑓 is the objective 

function (i.e., reaction yield or selectivity). The Bayesian optimization algorithm is composed of 

Gaussian process (GP) model and acquisition functions (AF). The Gaussian process is a cheap-to-

evaluate approximation to 𝑓, which is obtained by regression of the existing data. In this work, GP 

used the Matérn52 kernel34 (Eq. S1) to handle continuous variables considering its capability for 

smooth fitting of nonlinear relationships, and a categorical kernel (Eq. S2) would be added when 

design space includes categorical variables. The new experiment candidates are proposed by 

maximizing the acquisition functions, which uses expected improvement (EI) method35 to tradeoff 

between exploration and exploitation. When multiple candidates are required in the parallelized 

platform, multi-points expected improvement (𝑞EI) method will be used: 

 {𝒙𝑛𝑒𝑤
(𝑘)

}𝑘=1
𝑞 = argmax𝑞EI({𝒙(𝑘)}𝑘=1

𝑞 ) = argmax𝔼𝑛 (ReLu ( max
𝑖=1,..,𝑞

𝑓(𝒙𝑖) − 𝑓𝑛(𝒙+))) (2) 

where {𝒙𝑛𝑒𝑤
(𝑘)

}𝑘=1
𝑞

 is the 𝑞 newly proposed reaction conditions, 𝒙+ is the current optimal condition, 

and 𝔼𝑛 indicates that the expectation is taken under the posterior distribution at time n. Since it is 

challenging to derive the analytical expression of 𝑞EI function when 𝑞 is large, the Monte Carlo 

sampling is employed instead to simplify the calculation by implementing the numerical 

multivariate integral approximation.24,36 More detailed information of Bayesian optimizer in 

AROPS can be found in the Supporting Information. 

Scheduling modes. We constructed a multi-reactor/multi-analyzer platform simulator (RA 

simulator) to emulate the real-world automated reaction optimization platform for experimental 

task allocation and elapsed time calculation. It is assumed that reagent preparation and post-

reaction workup time can be ignored compared to the reaction and analysis time, and as such, the 
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experiment workflow in RA simulator only has two stages including reaction and analysis. In 

AROPS, we designed three scheduling modes, namely the synchronous-reaction/batch-analysis 

(SRBA), synchronous-reaction/instantaneous-analysis (SRIA), and asynchronous-

reaction/instantaneous-analysis (ARIA) (Figure 1). 

 

Figure 1. The sketch of (A) synchronous-reaction/batch-analysis, (B) synchronous-

reaction/instantaneous-analysis, and (C) asynchronous-reaction/instantaneous-analysis. They are 

three basic scheduling modes for multi-reactor optimization. 

The synchronous-reaction (SR) proposes a new batch of experiments simultaneously after 

previous batch has all completed, and in contrast, the asynchronous-reaction (AR) starts a new 

experiment whenever there is one previous sample finished. On the other hand, the batch-analysis 

(BA) means that a batch of samples will be sent for analysis together after they have all finished 

the reaction, while the instantaneous-analysis (IA) will start analyzing a sample as soon as it ends 

reaction. However, these three scheduling modes are the identical in the single-reactor/single-
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analyzer scenario. In the real-world automation hardware, the instantaneous-analysis and 

asynchronous-reaction require more flexibility in equipment operation than batch-analysis and 

synchronous-reaction. 

PI stopping criterion. The probability of improvement (PI) value is a measure of the possibility 

that candidates could have an improvement over the current optimal value (Eq.3). 

PI(𝒙) = ℙ(𝑓(𝒙) ≥ 𝑓(𝒙+) + 𝜉) = Φ (
𝜇(𝒙) − 𝑓(𝒙+) − 𝜉

𝜎(𝒙)
) (3) 

where 𝜇(·)  is GP’s mean, 𝜎(·)  is GP’s standard deviation, Φ(·)  is the normal cumulative 

distribution function, and 𝜉 is the trade-off parameter of exploitation and exploration. If 𝜉 = 0, PI 

is purely exploitative.22 Therefore, 𝜉 is usually set to a small positive value (0.01 was used in this 

work following a classic Bayesian optimization library, scikit-optimization37) to consider 

exploration. Compared to the EI value, the PI value has a relatively fixed range between 0 and 1. 

