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ABSTRACT 

Cysteine chemoproteomics studies provide proteome-wide portraits of the ligandability or 

potential ‘druggability’ of thousands of cysteine residues. Consequently, these studies are 

enabling resources for closing the druggability gap, namely achieving pharmacological 

manipulation of ~99% of the human proteome that remains untargeted by FDA approved small 

molecules. Recent interactive dataset repositories, such as OxiMouse and SLCABPP, have 

enabled users to interface more readily with cysteine chemoproteomics studies1,2. However, these 

databases remain limited to single studies and therefore do not provide a mechanism to perform 

cross-study analyses.  Here we report CysDB as a curated community-wide repository of cysteine 

chemoproteomics data that incorporates high coverage data derived from nine studies generated 

by the Backus, Cravatt, Gygi, Wang, and Yang research groups. CysDB is a SQL relational 

database that is publicly available at https://backuslab.shinyapps.io/cysdb/ and features 

chemoproteomic measures of identification, hyperreactivity, and ligandability for 62,888 cysteines 

(24% of all cysteines the human proteome). The CysDB web application also includes annotations 

of functionality (UniProtKB/Swiss-Prot, Pfam, Panther), known druggability (FDA approved 

targets, DrugBank, ChEMBL), disease-relevance and genetic variation (ClinVar, Cancer Gene 

Census, Online Mendelian Inheritance in Man), and structural features (Protein Data Bank). 

Showcasing the utility of CysDB, here we report the discovery and enrichment of ligandable 

cysteines in undruggable classes of proteins, the observation that a subset of cysteines showed 

marked preference for specific classes of electrophiles (chloroacetamide vs acrylamide), and that 

ligandable cysteines are present in numerous undrugged disease-relevant proteins. Most 

importantly, we have designed CysDB for the incorporation of new datasets and features to 

support the continued growth of the druggable cysteineome. 
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INTRODUCTION 

Small molecule chemical probes are useful tools for modulating protein function that can 

serve as leads for future medications. Therefore, ongoing efforts in the chemical biology 

community have set ambitious goals in matching every protein with a chemical probe3. 

Complicating matters, <1% of the human proteome has been pharmacologically targeted by an 

FDA approved small molecule. Cysteine chemoproteomics has emerged as an enabling 

technology that addresses this druggability gap by identifying thousands of functional and 

potentially druggable cysteines proteome-wide1-25.  Demonstrating this utility, prior cysteine 

chemoproteomic studies, including our own, have revealed a strikingly low overlap between 

proteins containing ‘ligandable’ or potentially ‘druggable’ cysteines and those that have been 

targeted by FDA approved molecules11. 

Cysteine proteomics experiments can be generally classified into four main categories: (1) 

identification, (2) measuring hyperreactivity, (3) measuring ligandability and (4) measuring redox 

state. (1) We consider identification studies as those aiming to increase coverage of cysteine 

containing peptides using label free quantification4-6. (2) Hyperreactivity experiments measure the 

intrinsic reactivity of cysteines towards highly electrophilic probes7-10, while (3) ligandability 

experiments measure the intrinsic ligandability or potential ‘druggability’ of cysteines using 

libraries of drug-like electrophilic molecules, natural products, and lipid derived electrophiles2,11,15-

19. (4) Finally, redox protocols are tailored to identify redox sensitive cysteines1,20-23. 

While the overarching objectives of these studies are non-redundant, they do share 

general features, including conceptually similar workflows and, most importantly, shared targets. 

In a standard cysteine chemoproteomics experiment for example, the proteome is treated with a 

pan-cysteine reactive probe, followed by enrichment on streptavidin resin, sequence specific 

proteolysis, and tandem liquid chromatography mass spectrometry analysis (LC-MS/MS).  

Despite considerable recent advances in instrumentation, sample preparation, and data 

analysis, most cysteine chemoproteomics studies only sample a small fraction of all cysteines in 
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the proteome, with the highest coverage studies sampling ~13% of all cysteines1,7,9. Reasons for 

this gap include protein abundance and restricted expression profiles, location of cysteines in very 

long or very short tryptic peptides, which are not detected in standard trypsin digests, and 

unreactive cysteines, such as those buried in the protein core or located in structural disulfides. 

Despite these technical limitations, the cysteinome continues to grow, with the addition of multiple 

high coverage new studies in this year alone6,10,14.  

The availability of easily searchable cysteine databases—including Oximouse1, the 

Ligandable Cysteine Database, and previously reported Cysteinome15—has increased the 

general accessibility of these large proteomics datasets, allowing rapid queries for targets of 

interest9,12,13. However, with the exception of the Cysteinome database, which was launched in 

2016 and is no longer publicly accessible, these databases are restricted to datasets derived from 

single publications.  

To facilitate future studies aimed at global or target focused analyses of the cysteinome, 

we envisioned the establishment of a unified cysteine-focused database that would fulfill the 

following criteria. First, the database would incorporate datasets from many large scale 

cysteinomic studies and therefore enable rapid and facile inter- and intra-dataset comparisons. 

Second, the database would include information about the reactivity and ligandability of cysteines 

together with the druggability of their corresponding proteins, as indicated by availability of FDA 

approved drugs. Lastly, and most significantly, the database would integrate functional and 

structural data from the UniProtKB/Swiss-Prot, Cancer Gene Census (CGC), ClinVar, Human 

Protein Atlas (HPA), ChEMBL, DrugBank and the Protein Data Bank (PDB)25-31, to enable 

prioritization of targets for future studies. Here we present the CysDB, which is an interactive 

database that fulfills these criteria for 62,888 cysteines and 11,621 proteins. Importantly, to 

facilitate the continued growth of cysteine chemoproteomics, we also provide a straightforward 

route for addition of future datasets. 
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RESULTS 

(1) Data curation to establish a set of processed and aggregated chemoproteomics 

datasets to enable CysDB. 

To enable the creation of the CysDB, our first step was to curate a set of publicly available 

datasets. With the overarching goal of establishing a high coverage and highly curated database 

to facilitate cross-dataset exploration, we opted to focus on a reduced set of available datasets. 

We prioritized studies that reported high coverage datasets that measured one or more of the 

following parameters: (1) total number of cysteines identifiable by the pan-cysteine reactive 

probes, (2) measurement of cysteine intrinsic reactivity towards iodoacetamide alkyne (IAA, 1) 

and (3) assaying cysteine ligandability (Figure 1A). We collected a total of nine datasets that 

fulfilled our criteria (Figure 1B for all datasets used)2,4-11.  

