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Abstract  

Methane mitigation from the oil and gas (O&G) sector represents a key near-term global climate action 

opportunity. Recent legislation in the United States requires updating of current methane reporting 

programs for oil and gas facilities with empirical data. While technological advances had led to 

improvements in methane emissions measurements and monitoring, the overall effectiveness of 

mitigation strategies rests on quantifying spatially and temporally varying methane emissions more 

accurately than current approaches. In this work, we demonstrate a quantification, monitoring, reporting, 

and verification framework that pairs snapshot measurements with continuous emissions monitoring 

systems (CEMS) to reconcile measurements with inventory estimates and account for intermittent 

emissions events. We find site-level emissions exhibit significant intra-day and daily emissions variation. 

Snapshot measurements of methane can span over three orders of magnitude and may have limited 

application in developing annualized inventory estimates at site-level. Consequently, while official 

inventories underestimate methane emissions on average, emissions at individual facilities can be higher 

or lower than inventory estimates. Using CEMS, we characterize distributions of frequency and duration 

of intermittent emission events. Technologies that allow high sampling frequency such as CEMS, paired 

with a mechanistic understanding of facility-level events, are key to accurate accounting of short-
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duration, episodic, and high-volume events that are often missed in snapshot surveys, and to scale 

snapshot measurements to annualized emissions estimates.  

Keywords: methane emissions, MRV framework, continuous monitoring systems, oil and gas, 

certification 

Synopsis: We use multi-scale measurements to demonstrate a universal framework to improve the 

accuracy of oil and gas methane emissions estimates. 

1. Introduction 

Reducing methane emissions from the oil and gas (O&G) supply chain is a key component of near-term 

climate action [1]. Over 100 countries have pledged to reduce methane emissions 30% by 2030 as part of 

the United Nations 2021 Conference of Parties [2]. The Inflation Reduction Act (IRA) imposes a methane 

fee on oil and gas facilities emitting over a certain methane intensity threshold [3]. The CHIPS and 

Science Act authorizes the establishment of a Center for Greenhouse Gas (GHG) measurements, 

standards and information to improve spatially and temporally resolved GHG measurements [4]. 

Innovation in technologies to quantify methane emissions can now enable target-based approaches to 

emissions mitigation and differentiation across operators. The potential for these new mitigation 

approaches has led companies, investors, consumers, and governments to focus on finding ways to 

accurately monitor, measure, and mitigate methane emissions [5]–[7]. Characterizing the GHG intensity 

of individual supply chains through a life cycle approach is critical for informing differentiated gas 

supplies and policy frameworks that depend on accurate emissions estimation [8]. The success of these 

new approaches, therefore, rests on our ability to accurately measure methane emissions that accounts for 

spatial and temporal variations and the skewed nature of emission distributions [9].  

Recent advances in methane measurement technology have improved our understanding of methane 

emissions [10]–[14]. Large-scale ground and aerial surveys in the Permian basin demonstrate the 

importance of identifying intermittent super-emitters [15], [16]. Cusworth et al. showed that the average 

persistence of large emissions is only about 26%, suggesting the need for continuous measurements to 

detect and mitigate such events [16]. A detailed study of temporal variations in methane emissions 

suggests potential impact of measurement time on emissions estimates where one-time events like liquids 

unloading preferentially occur during certain periods of the work-day [17]–[20]. The effectiveness of and 

trust in approaches to address methane emissions, therefore, depends on the availability of accurate 

methane emissions estimates that vary in frequency, duration, and across geographic locations. 
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Empirical measurements of methane have also highlighted the limits of conventional inventory 

development using activity and emissions factors [21]. Analysis of recent field measurements across 

O&G production facilities in the US and Canada show that, on average, measured emissions are 

approximately 60% higher than official inventory estimates [22], [23]. This is because engineering-based 

methods rely on component-level activity and emissions factors that are often outdated or poorly 

characterized and emissions from high-emitting or super-emitting events are not accounted for [21], [24]. 