Moreover, calculating the PI is akin to calculating the p-value for the hypothesis test associated 

with the null H0: 𝜇(𝒙) > 𝑓(𝒙+). Based on this, Lorenz et al.38 proposed a stopping criterion by 

calculating PI value of each new candidate, 𝒙𝑛𝑒𝑤 , proposed by EI acquisition function. The 

Bayesian optimization algorithm will be terminated when PI(𝒙𝑛𝑒𝑤) < α , where α  is the 

significance level. We have adapted this stopping criterion to make it suitable for multi-reactor 

optimization (the optimization process employing multiple reactors). Newly proposed experiments, 

whose PI values are below a certain threshold. (e.g., 10-2, 10-4), will be regarded as the unpromising 

experiments. The optimization will be terminated when the number of proposed unpromising 

experiments reach a threshold number (e.g., 3). The choice of the threshold tradeoffs between the 

number of experiments and the confidence of the obtained global optima (see Supporting 

Information for detailed discussion). A smaller threshold will lead to higher confidence in finding 
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the global optimum and correspondingly more experiments, and vice versa. The Bayesian 

optimization with this PI stopping criterion is denoted as PISC-BO. 

PI discarding mechanism. In addition, we proposed a PI discarding mechanism (real-time PI 

value smaller than a certain threshold) to remove unnecessary experiments that are at a specific 

stage (reaction not started or in progress, or waiting for analysis) in the experimental process. It is 

aimed at avoiding further wasting experimental resources in the multi-reactor optimization. It is 

worth noting that in the same optimization process, the PI threshold used for PI discarding 

mechanism is consistent with that for PI stopping criterion. The modified scheduling modes 

combining the three scheduling modes above with PI discarding mechanism are denoted as SRBA-

PI, SRIA-PI, and ARIA-PI. 

 

Figure 2. The flow chart of AROPS. The steps in orange are unique to scheduling modes with PI 

discarding mechanism, and basic scheduling modes will skip these steps. 
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Execution of AROPS. Figure 2 illustrates how AROPS solves a chemical reaction optimization 

problem. Users first define the design space and prepare the corresponding reagents for the 

experiments. In the initial phase, random sampling is used to construct the coarse response surface. 

Then AROPS sequentially executes reaction, performs analysis, updates the data, fits GP model, 

and examines the PI values of ongoing experiments. Experiments, whose PI values are below a 

certain threshold, will be discarded avoiding further wasting experimental resources. Then 

according to the respective scheduling modes, new candidate experiments are proposed. Avoiding 

executing new experiments similar to previous ones can maximizing the information gain in the 

optimization task. Thus, the Euclidean distances of conditions’ feature vectors between the newly 

proposed experiments and ongoing and finished experiments are calculated, and newly proposed 

experiments with a minimal Euclidean distance below a small threshold value will be discarded 

(e.g., 0.001). In addition, newly proposed experiments with PI values smaller than the threshold 

will also be discarded. The optimization workflow will continue to iterate until the stopping 

criterion is met. 

Benchmarks. The systematic studies of AROPS were conducted on three different benchmarks 

(Scheme 1). 

Benchmark A (Scheme 1A) includes two reaction kinetic models developed and used by 

Reizman16 and Baumgartner.18 Case 1 introduces a consecutive side reaction in a simple bi-

molecular reaction A + B → R to produce the unwanted side product S1. Case 2 introduces a side 

reaction yielding the unwanted side product S2. The yield can be obtained by solving the ordinary 

differential equations (ODEs). Its design space consists of three continuous variables (i.e., reaction 

time, temperature, and catalyst concentration) and one categorical variable (i.e., catalyst type). The 

target is to find the optimal reaction condition to maximize the yield of R. The PI threshold was 
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set to 10-4 for this mixed continuous/categorical variable optimization problem with multiple local 

optima (see Supporting Information for details of selecting the PI threshold). 