Notably, all of these studies rely on the same general cysteine chemoproteomic workflow: 

cells or lysates are treated with a cysteine reactive probe (Figure 1A, iodoacetamide alkyne (IAA, 

1) or an iodoacetamide desthiobiotin reagent (e.g., DBIA2 or IA-DTB8) to cap all accessible 

cysteines. Labeled proteins are subjected to enrichment on streptavidin or related resins together 

with sequence specific proteolysis followed by liquid chromatography-tandem mass spectrometry 

(LC-MS/MS). Several of our included studies7-9 further stratify cysteine intrinsic reactivity and 

pinpoint hyperreactive cysteines by comparing relative cysteine labeling by two concentrations 

(10x and 1x) of cysteine enrichment handle (Figure 1A and Figure S1). Signal intensity 

differences between 10 μM and 100 μM treated proteomes are reflected by a ratio (R[high]:[low]). 

Hyperreactive cysteines are defined as those with R10:1 values < 2, indicating labeling events that 

are not concentration dependent. Most included studies provide a metric of cysteine ligandability 

or putative druggability2,4-5,8,10-11, which is generated by comparing relative labeling by equimolar 

iodoacetamide in the presence and absence of electrophilic compound, with decreased labeling 

indicative of a high occupancy labeling event (Figure 1A and Figure S2).  
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To facilitate the production of a rigorously curated database, we subjected all prioritized 

datasets to a series of data processing steps tailored to the nature of the study. First, we 

aggregated all non-redundant cysteines published by all studies, using the unique identifier 

UniProtKBID_CYS#. For some studies2,4-9,11 residue positions and protein identifiers were 

provided in the publication's supporting information. For a subset of studies, the supporting tables 

instead provided labeled peptide sequences and protein IDs7,10. To merge these two data types, 

we mapped each peptide to the corresponding canonical protein sequence using the UniProt 

reference FASTA from January 2022—this approach recovered nearly all cysteines, with only 37 

dropped due to mismapping (Table S1), likely caused by differences in UniProt releases used in 

dataset search, as observed in our prior study9. For multi-cysteine-containing peptides with probe 

labeling detected at more than one cysteine, we generated separate identifiers for each cysteine. 

In the event of proteomic analyses comparing cysteine labeling using different experimental 

conditions (e.g., unstimulated versus stimulated cells), we opted to incorporate only the datasets 

derived from control (no treatment) conditions. Thereby, limiting the potential impact of cell-state 

dependent differences of cysteine reactivity as a potential confounder to our downstream 

analyses. Aggregation of all datasets, including results from using multiple cell lines2,4-11, resulted 

in the chemoproteomic identification of 62,888 unique cysteines and 11,621 proteins (Figure 1C 

& 1D), which to our knowledge represents the most comprehensive cysteinome dataset reported 

to date.  

  Using the studies reporting measures of cysteine ligandability or labeling by electrophilic 

fragments or druglike molecules, we further stratified our dataset to generate a master set of all 

ligandable cysteines. The datasets included in our database (Figure 1A) were all prepared using 

the same general workflow where samples (lysates or cells) were treated by either a vehicle 

(DMSO) or a cysteine-reactive electrophile functionalized compound and the compound-

dependent changes in IAA or IADB reactivity assayed by LC-MS/MS analysis. Prior analyses 

have revealed that comparable competition ratios can be calculated using either MS1 or MS2 
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level quantification2,4-5,8,10-11. Therefore, we opted not to differentiate between samples analyzed 

using different quantification methods, including isotopic labeling strategy (TMT or isotopically 

enriched biotinylation reagents)2,6, label free quantification and data independent acquisition (DIA) 

based MS2 level quantification (Figure S2 for general workflow)4,8,10. The vast majority (99.3%) 

of all compounds screened were found to be functionalized with either a chloroacetamide or 

acrylamide moieties (Figure S3). A small but notable subset of compounds did however feature 

alternative electrophiles, including covalent reversible cyanoacrylamides, fumarates, and 

activated esters—while activated esters are primarily lysine reactive our prior data indicates that 

they do also exhibit cysteine-reactivity32,33. 

All datasets included in our database relied on competition ratio cutoffs for what defines a 

cysteine as ‘ligandable.’ Peptides included in the aggregate dataset (those used for further 

bioinformatics and statistical analyses) were required to have been quantified in 3 experiments. 

Cysteines were categorized as liganded if they had at least two ratios R ≥ 4 (hit fragments) and 

one ratio between 0.5 and 2 (control fragments). When processing the ligandability data for each 

dataset, we observed manuscript-specific differences in the requirements for designating a 

cysteine as ligandable.  Exemplifying these differences, Cao et. al. 2021 implemented a slightly 

more permissive ratio cutoff of 3 to account for high field asymmetric waveform ion mobility 

spectrometry (FAIMS)-induced ratio-compression5. By comparison, Vinogradova et. al. 2020 

implemented a more stringent ratio cutoff of 58. Additionally, we observed non-universal data 

filtration strategies, including, for example, a requirement for an elevated ligandability ratio for at 

least two unique compounds. In contrast, other studies were more permissive and included 

cysteines with only single compound ligandability2,6,8. Another case we encountered was the 

inclusion of ‘ligandable’ cysteines where the unique identifier contained multiple modified cysteine 

residues, such as UniProtKBID_CYS#1_C#2. These types of identifiers are derived from peptide 

sequences simultaneously labeled with capture reagents at multiple cysteine residues 

(C1*XXXC5*) within the same sequence. Based on our experience with such peptides yielding 
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noisy ratios, we opted to remove them from CysDB.  Otherwise, despite the differences in defining 

ligandability, we opted to retain all remaining liganded cysteines to accurately represent each 

study’s reported findings. In aggregate across all ligandability studies, a total of 43,475 unique 

cysteines (Table S2) had quantified ratios, and 9,246 unique cysteines were deemed ligandable. 

These cysteines were found in 4,404 proteins (Figure 1C and 1D).  

Next, we processed the raw data from published datasets measuring cysteine 

hyperreactivity7-9. The three hyperreactivity studies included in CysDB measured the relative IAA 

reactivity towards two concentrations of IAA (10 μM and 100 μM), where a quantitative isoTOP-

ABPP ratio (R[high]:[low]) reflects the differences in signal intensities between the 100 μM and 10 μM 

treated proteomes. Highly reactive cysteines, termed ‘hyperreactive’ residues, were identified as 

those that exhibit saturation or near-saturation of labeling at the lower IAA concentration. All three 

publications utilized the same numerical ranges to delineate cysteines into ‘high,’ ‘medium,’ and 

‘low’ reactivity subsets, with high reactivity, also termed ‘hyperreactive’ residues as those with an 

R10:1 < 2, medium reactive cysteines between R100:10 >= 2 and R10:1 < 5 and low reactivity cysteines 

R10:1 > 5. During dataset processing,we observed that Weerapana et. al. 2010 and Palafox et. al. 

2021 report median values of all the replicates for each individual measure of cysteine reactivity, 

as well as an overall mean of medians to quantify the average reactivity per cysteine. In contrast, 

Vinogradova et al. reports the average of medians across all measurements. To accommodate 

these dataset dependent differences, we opted to report the mean of median ratio values for each 

detected cysteine. In aggregate, 8,604 cysteines on 4,032 proteins were quantified by these three 

studies, which resulted in identification of 489 hyperreactive cysteines and 426 proteins containing 

hyperreactive cysteines (Figure 1C and 1D).  

Collectively across all cysteines identified through our data aggregation efforts, 14% were 

deemed ligandable and less than 1% determined to be hyperreactive. Cross-dataset comparisons 

reveal the highest overall coverage dataset was reported by Yan et. al 2021 (Figure 1E and 

Figure S4)4, where an optimized SP3-FAIMS strategy was applied to analyze the proteomes of 
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seven cell lines, which in aggregate identified more than 34,000 cysteines on 9,714 proteins from 

7 cell lines (Figure S5).  A key outcome of the dataset aggregation required to build CysDB is an 

effective doubling of the size of the identified cysteineome. Collectively across all studies analyzed 

in CysDB, ~25% of all cysteines found on 57% of proteins in UniProt have been assayed at least 

once by chemoproteomics (Figure 1C and 1D).  

 

(2) Establishing an SQL database with an RShiny user interface for CysDB 

With a complete, curated dataset in hand, our next step was to construct the CysDB 

database and web user interface outlined in Figure 2A. Raw data from prioritized studies2,4-11 

were pre-processed into a standardized input format for SQL integration (See Table S1 for 

example data format and required information for future data integration to CysDB). Processed 

data from these selected sources was ingested and transformed into a database hosted in Google 

Cloud using MySQL v.8.0. (See Methods for more details on data preparation and processing). 

CysDB is a relational database composed of six individual tables (SI Figure S6). For public 

accessibility of CysDB, we developed a front-end, user interface powered by the Shiny framework 

(Figure 2B). Shiny converts queries from remote users into visualizations and results that are 

displayed on a web browser. Not only does our web application access the Cloud CysDB, but it 

additionally calls from both structural and functional external databases, including UniProt, 

COSMIC, ClinVar and PDB25-28,31. 

One challenge we faced during our processing of the raw data was one-to-one mapping 

of protein accessions to gene names for SQL querying. For gene-centric queries, not all HUGO 

Gene Nomenclature Committee (HGNC)34 or Entrez gene symbols are associated with a single 

protein. Gene sequences translated to the same protein sequence can lead to multi-mapping of 

various gene names to one UniProt accession9. In CysDB, we found that 16 UniProt entries were 

associated with multiple gene names. To address this limitation, we opted to construct CysDB 

using UniProKB accession numbers.   
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The CysDB RShiny interface enables the user to interact with cysteine chemoproteomics 

datasets, generate personalized figures, and download their results. Anywhere in the app, a user 

can save graphs as an image by clicking on a camera button at the top right corner and export 

query results to a CSV file by clicking a download button at the bottom of a table. The CysDB app 

includes five sections: Protein, Mutation, Enrichment, Compound, Statistics, and Datasets.  

First, users can visualize the CysDB data in a protein-centric manner by selecting the 

protein explorer button, which is found on the home page (Figure 3A). Search for protein of 

interest (POI) by querying a UniProt ID returns the ‘Protein Section,’ which is further broken up 

into three separate tabs detailing function, activity, and structure. The function tab reports 

functional annotations for the POI generated from UniProt, Gene Ontology (GO), Reactome, and 

STRING25,35-37, as well as a ‘site map’ indicating whether any cysteines in the POI that are 

hyperreactive or ligandable. The activity tab provides further stratification of cysteine 

hyperreactivity and ligandability, including the measured reactivity and competition ratios and the 

structures of all compounds that ligand the POI. Lastly, the structure tab provides the user with 

an easily accessible mechanism to visualize the three-dimensional protein microenvironment of 

chemoproteomic detected cysteines, including for structures reported in the PDB. 

The ‘Mutation Section’ of CysDB, which can be accessed by selecting the ‘Disease 

Explorer’ button on the homepage provides information complementary to that presented in the 

‘Protein Explorer’ section. Query for a POI yields the aggregate number of CysDB cysteines, 

missense variant identified in ClinVar, the public repository of relationships between human 

genetic variation and phenotype, and cancer gene census (CGC) genes mapped to the POI. 

Search also generates a one-dimensional depiction of the corresponding protein sequence 

decorated with the positions of CysDB ligandable and hyperreactive cysteines alongside 

individual missense variants, sequence elements, and known ligand binding sites (Figure 3B). 

To facilitate identification of clinically relevant protein regions containing ligandable and 

hyperreactive cysteines, the Disease Section of CysDB also provides the clinical significance for 
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variants as reported by Clinvar27, the public repository of relationships between human genetic 

variation and phenotype. To further enable pinpointing of cysteines relevant to human health, 

CysDB also provides CGC annotations of tumor types associated with POI, where relevant.  

Looking beyond individual POIs, the ‘Enrichment Section’ of CysDB was built to enable 

facile visualization and analysis of the aggregated CysDB datasets. Global analyses provided 

include functional pathway, ontology, and disease enrichments of CysDB categories. By mapping 

the UniProtKB protein identifiers to Entrez gene symbols, CysDB also enables user-directed 

enrichment analysis of the ligandable and hyperreactive cysteine subsets, powered by the Enrichr 

package38-39 (Figure 3C).  

As with the dataset-wide meta-analysis provided by Enrichment Section, the ‘Compound 

section’ of CysDB provides users with a global perspective of the electrophilic compounds 

employed in the CysDB cysteine ligandability studies. Included in this section are details of each 

compound used in the ligandability experiments, the CysDB compound abbreviation, 

corresponding publication abbreviation, and dataset. To facilitate future studies, this information 

is also provided as an easily downloadable table. Selection of individual compounds using the 

provided drop down menu affords a two-dimensional rendering of the chemical structure and 

computed properties of ‘drug-likeness,’ including the number of hydrogen bond donors and 

acceptors (Figure 3D)40-45.  