Benchmark B (Scheme 1B) is a nucleophilic aromatic substitution (SNAr) reaction containing 

four continuous variables: reaction time, temperature, reagent concentration and equivalence.39 

The experimental data was regressed using a Bayesian neural network (BNN),40 and experimental 

noise was captured by the variance given by BNN. This benchmark was used to test the robustness 

of AROPS when experimental noise exists. The aim of optimization is to minimize the 

environment factor (E-factor), defined as the mass ratio of waste (by-products: 4 and 5) to product 

(6). Since this optimization problem only considers continuous variables, the PI threshold was 

chosen to be 0.01. 

Benchmark C (Scheme 1C) is a Suzuki–Miyaura C–C coupling reaction dataset reported by 

Pfizer,5 which was adopted in many works because of its data integrity.31,41,42 The design space 

has five categorical variables, consisting of 4 electrophiles, 3 nucleophiles, 12 ligands, 8 bases, 

and 4 solvents, giving a total of 4608 reaction condition combinations. The objective is 

maximizing the reaction yield of 8. This benchmark is introduced to evaluate AROPS’ 

applicability in handling design space only with categorical variables. The design space does not 

contain reaction time as the variable, namely every reaction completes at the same time. Thus, 

SRBA and SRIA scheduling modes are essentially the same, and they will be referred to as SRIA 

for Benchmark C. Since Benchmark C only has categorical variables, the calculated new 

experiments’ PI values are generally more than an order of magnitude larger than those in the other 

benchmarks. Therefore, a large PI threshold (0.1) is appropriate for Benchmark C. 
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Scheme 1.  Benchmark cases used for evaluating the different performance of AROPS: (A) 

reaction kinetic models, (B) nucleophilic aromatic substitution reaction, and (C) Suzuki-Miyaura 

reaction. The continuous and categorical variables represented by yellow and blue balls, 

respectively. See Supporting Information for the reaction design space and the optimal conditions. 

RESULTS & DISCUSSION 

Comparison of optimization algorithms. We first sought to compare AROPS’ PISC-BO with 

several black box optimization algorithms on the three benchmarks in the single-reactor 

optimization (SRO, executed in a sequential fashion), including random search, MINLP, D-

optimal design and SNOBFIT. PISC-BO and MINLP have self-termination mechanism when the 

global optimum is considered to be found, while others require users to specify the number of 

experimental trials before stop. For fair comparison, we set the same number of experimental trials 

for each algorithm, but marked the terminating point when PISC-BO and MINLP decided to 

terminate programmatically. Applicability of these algorithms in three benchmarks is shown in 

Figure 3E. Random search, D-optimal design, PISC-BO can be applied to all 

categorical/continuous variable optimization. MINLP algorithm loses its original characteristics 
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when applied to purely continuous or categorical variable optimization, thus evaluations on 

Benchmark B and Benchmark C were not carried out here. SNOBFIT can only be implemented 

for continuous variable optimization. Regret is the metric used for quantifying the capability of 

finding the global optima, which is defined as: 

 Regret = |𝑓(𝒙∗) − 𝑓(𝒙+)| (4) 

where 𝑓(𝒙∗)  is the true global optimum, and 𝑓(𝒙+)  is the current optimum found by the 

optimization algorithm. Lower regret indicates better optimization results. 