The final ‘Statistics Section,’ is accessible from the home page both via the 

chemoproteomics explorer button and from the left menu. The Statistics Section provides 

interested users with CysDB-wide metrics for hyperreactive and ligandable cysteine-containing 

proteins, proteins targeted by FDA approved drugs, proteins associated with cancer, and proteins 

containing missense variants. In a user-centric manner, this section also allows interested users 

to compare and contrast individual datasets including by identification of unique and overlapping 

residues and proteins. To further facilitate future studies that harness the CysDB datasets, the 

Statistics Section also provides downloadable versions of the aggregated and individual datasets 
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used to build CysDB—these datasets are also provided as supporting tables alongside this 

manuscript (Table S1).  

 

(3) Understanding the scope of the CysDB ligandable or putative ‘druggable’ proteome 

With the CysDB database established, our next step was to further stratify and parse the 

data available in CysDB with the overarching goals of showcasing the enabling features built into 

CysDB and facilitating the identification of new potential targets for future chemical probe 

development campaigns. More broadly, we also seek to highlight future opportunities for the 

cysteine chemoproteomic community. Given the aforementioned low overlap between FDA 

approved drug targets and proteins labeled by cysteine-reactive compounds for prior smaller 

cysteine chemoproteomics studies11, we next extended this analysis to CysDB. We find that less 

than 1% of all human proteins in UniProt have been targeted by FDA approved small molecules 

(Figure S7). As only 14.7% of all cysteines in CysDB were reported as likely ligandable, we next 

performed the same analysis on the subset of proteins in CysDB that contain a ligandable 

cysteine. Again, consistent with the prior reports that have demonstrated a low overlap between 

targets of covalent compounds and FDA approved drugs, we find that 3% of proteins that contain 

one or more ligandable cysteine have been targeted by FDA approved drugs (Figure 4A). 

Broadening this analysis to a less restrictive set of compound-protein interactions, we find that 

32.5% of proteins with ligandable cysteines have been targeted by small-molecules, as reported 

by ChEMBL, DrugBank, and the FDA (Figure 4B). These findings showcase the opportunities for 

targeting undrugged proteins using cysteine-reactive chemical probes.  

Prior studies have revealed that drug and putative drug targets are highly enriched for 

protein classes featuring well defined binding sites, including enzymes and receptors. Therefore, 

our next step to further characterize whether the CysDB members represent new druggable space 

was to parse the UniProt keyword functional annotations of all ligandable proteins in CysDB. 

Stratification of the CysDB ligandable proteins into two categories, targeted and untargeted by 



13 

FDA approved compounds, revealed a marked enrichment for enzymes in the FDA approved 

subset (Figure 4C). In contrast, the functions of the non-FDA subset of ligandable proteins in 

CysDB span a number of important protein classes, including notable enrichment for transcription 

factors (TFs), which are often categorized as a largely ‘undruggable’ class of proteins, with the 

notable exception of TFs with well-defined small molecule ligand binding pockets, such as nuclear 

hormone receptors.  

To further dissect the potential druggability of CysDB entries, we next stratified the 

compounds that target ligandable cysteine residues. A number of different electrophilic moieties, 

often termed ‘warheads,’ have been developed, which react with cysteine residues in both 

irreversible and covalent reversible modes of labeling46-49. Examples of these electrophilic 

handles include compounds that react via a thiol-michael addition (e.g., irreversible modifiers such 

as acrylamide, fumarate esters, vinyl sulfonamide together with reversible modifiers such as 

cyanoacrylamide), compounds that react via SN2 (e.g., alpha-halo compounds), as well as 

compounds that react via SNAr (e.g. halogen-substituted electron deficient heterocycles such as 

chlorotriazine). As prior studies have revealed varying proteome-wide reactivity and structure-

activity relationships (SAR) for different cysteine-reactive electrophiles, we next quantified the 

number of cysteines detected as labeled by individual electrophile chemotypes (Figure 4D, 

Figure S8 and Figure S9)2,50-55. We find that a large majority of the ligandability data were 

acquired for samples subjected to labeling by acrylamides (AA) and chloroacetamide (CA)-

substituted compounds (Figure 4D and S10), with a small fraction derived from additional probes 

ranging from cyanoacrylamides to dimethylfumarate listed in Table S2. Interestingly, we find that 

some cysteines react promiscuously with both AA and CA electrophiles, whereas others show a 

marked electrophile preference (Figure 4E). The proteins glutathione S-transferase omega-1 

(GSTO1) and carbonyl reductase (CBR1) exemplify the striking electrophile preference observed 

for some proteins (Figure 4F). For GSTO1’s the highly ligandable cysteine (Cys 32) exhibits 

strong preference for reacting with chloroacetamide (CA)-substituted compounds (1 to 29.5 in 
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favor of CA electrophiles). In contrast, cysteine 226 of CBR1 shows marked acrylamide (AA) bias 

(15.5 to 1 in preference of AA warheads).  

 

(4) Characterizing CysDB proteins based on structural, activity and functional annotations  

Given the sheer scope of available chemoproteomics datasets, one of the foremost 

ongoing challenges of cysteine chemoproteomic studies is the high throughput delineation of the 

functional impact of covalent cysteine modification. While for some cysteines, such as catalytic 

nucleophiles, covalent modification will almost invariably afford a defined functional outcome, the 

impact of modifying other less well annotated cysteines, such as those in proteins or protein 

domains of unknown function, remains less clear. To facilitate discovery of likely functional and 

disease-relevant cysteines, CysDB includes metrics of functionality from UniProt, known Cancer 

Gene Census (CGC), and genetic variants in ClinVar. These databases were chosen to provide 

measures of relevance to functional biology and human disease.  

We first harnessed UniProt annotations to determine which CysDB proteins had functional 

annotations of the following active sites, binding sites, catalytic activity, disulfide bonds and redox 

potentials. Analysis revealed 1,505 CysDB proteins possess an active site, 2,961 possess a 

binding site, 2,784 have experimental evidence for catalytic activity, 1,077 have annotated 

disulfide bonds and 6 have experimental evidence for redox potentials (Figure 5A). Comparable 

distribution of functional annotations was observed when stratifying the CysDB dataset to 

consider hyperreactive and ligandable proteins.  

To assess whether any CysDB cysteines were annotated as known active or binding sites, 

we parsed the UniProt site annotations for residue positions. This analysis revealed that, while 

cysteine is a relatively rare amino acid (2.3% of all proteinacious amino acids are cysteines1, 

cysteine is the second most abundant binding site amino acid and the third most abundant active 

site amino acid (Figure S11 and Figure S12). Overall, CysDB reports identification of 1,335 

(31.8%) of all known cysteines found in binding sites and 288 (49%) of all known cysteine active 
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sites (Figure S13). Out of the 4,198 cysteine specific binding sites, 178 of them have been 

liganded by a compound in CysDB. In addition, 90 out of the 583 cysteine active sites have been 

liganded by a compound in CysDB.  

Next, we extended this analysis to look for cysteines ‘near’ annotated active or binding 

sites using protein sequences. By searching 10 amino acids upstream and downstream from a 

CysDB identified cysteine, we were able to increase the number of cysteines proximal to these 

functional sites. In total, 574 ligandable and 46 hyperreactive CysDB cysteines are near binding 

sites (Figure S14) and 154 ligandable and 53 hyperreactive CysDB cysteines are near active 

sites (Figure S15). Consistent with measures of cysteine hyper-reactivity as providing a useful 

surrogate for cysteine functionality, we observed a marked increase for active sites in the 

hyperreactive subset compared with the ligandable subset (Figure 5B).  

As the Uniprot dataset is limited to 1D analysis, we next asked whether CysDB could also 

provide insight into the 3D microenvironment of identified cysteines, using structures reported in 

the PDB.  5,270 CysDB ID proteins (70%) of CysDB ID proteins are associated with an available 

PDB. Of these, 2,314 (31%) contain one or more ligandable cysteines and 279 feature at least 

one hyperreactive cysteine (Figure 5C). To establish whether a CysDB cysteine was resolved in 

a PDB structure, we parsed the residue numbers and coordinates from PDB files. To account for 

discrepancies between UniProt and PDB residue numbers, residue to protein sequence 

numbering was mapped using SIFT annotations56 (Figure S16). This systematic analysis 

revealed that 4,733 (14%) of CysDB identified cysteines are resolved in a corresponding crystal 

structure. Further stratification of this dataset revealed that 479 CysDB cysteines are proximal 

(within 10 Angstroms) to active site residues in 3D space (Figure S19 and Figure S20). To 

facilitate structure-guided analysis of cysteine datasets, CysDB provides users with 3D interactive 

renderings of cysteine-containing structures that include known functional annotations. 
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Notably, 8,214 proteins (71%) identified by chemoproteomics do not have highly supported 

evidence in UniProtKB for binding or active sites. Therefore, we next asked whether the CysDB 

platform could provide additional information about these proteins and corresponding identified 

cysteines to further aid in delineation of functionally significant cysteines.  To guide our platform 

development efforts, we tested whether the ligandable and hyperreactive cysteine-containing 

protein subsets are enriched for particular structural domains and functional pathways. 

Enrichment analysis of protein family (Pfam)60 domains elucidated a 30-fold enrichment of 

liganded proteins in the DEAD/DEAH box helicase family, which is consistent with our prior 

observation of enrichment for RNA binding proteins in chemoproteomics datasets (Figure 5D)58. 

Responsible for unwinding the duplex of double-stranded RNA, mutations in DEAD/DEAH 

proteins have been linked to autoimmune disease and some cancers, such as DEAD-Box 

Helicase 3 X-Linked (DDX3X) in medulloblastoma59-62. Pfam domain enrichment analysis for the 

hyperreactive cysteine subset, revealed an enrichment of thioredoxin and arginine kinase 

families. These findings are consistent with prior reports of redox enzymes featuring highly 

reactive cysteines7. Notably creatine kinase enzymes are members of the arginine kinase family 

of enzymes, which are known to have highly reactive active site cysteines7.   

We then extended these studies to Panther63 pathway analysis to assess if particular 

pathways are enriched for reactive or ligandable cysteines. We observe an enrichment of 

ligandable cysteine-containing proteins implicated in apoptosis (Figure 5E). Examples of 

ligandable cysteine-containing proteins include TP53, caspase-8, and APBB2. Given the central 

relevance in modulating cell death to treatment of numerous disorders, including cancers and 

neurodegenerative disorders, we expect that this observed marked enrichment indicates 

untapped opportunities for the development of probes targeting cell death64-65. The hyperreactive 

cysteine-containing protein by contrast was markedly enriched for proteins involved in integrin 

signaling. These findings are consistent with the aforementioned enrichment for hyperreactive 
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cysteines in the thioredoxin proteins and related antioxidant systems that are critical for regulation 

of integrin abundance, secretion, and disulfide formation66-67. 

 

(5) Stratifying CysDB proteins based on disease-relevant annotations, including cancer 

association and measures of genetic variation  

Building upon our analyses of protein function, we next assessed the human disease 

relevance of the CysDB proteins. Restricting our analysis to the ligandable and hyperreactive 

subsets, we next assessed which phenotypes were associated with CysDB proteins. Using 

disease annotations from the Online Mendelian Inheritance in Man (OMIM)68 knowledge base, 

ligandable cysteine-containing proteins showed a ~1.5 fold-enrichment for terms related to a 

broad range of cancers, including colorectal, breast and leukemia. The hyperreactive cysteine-

containing protein subset was enriched for terms associated with immune-relevant diseases, 

specifically those affecting the lymphatic system (Figure S25). We next assessed how many 

CysDB proteins are annotated as cancer driving genes, as assessed by the Cancer Gene Census 

(CGC)26. 77% of the proteins associated with CGC genes have been identified by CysDB 

(584/756) (Figure S28). 38% of CGC proteins are annotated as ligandable in CysDB, indicating 

untapped opportunities for the development of tailored therapies targeting driver mutations 

(Figure 6A). These results compare favorably to the 11% of proteins associated with cancer 

driving genes that have been targeted by FDA approved small molecules (Figure S29 and Table 

S2). We observed a marked difference in the number of available therapies for different cancers 

during our enrichment analysis for CysDB proteins associated with different tumor types. While 

acute myeloid leukemia (AML) genes are the most represented somatic tumor type in CGC, only 

5% of these genes are targets of FDA approved small molecules. By contrast, 13 out of 38 (34%) 

of non-small cell lung cancer (NSLC) genes have been targeted by FDA approved drugs. Towards 

addressing this therapy gap, CysDB detects most CGC genes associated with AML, 71 out of 81 

(88%) (Figure 6B). In fact, 36 of these AML genes have been liganded by a compound in CysDB, 
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such as class 2 AML genes nucleophosmin 1 (NPM1) and core-binding factor subunit beta 

(CBFB). 