For Benchmark A (Figure 3A-B), neither the random search algorithm nor D-optimal can find 

the optimal conditions within the given number of experiments, indicating that the grid-like 

algorithms can only be used for coarse reaction screening. Both PISC-BO and MINLP algorithm 

can find the optimal reaction conditions, and PISC-BO requires fewer experimental trials than 

MINLP. For Benchmark B (Figure 3C), D-optimal, SNOBFIT, and PISC-BO all can get ideal 

optimization results. Since the optimal conditions lie at the boundaries of all variables, which 

makes the optimization relatively easy for the grid-like D-optimal algorithm. SNOBFIT 

demonstrates its ability to optimize continuous reaction variables, although it requires more 

experimental trials than PISC-BO and D-optimal. For Benchmark C (Figure 3D), since there are 

multiple reaction conditions giving high yields in the design space, the performance of all the 

algorithms is similar, and the PISC-BO still outperforms the others. In general, PISC-BO 

outperforms other algorithms significantly by reaching a lower regret value with fewer 

experimental trials, and it is applicable to the optimization of all types of variable combinations. 

The PI stopping criterion assists PISC-BO to terminate at an appropriate stage (soon after finding 

the global optima) instead of manually specifying the number of experiments. 
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Figure 3. Performance comparison of various optimization algorithms (PISC-BO, MINLP, 

Random search, SNOBFIT, and D-optimal design). The cumulative minimal regret gained by 

optimization algorithms on (A) Benchmark A Case 1, (B) Benchmark A Case 2, (C) Benchmark 

B, and (D) Benchmark C. The blue and green vertical lines represent the number of experiments 

required for PISC-BO and MINLP to terminate, respectively. The aggregated results are from 10 

random initializations. (E) The applicability of optimization algorithms to three benchmarks. 

Comparison between scheduling modes. In the multi-reactor parallel screening platform, the 

scheduling of different modules will have a great impact on the optimization efficiency. Among 

the three scheduling modes mentioned above, SRBA is the most widely used scheduling mode 

thanks to its simplicity, while SRIA and ARIA require more flexibility in hardware scheduling. 

Therefore, SRBA was used as a baseline to evaluate the performance of SRIA and ARIA. 

As shown in Figure 4, the performance of three scheduling modes was compared in terms of the 

required optimization time and the number of executed experiments (or reagent consumption). 

Compared to the single-reactor optimization, the multi-reactor optimization can significantly save 

elapsed optimization time without increasing optimization regret, but it consumes more 
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experimental trials. Except for Case 2 of Benchmark A, the elapsed optimization time shows a 

trend as SRBA>SRIA>ARIA. On the other hand, ARIA requires more experiments to complete 

the optimization compared to SRBA and SRIA. The results of different scheduling modes for 

Benchmark B and C are similar to those in Case 1 of Benchmark A (Figure S1 and Figure S5). 

 

Figure 4. AROPS’ performances on Benchmark A with various scheduling modes and different 

number of reactors. For Benchmark A Case 1 (A-C), the elapsed time (A), required number of 

experiments (B), and optimization regret (C) are plotted against number of parallelized reactors. 

For Benchmark A Case 2 (D-F), the elapsed time (D), required number of experiments (E), and 

optimization regret (F) are plotted against number of parallelized reactors. The results were 

obtained and averaged using 30 simulated runs with random initialization. The results for other 

benchmark cases are included in Supporting Information. 

Figure 5 illustrates the optimization process examples of the three basic scheduling modes. The 

utilization ratio of the devices shows a trend as ARIA>SRIA>SRBA, which is the same as the 

trend of their optimization efficiency. In cases of multi-reactor versus single-reactor or 

asynchronous-reaction versus synchronous-reaction, the increase in the number of experiments 

required is due to the fact that multi-reactor or asynchronous-reaction mode has a lower number 
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of evaluated experiments when the same number of experiments are proposed (Figure 6). This is 

equivalent to sacrificing the quality of the proposed experiments in order to pursue the maximal 

utilization ratio of the hardware. 