Genetic variants, along with wild-type genes, can contribute towards harmful disease 

phenotypes. The ClinVar27 database provides a curated set of clinical significance for over a 

million genetic variants, which are classified as either benign, pathogenic, or variants of unknown 

significance (VUS). Overall, more than half of the proteins identified in CysDB have an associated 

ClinVar missense variant, of which 3,075 contain a liganded cysteine and 330 contain a 

hyperreactive cysteine (Figure 6C). Previously we reported a trend between chemoproteomic 

identified cysteines and missense pathogenicity, where chemoproteomic detected cysteine 

codons were predicted to be more deleterious than undetected cysteine codons9.  Consistent with 

the ubiquity of missense variants in ClinVar, the most common mutation associated with CysDB 

ID CGC genes are missense mutations26. Of the CysDB ID proteins that have a ClinVar missense 

variant, 4,418 proteins have a benign variant, 2,524 proteins have a pathogenic variant, and 3,333 

proteins have a variant of unknown significance (Figure S30). The proteins with the highest 

number of pathogenic variants are Fibrillin-1 (FBN1, UniProt: P35555) and Low-density 

lipoprotein receptor (LDLR, UniProt: P01130) (Figure 6D). Mutations in FBN1 are known to 

frequently cause Marfan syndrome by destabilizing disulfide bonds of conserved cysteine 

residues in epidermal growth factor (EGF)-like domains70. Additionally, LDLR contains cysteine-

rich repeats that bind lipoproteins. Loss-of-function mutations in these regions result in the 

disruption of cholesterol transport, leading to an increased risk of heart disease70-72. In addition to 

enabling human genotype-guided target prioritization, targeting variant-containing 

chemoproteomic detected proteins may also prove useful precision therapy development in a 

manner akin to the recent Gly12Cys directed KRAS compounds, including FDA approved 

Sotorasib73-76.  

 

 



19 

DISCUSSION 

Leading groups in cysteine chemoproteomics have discovered thousands of functional 

and potentially druggable cysteines proteome-wide1-9. These studies have yielded global 

measures of the SAR of compounds that target specific cysteines together with the intrinsic 

reactivity towards promiscuous electrophilic probes. Given the functional and clinical significance 

of identification of reactive and ligandable cysteines, the development of strategies that enable 

rapid cross datasets comparisons between these studies represents an important opportunity for 

the cysteine chemoproteomics community that will enable a more comprehensive understanding 

of the cysteinome. Here we present CysDB as such a tool that unites high coverage 

chemoproteomic measures of identification, ligandability, and hyperreactivity across multiple 

studies, together with integration with relevant resources to provide metrics of functionality and 

disease-relevance. CysDB achieves identification of an impressive 64,888 unique cysteines and 

11,621 proteins, which represents a ~100% increase in total number of identified cysteine 

residues compared to individual prior studies, with added potential for further growth as new 

datasets become available.    

As a first step to construct CysDB, we accumulated and curated a selected set of cysteine 

chemoproteomics studies, which were prioritized due to the high coverage of identified cysteines. 

During our stringent data curation, we observed study-dependent differences in conventions for 

designating a cysteine as hyperreactive and/or ligandable. To account for the potential uncertainty 

caused by a general absence of field-wide data analysis conventions, we retained all 

hyperreactive and/or liganded cysteines so as to accurately represent each study’s reported 

findings. The development of statistically rigorous conventions for the field will aid in normalizing 

future cross-dataset comparison efforts. As a simplest first approach, in our studies we have 

required comparable ratios with low standard deviations identified across multiple biological 

replicates together with inclusion of inactive control datasets to further facilitate removal of 

potentially spurious elevated ratios. For studies that rely on MS1-based quantification, so-called 
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‘singleton’ values, should be treated with an additional level of stringency, as these can prove 

more prone to yielding spurious ratios. These ratios are derived from peptides with precursor ions 

that have only been identified with either a heavy or light isotopic modification. Therefore, we 

followed general conventions for filtering singletons, by setting a maximum ratio value of 

log2(ratio) equivalent to 20 requiring identification of additional lower ratio ions. Future studies, 

including our own, will benefit significantly from harnessing advances in data acquisition and 

analysis to improve reproducibility, including imputation and data independent acquisition (DIA), 

as showcased by recent efforts by the Wang group77.       

Showcasing the utility of our efforts to generate CysDB, we find that by combining datasets 

generated across multiple cell lines and using different labeling reagents significantly increased 

our coverage of the cysteinome. We observed marked differences in cysteines identified in 

proteomes derived from different cell lines (Figure S5). We ascribe these differences in part to 

both cell state specific expression as well as the stochastic nature of data dependent acquisition 

(DDA), which is the acquisition method used to generate nearly all datasets analyzed.  However, 

not only did cell line selection impact our number of identified cysteines, but also the 

hyperreactivity and ligandability of individual cysteines. In its current iteration, CysDB provides a 

low-throughput mechanism to assess reproducible ligandability of cysteines across studies. 

However, the absence of shared compounds used across multiple studies has limited 

reproducibility analysis at the level of specific compounds. The marked bias towards 

chemoproteomic analysis of chloroacetamide and acrylamides points to largely untapped 

opportunities in expanding the scope of the ligandable cysteinome through assaying additional 

classes of electrophiles. One notable exception to this paradigm is the recent work by Yang et 

al.10 that validates many compounds assayed by DDA using a DIA approach. We hope that future 

studies will consider inclusion of several benchmark scout fragments to facilitate efforts in 

assessing the reproducibility of ligandable ratios across studies.  
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A key feature of CysDB is the inclusion of functional and disease annotations from 

UniProtKB, CGC, and Clinvar. We expect that the centralization of the annotations should allow 

for rapid prioritization of ligandable cysteines for future studies. Showcasing the utility of cysteine 

chemoproteomics to access tough-to-drug classes of proteins, we find a marked enrichment in 

transcription factors containing ligandable cysteines (Figure 4C). We also observe that the vast 

majority of Census driver genes contain a cysteine identified in a chemoproteomics study.  These 

findings together with our observation that a smaller but still substantial 38% of census genes 

contain a ligandable cysteine suggests opportunities for future studies to more comprehensively 

assess the ligandability of these genes.  

During our efforts to map annotations generated from genomics data (e.g., Clinvar/Census 

data), we encountered issues with mismapping for a subset of identifiers. While processing all 

datasets included in CysDB, we observed that a handful (16) gene names did not map to UniProt 

protein accession numbers in a one-to-one type of manner, during SQL querying; multiple HGNC 

or Gene Entrez symbols can be associated with a single protein identifier if the translated gene 

products are identical protein sequences25. Our use of UniProt accession numbers for query limits 

the potential for mismapping or multimapping during CysDB database search. Given the utility of 

a gene-centric search, we plan to incorporate such identifiers in future iterations of CysDB focused 

on facilitating future proteogenomic analysis. 