 

Figure 5. The Gantt charts of three scheduling modes: (A) synchronous-reaction/batch-analysis, 

(B) synchronous-reaction/instantaneous-analysis, and (C) asynchronous-reaction/instantaneous-

analysis. These Gantt charts are plotted for five reactors (R1-R5) and one analyzer (A1) 

configuration on Benchmark A Case 1. The red vertical lines represent the end of the optimization 

initialization phase. 
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As analyzed above, ARIA shows speed advantage on all the benchmarks over the other two 

scheduling modes thanks to its more efficient usage of the experimental platform. However, ARIA 

consumes slightly more time than SRIA on Case 2 of Benchmark A (Figure 4D). We speculated 

that this is because the optimal reaction time is obtained at the boundary of the specified range. In 

summary, it is reasonable to choose SRIA if the design space contains the reaction time as a 

variable. For the design space without the reaction time variable, it depends on the user's trade-off 

between optimization time and cost. Choose ARIA when short optimization time is desired, choose 

SRIA when small number of experiments is preferred. 

 

Figure 6. The number of proposed experiments versus the number of evaluated experiments 

diagram of SRO, 5-reactor synchronous-reaction, and 5-reactor asynchronous-reaction in the 

optimization process. 

PI discarding mechanism. The probability of improvement (PI) discarding mechanism is 

employed to abandon unnecessary experiments (usually considered to be too explorative or 

exploitative) in order to free up experimental resources for more promising or informative 

experiments, and, eventually, save optimization time and cost. This process is similar to the early-

stopping  strategy in the neural network hyper-parameter optimization, that is, the training of poor 

performance models is terminated in advance to save elapsed time and computational resources.43 
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Figure 7. The optimization performances comparison of scheduling modes with and without PI 

discarding mechanism. For Benchmark A Case 1 (A-C), the elapsed time (A), required number of 

experiments (B), and optimization regret (C) are plotted against number of parallelized reactors. 

For Benchmark C (D-F), the elapsed time (D), required number of experiments (E), and 

optimization regret (F) are plotted against number of parallelized reactors. The results were 

obtained and averaged using 30 simulated runs with random initialization. 

For Benchmark A and B, the modified scheduling modes with PI discarding mechanism 

typically have 10-20% reduction in time and number of experiments comparing to the 

corresponding pristine scheduling modes (Figure 7A-B, Figure S2, and Figure S5). Although 

implementing PI discarding mechanism resulted in slightly increased optimization regret, but still 

within a negligible range for organic synthesis optimization (Figure 7C). However, for Benchmark 

C, PI discarding mechanism did not show significant benefits in improving optimizing speed and 

cost savings (Figure 7D-E). This may arise from that GP has poor prediction accuracy when model 

inputs only have categorical variables, leading to large inaccuracy in the calculated PI values31,44 
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since its derived formula requires the corresponding predicted target values. Thus, some key 

experiments may be removed during the discarding step because of the inaccurate PI values. 

Reactor parallelization. With the rapid development of chemistry HTE technologies, 

automated experimental platforms can execute up to thousands of experiments simultaneously.5–7 

However, in the process of reaction optimization, due to the limited analysis throughput, the 

excessive reaction parallelization may not be beneficial to improving overall efficiency in finding 

the optimal conditions. Therefore, choosing a suitable number of reactors according to the analysis 

throughput is vital for finding the best balanced configuration in the multi-reactor optimization. 

We sought to understand the performance of AROPS under different reactor parallelism and 

analysis time on Case 1 of Benchmark A. The analysis time was set to 3, 10, and 20 minutes, 

covering a broad range relative to the optimal reaction time (20 min). The benefits of saving 

optimization time diminishes as the number of parallelized reactors increases (Figure 8A). This is 

caused by that the analyzer is too busy to process the finished reaction samples, resulting in the 

reactors being idle (operating time ratio decreases, Figure 8B). 

In order to compare the performance under different number of reactors, we introduced the time-

cost trade-off index (TCT index, Eq.5). 