An ongoing goal of CysDB is to facilitate expanding the scope of the ligandable and 

potentially druggable cysteineome, particularly for functional and disease-relevant proteins. Given 

our observed bias in CysDB ligandability datasets towards chloroacetamide and acrylamide 

moieties, we expect that future expansions of the ligandable cysteinome may stem in part from 

chemoproteomic studies utilizing additional classes of electrophiles. In a similar manner, we 

expect that inclusion of datasets generated using alternatives to iodoacetamide as promiscuous 

cysteine-reactive capping agents, including for example hypervalent iodine-based probes19, 

should further increase coverage of labeled cysteines.  In this first iteration of CysDB, we have 
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opted to restrict our datasets to those generated through lysate-based proteomic studies, which 

eliminates challenges associated with deconvolving changes in protein abundance from direct 

cysteine labeling. Given the importance of cell-based studies for target discovery and hit-to-lead 

optimization, we look forward to including such datasets in future releases, particularly when 

combined with bulk measures of protein abundance. In a similar manner, we look forward to 

incorporating redox proteomics datasets in future iterations of CysDB, alongside generalized 

strategies to merge the diverse data formats generated by these studies. Looking to the future, 

we are enthusiastic about the continued growth of CysDB and encourage all interested users to 

consider submission of relevant chemoproteomics datasets that comply with our submission 

format (Table S1) and that include spectral files deposited in a public data repository, such as 

Pride78.  
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METHODS 

Datasets used  

Data sources Release Date URL 

UniProtKB/Swiss-Prot Fasta 2201-release https://www.uniprot.org/ 

UniProtKB/Swiss-Prot 2209-release https://www.uniprot.org/ 

COSMIC 2209-release https://cancer.sanger.ac.uk/c

ensus 

ClinVar 2209-release https://cancer.sanger.ac.uk/c

ensus 

Human Protein Atlas (HPA) Version 21.1 https://www.proteinatlas.org 

Enrichr Accessed Sept. 2022 https://maayanlab.cloud/Enric

hr/ 

Enrichr Panther 2016 http://www.pantherdb.org/pat

hway/ 

Enrichr Pfam Domains 2019 https://pfam.xfam.org/ 

Enrichr OMIM Disease  https://www.omim.org/downlo

ads 

 

 

 

Data Collection and Processing 
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Chemoproteomics data was collected from publicly accessible supplementary tables of previous 

literature2,4-11. Columns were parsed for UniProt protein identifiers and locations of the 

corresponding modified cysteine amino acid numbers to create a new identifier for CysDB: 

UniProtKBID_CYS#. For peptides modified at multiple cysteines, new identifiers were made for 

each cysteine position. Any cysteine classified as ‘ligandable’ or ‘hyperreactive’ is listed in CysDB 

as ligandable or hyperreactive. Individual ligandability and reactivity ratios found from each 

publication are listed in Tables S1, S2. In some cases for the ligandability and reactivity datasets, 

publications listed ratios for peptides simultaneously modified at multiple cysteines such as 

UniProtKBID_CYS#1_CYS#2, where the ratios provided for UniProtKBID_CYS#1_CYS#2 

differed from UniProtKBID_CYS#1. Thus, ratios for peptides modified at multiple cysteines were 

not included in further analyses. Compounds found in ligandability studies were stratified 

according to their cell line and chemotype. Unique identifiers for each compound were constructed 

based on their chemotype within the five categories: acrylamide, bromoacetamide, 

chloroacetamide, dimethyl fumarate (dmf) and others, such as ACRYL_#. Publication names for 

each compound and CysDB names are provided in Table S2.  

 

Peptide Mapping to UniProt Identifiers 

In the event amino acid numbers were not provided by the author, python scripts (available on 

GitHub) were utilized to map the listed peptide sequences to the canonical protein sequences of 

the 2201-release UniProt human fasta reference file, as this release is the only version saved in 

the UniProt archive for future mapping. Cysteines from unmatched peptides were removed prior 

to subsequent analyses. 

 

Gene to Protein Identifier Mapping 

Cancer Gene Census (CGC) website reports were downloaded Sept. 2022 and mapped to CysDB 

data using UniProt accessions. Due to frequent UniProtKB updates, Gene symbols reported in 
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the Cancer Gene Census were mapped to gene names in UniProtKB to identify the updated 

UniProt codes (2209-release). 

 

Database 

CysDB was created as a relational database using MySQL v.8.0. Overall, the database contains 

six tables and is hosted on Google Cloud. The major parent tables, ‘Datasets’ and ‘Identifiers’, 

were further broken down into child tables, such as ‘Ligandable’, ‘Reactive’, ‘Compound’ and 

‘Warheads’ (Figure S6).  The Datasets table contains information specific to each of the nine 

publications, while the Identifiers table contains information specific to each modified cysteine or 

protein identifier. Columns within Datasets and Identifiers include binary results for the following 

three categories: identified, hyperreactive and ligandable. However, individual competition ratios 

are listed in the Ligandable table and individual reactivity ratios are listed in the Reactive table. 

Calculated molecular properties for ‘druglikeness’ were acquired using RDKit45 and are stored in 

the ‘Compounds’ table. This table also contains the CysDB compound identifier mapped to their 

associated publication abbreviation or designated name. Finally, the warhead table holds 

chemotype classifications for each compound. The five chemotype classifications were as follows: 

acrylamide, bromoacetamide, chloroacetamide, dimethyl fumarate and other. 

 

Web Server 

The CysDB web application was developed using the Shiny R package 

(https://shiny.rstudio.com/). Schematics of protein sequence chains, domains and motifs on the 

CysDB web server are constructed using the drawProteins R package 

(https://github.com/brennanpincardiff/drawProteins). Interactive viewing of PDB crystal structures 

is performed using NGLViewR (https://github.com/nglviewer/nglview). Protein protein interaction 

networks are accessed via the STRING database (https://string-db.org/). Gene set library 

enrichment analyses are provided with the Enrichr R package (https://maayanlab.cloud/Enrichr/) 

https://shiny.rstudio.com/
https://github.com/brennanpincardiff/drawProteins
https://github.com/nglviewer/nglview
https://string-db.org/
https://maayanlab.cloud/Enrichr/
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and ontology enrichment plots are produced with the gprofiler2 R package 

(https://biit.cs.ut.ee/gprofiler/gost). All plots are generated with the ggplot2 and plotly 

(https://plotly.com/r/) R libraries.  