𝑇𝐶𝑇 𝑖𝑛𝑑𝑒𝑥 =
𝑡𝑞 − 𝑡1

𝑡1
− 𝑘

𝑁𝑞 − 𝑁1

𝑁1
 

(5) 

where 𝑡𝑞  and 𝑁𝑞  are the time and number of experiments consumed by AROPS employing 𝑞 

reactors to complete the optimization tasks, respectively. 𝑘 is the user-defined trade-off parameter 

(𝑘 > 0). It is a linear combination of the time reduction (the first term) and the number of 

experiments rise (the second term) compared to the single-reactor optimization scenario. The 

larger TCT index is, the smaller time-cost consumption of optimization will be. 𝑘 depends on the 
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users’ preference to time and cost (set to 1 here). A large 𝑘 value corresponds to users’ preference 

to cost over time, and vice versa. 

In the case of SRIA-PI, Figure 8C shows that 5-reactor optimization is the most suitable 

regardless of the analysis time. Figure S3C indicates that in the case of ARIA-PI, 5-reactor 

configuration is the best only when the analysis time is 3 min, while 2-reactor configuration 

gives the best trade-off index with 10 min or 20 min analysis time. This difference should be 

caused by that the number of experiments required for ARIA-PI grows faster with the number of 

reactors compared to SRIA-PI. Thus, choosing a suitable parallelized configuration according to 

the experimental platform throughput and time-cost preference is essential to operate HTE 

platform in an efficient and affordable manner. 

 

Figure 8. The optimization performances of AROPS (SRIA-PI) under different number of reactors 

and analysis time (3,10 and 20 minutes) on Benchmark A Case 1. The elapsed time of the 

optimization processes (A), average operating time ratio of all the reactors (B), and time-cost trade-

off index (C) are plotted against number of parallelized reactors. The results were obtained and 

averaged using 30 simulated runs with random initialization.  

Analyzer parallelization. According to the analysis above, under the scenario of 12-reactor 

optimization with 20 min analysis time on Case 1 of Benchmark A, the average operating time 

ratio of all reactors is only 22% (SRIA-PI, Figure 8B). The congestion of samples at analysis 

module is the speed bottleneck, and thus, it would be beneficial to increase the number of analyzers 

to improve the efficiency. In fact, researchers have equipped the automated experimental platform 
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with multiple analyzers to improve the efficiency of reaction screening.6 When increasing number 

of analyzers to 2, 4, and 6, the optimization time was reduced by 34%, 46%, and 49%, respectively 

(SRIA-PI, Figure 9A). In addition, the reactor operation time ratio increased when analyzer 

operation time ratio decreased correspondingly (Figure 9B). However, the benefits of time savings 

significantly diminish when number of analyzers increases from 4 to 6. 

 

Figure 9. The optimization performance of AROPS (SRIA-PI) with multiple analyzers on 

Benchmark A Case 1. The elapsed time (A) and average operating time ratio of the reactors and 

analyzers (B) for 12-reactor configuration are plotted against number of parallelized analyzers. 

The elapsed time (C) and average operating time ratio of the reactors and analyzers (D) are plotted 

against different numbers of 3-1 combos. The results were obtained and averaged using 30 

simulated runs with random initialization. 

To generalize the results above, a certain number of reactors and one analyzer can be considered 

as a X-1 combo (X represents the number of reactors), such that each combo has a predefined 

optimization throughput and increasing the number of combos will improve system’s overall 

throughput while keeping a balanced reactor/analyzer ratio. For example, for 12-reactor and 4-
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analyzer configuration, it can be regarded as four 3-1 combos. As shown in Figure 9C, increasing 

the number of 3-1 combos will significantly reduce the time required to find the optimal condition. 

However, despite the variation in number of combos, the average operating time ratio of the 

reactors and analyzer remains almost unchanged and stays at a high value (Figure 9D), indicating 

that 3-1 combo is a proper pairing of reactors and analyzers. 

The effect of experimental noise. Despite that the automated experimental platforms can 

reduce human-induced variations and significantly improve repeatability, some minor 

experimental noise is sometimes unavoidable (e.g., inaccurate sampling and unstable LC UV-Vis 

detector). This noise generated can have a potential influence on the optimization process, which 

is usually manifested in the inability to find the optima and difficulty in optimization termination. 