 

Dataset Addition to CysDB Guidelines 

Email submission materials to cysteineomedb@gmail.com with the following information: copy of 

publication, supplementary information, additional details for data filtering and note the version of 

UniProt used to obtain protein accessions. Proteins must be identified through UniProt 

accessions. Please use the format, UniProtKBID_CYS#, to indicate which residues have been 

labeled. For ligandability experiments using a variety of electrophiles, inclusion of SMILES strings 

and criteria for ‘ligandability’ classification is required (ex. R >= 4 for at least two compounds). 

Table templates and additional information for submission requests can be found in Table S1.  

Data and Code Availability 

 

The data set and source code are available at https://github.com/lmboat/cysdb 
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Figure 1. Dataset selection and curation for the creation of CysDB. (A) Table of all datasets 

used as input for CysDB, including which datasets were utilized in each chemoproteomic category 

(identified, hyperreactive and ligandable)2,4-11. (B) General workflows for three categories of 

chemoproteomic methods included in CysDB that use iodoacetamide alkyne (IAA, 1) or an 

iodoacetamide desthiobiotin reagent (DBIA2 or IA-DTB8, 2) to capture cysteines for: (i) high 

coverage identification of cysteine-containing peptides. (ii) quantitative profiling of intrinsic 

cysteine reactivity, and (iii) assaying cysteine ligandability using an electrophile of interest. (C-D) 

Quantification of the unique proteins (C) and cysteines (D) found in the Human UniProtKB/Swiss-

Prot database, together with the identified, ligandable, and hyperreactive chemoproteomics 

subsets in CysDB. (E) Study-specific breakdown of total number of unique cysteines, including 

those that are identified as hyperreactive and ligandable. Data available in Table S1. 
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Figure 2. Workflow to generate CysDB SQL database. (A) Data extracted from nine datasets 
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(Table S1) was transformed and loaded into a MySQL relational database on the Google Cloud 

Platform. An accompanying front-end web interface was developed using RShiny to allow for 

remote-user querying of the SQL database. (B) Home page of the CysDB app publically available 

at https://backuslab.shinyapps.io/cysdb/.  
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Figure 3. CysDB outputs based on protein (A), disease (B), dataset (C) and cysteine-reactive 

compound wise queries (D). (A) Users can search for a protein of interest (POI) in the search bar 

on the protein page. The function tab provides general information on the POI, including 

subcellular locations, GO/KEGG terms and protein-protein interaction maps. In addition, centered 

on the function tab is a ‘site map,’ indicating which cysteines have been identified, liganded or 

hyperreactive by chemoproteomics. By clicking on the activity tab, one can assess the potential 

druggability of their POI through small-molecule binding annotations and heatmaps for 

quantitative chemoproteomic measures of hyper-reactivity and ligandability. For a comprehensive 

view of the structural environment surrounding the chemoproteomic detected cysteines, publicly 

available 3D crystals structures are displayed in the structure tab. Users can choose which 

structure is shown, add customized labels. (B) The disease-relevance of a POI can be explored 

through the mutation page. Proximity of chemoproteomic detected cysteines, annotated small-

molecule binders and variants of ranging clinical significance are visualized on a one-dimensional 

schematic of a protein sequence. Chemoproteomic cysteines are colored in gold for identified, 

orange for ligandable and pink for hyperreactive, while the remaining points are variant positions. 

(C) Users can specify subsets of data available in CysDB, such as by compound chemotype or 

ranges of reactivity ratio, for pathway, ontology, and disease enrichment analyses. From these 

dataset wise queries on the enrichment page, a user can then download their results as a CSV 

formatted table or a bar graph as an image. (D) Chemical structures and calculated ‘drug-likeness’ 

properties of compounds used to ligand cysteines in CysDB can be accessed from the dropdown 

menu in the compound page. 
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Figure 4. Cysteines with available ligandability data. (A) Overlap between CysDB ligandable 

(LIG) proteins and proteins targeted by FDA approved drugs. (B) Overlap between CysDB LIG 

proteins, proteins targeted by FDA approved drugs, small molecules in DrugBank and ChEMBL. 

(C) Distributions of protein functions for CysDB LIG proteins not targeted by FDA and CysDB LIG 

proteins targeted by FDA. (D) Grouped bar graph showing the number of unique ligandable 

cysteines targeted by acrylamides or chloroacetamide for each dataset. (E) Bar graph of the 

overall number of unique cysteines targeted by acrylamides or chloroacetamide. (F) Percentage 

of acrylamide and chloroacetamide compounds with a ratio >= 4 for protein carbonyl reductase 

(CBR1, UniProt: P16512) and protein glutathione s-transferase omega-1 (GSTO1, UniProt: 

P78417). Data available in Table S2. 
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Figure 5. Cysteines with available functional and structural annotations. (A) CysDB 

identified, ligandable and hyperreactive proteins with annotated active sites, binding sites, 

catalytic activity, disulfide bonds and redox potentials. (B) Distributions of ligandable (green) and 

hyperreactive (light blue) cysteines annotated as cysteine-specific binding sites (top) or cysteine-

specific active sites (bottom). The total number of cysteines in UniProt annotated as binding or 

active sites are shown in gray. (C) Percentage of CysDB Lig (top) and hyperreactive (bottom) 

cysteine containing proteins with an associated PDB structure. (D) Top-10 enriched protein 

domains from Pfam-term enrichment analysis of liganded (green) and hyperreactive (light blue) 
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proteins. (E) Top-10 enriched pathways from Panther-term enrichment analysis of liganded 

(green) and hyperreactive (light blue) proteins. Data available in Table S3. 

 

 

 

 

Figure 6. Assessment of the scope of disease-relevant proteins contained in CysDB of 

biologically relevant proteins using cysteine chemoproteomics. (A) Overlap between 

proteins associated with cancer by the Cancer Gene Census (CGC), CysDB ligandable proteins 

and CysDB hyperreactive proteins. (B) For the five most abundant tumor types in CGC, the 

number of CGC genes targeted by FDA approved drugs (CGC_FDA), non-FDA targeted CGC 

genes identified in CysDB (CysDB_ID), non-FDA targeted CGC genes liganded in CysDB 

(CysDB_LIG) and non-FDA targeted CGC genes not identified in CysDB (CGC_Other). (C) 

Overlap between proteins associated with ClinVar variants, CysDB ligandable proteins and 

CysDB hyperreactive proteins. (D) Top ten CysDB identified proteins with the highest number of 

benign missense variants (teal), missense variants of unknown significance (VUS) (gray) and 
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pathogenic missense variants (purple). Data available in Table S4. 

 