In order to verify AROPS’ anti-noise performance, it was first tested on Benchmark B with BNN 

output. PI discarding mechanism can still effectively save optimization time and cost (Figure S5A-

B), and PISC-BO can still successfully find the minimal E-factor (Figure S5C). However, the noise 

level of Benchmark B is fixed, and it is difficult to quantitatively study the impact of different 

noise levels. Thus, we introduced Gaussian noises with different levels (Eq.6-7) to the objective 

function of Benchmark A and C. 

 𝑓(𝐱) = 𝑓(𝐱) + 𝑓(𝒙∗)ε (6) 

 ε~(μ, σ) (7) 

where 𝑓(𝐱) is the objective function with experimental noise, and ε is the experimental noise, 

which conforms to the Gaussian distribution. The mean μ is 0, and the standard deviation σ is 

taken as 0, 0.005, 0.01 or 0.05 in this work. A larger σ corresponds to a higher the noise level. It 

can be found that the addition of noise has little effect on finding the optimal reaction condition 

(Table S9), but it increases the required number of experiments (i.e., increasing the difficulty in 



22 

 

reaching the PI termination criterion, Figure 10). Due to the existence of noise, the model may 

give better results than the actual optimal value, resulting in the scenario that the PI value is still 

too high to terminate the optimization after finding the actual optimal conditions. Compared to 

Benchmark C, the addition of noise has a greater impact on the convergence of Benchmark A, 

probably caused by the fact that Benchmark A has multiple local optima close to the global optima. 

Overall, AROPS can effectively handle low-level experimental noise. 

 

Figure 10. The convergence performances of 5-reactor optimization in AROPS (SRIA-PI) under 

different levels’ Gaussian noise. The aggregated results are from 10 random initializations. 

CONCLUSION 

In summary, we developed a framework of automated reaction optimization with parallelized 

scheduling (AROPS) to facilitate reaction optimization. The state-of-the-art Bayesian optimizer 

(PISC-BO) implemented in AROPS can accommodate multi-reactor/multi-analyzer optimization. 

We evaluated AROPS’ optimization performance on three different benchmarks, covering major 

types of reaction mechanisms, objectives, and design space encountered in organic synthesis. This 

work provides guidelines for configurating the multi-reactor optimization (including the 

scheduling mode and the reactor/analyzer parallelization) based on time-cost preference and 

experimental hardware. The application of PI discarding mechanism can reduce the elapsed time 
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and costs in the multi-reactor optimization on most occasions. In addition, AROPS can tolerate 

low-to-medium experimental noise. 

Nevertheless, there are also some areas requiring further exploration and development in 

addition to this proposed framework: 

(1) For facilitating the result analysis in this work, we simplified the reaction screening process 

into two stages, reaction and analysis. However, in practice, this process generally includes sample 

preparation, reaction, workup, analysis, cleaning, and etc. The scheduling of these steps should 

also be considered and orchestrated to improve the execution efficiency. 

(2) The current performance of using Gaussian process and various molecular descriptors to 

predict reaction outcomes for reaction conditions that contain only categorical variables is 

suboptimal, resulting in failure of the PI discarding mechanism for Benchmark C. Therefore, it is 

beneficial to develop more advanced molecular descriptors and surrogate models that can be 

applied to Bayesian reaction optimization. 

(3) At present, the threshold value in PI discarding mechanism and PI stopping criterion needs 

to be manually specified. Improper threshold selection may lead to poor reaction optimization 

results or prolonged optimization time. It is desired to develop a mechanism to programmatically 

determine a stopping and experiment discarding criterion without human participation. Attempts 

have been made in other areas to develop such a mechanism, but a universal approach is still 

lacking.45–47 

DATA AND SOFTWARE AVAILABILITY 

AROPS algorithm and simulation experimental data is publicly available at 

https://github.com/Ruan-Yixiang/AROPS. 
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