A decomposition study of this discrepancy between measurements and inventory pointed to an 

underestimation of emission factors associated with tanks and equipment leaks [21]. Most bottom-up, 

component-level studies of methane emissions show highly skewed distributions – from sites that do not 

have any detectable emission to sites with emissions orders of magnitude larger than the sample average 

[9], [25]–[27]. Furthermore, intra-day variations in emissions from specific equipment like tanks have 

also been observed [18]. Thus, except in simple site configurations, low frequency snapshot 

measurements tend to have high variability and are unsuitable for asset-level differentiation. Advances in 

technologies such as continuous emissions monitoring systems (CEMS) could provide the high-resolution 

data needed to characterize temporal variability in methane emissions [28]–[30]. Recent research has also 

shown a systematic variation in emissions over time as wells get older and the composition of oil, gas, 

and liquids change [31], [32]. Compared to a conventional inventory, snapshot measurements may result 

in either under- or overestimation of site-level emissions. To develop a more accurate annualized 

emissions inventory estimate at site level, measurements require high temporal resolution to detect and 

quantify intermittent emission events [31], [33]. 

Many jurisdictions have used leak detection and repair (LDAR) programs to mitigate methane emissions 

from O&G operations [34]–[36]. Recent randomized controlled experiments suggest that these programs 

are effective in reducing fugitive methane emissions [37], [38]. However, several recent studies note that 

the majority of methane emissions come from large equipment (e.g., storage tanks), malfunctioning or 

episodic sources that are not typically considered leaks [21], [39], [40]. These abnormal emissions have 

limited or no “monitoring” benefits from typical annual or bi-annual LDAR programs nor can they 

reliably be independently verified solely by top-down aerial or drone monitoring methods due to low 

sampling frequency. Yet, accurate estimation of these abnormal emissions is important for emissions 

assessment for subsets of oil and gas supply chains. No currently existing technology is sufficient on its 

own for capturing the temporal fluctuations of methane emissions, which is necessary to develop accurate 

annual emissions estimates. 

Under the conventional engineering-based inventory development methods, all operators are required to 

use identical national-level emissions factors that limits operator differentiation to differences in activity 
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data without any consideration for design, operational, or maintenance practices. Thus, conventional 

engineering-based inventory estimates of emissions have limited application in target-based approaches to 

emissions reduction. The Inflation Reduction Act (IRA) directs the U.S. Environmental Protection 

Agency (EPA) to update the current engineering-based reporting requirements with empirical 

measurement-based data to accurately reflect methane emissions from the reporting facilities [3]. 

However, no empirical measurement protocol has been demonstrated to provide reasonably accurate 

supply chain specific methane emission estimates necessary to assess target-based emissions reduction 

claims. The U.S. federal government has created an inter-agency task force to identify and deploy tools to 

measure, monitor, report, and verify GHG emissions [5]. Yet, currently available frameworks do not 

provide the level of transparency and rigor to be able to build trust among the public through independent, 

third-party verification.  

The significance of accounting for spatial and temporal variations in emissions through multi-scale, 

contemporaneous measurements has been documented in literature [18], [41]. In this work, using multi-

scale measurements of methane emissions across three U.S. natural gas basins, we demonstrate the role of 

high spatial and temporal resolution data in advancing target-based approaches to emissions mitigation. 

Through this multi-basin field study, we describe how a measurement framework that accounts for spatial 

and temporal variations in methane emissions can help improve emissions inventory estimates. 

Importantly, this study could serve as a guideline for a universal framework for measurement-based 

protocols. Stakeholders in the O&G industry, government, and financial organizations can adapt this 

framework for more representative emissions estimation across the supply chain.  

2. Methods  

The multi-scale measurement approach is embedded within a quantification, monitoring, reporting, and 

verification (QMRV) protocol. This protocol combines different elements of a measurement-based 

framework that together provides improved inventory estimates. These elements include emissions 

quantification through multi-scale measurements, analysis and monitoring of intermittent emission 

activity, detailed reports on site operations and measurement schedule, and an independent verification 

process. Details of the QMRV protocol are provided in the SI (see SI section S1). Here, we describe the 

measurement framework and results that are central to the QMRV protocol. The measurements were 

conducted in two phases – a baseline phase to estimate emissions at all sites prior to the beginning of the 

study and an enhanced monitoring phase that involved collection of high spatial and temporal resolution 

data at each site.  

2.1. Design 
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A total of 38 facilities from five natural gas producers participated in the study, referred to as the QMRV 

project, across the Marcellus, Haynesville, and Permian basins, accounting for over 0.4 billion cubic feet 

per day (bcfd) in the aggregate. The QMRV project consisted of three phases: baseline emissions 

measurements with multi-scale methods, enhanced monitoring using CEMS for a period of 6 months, and 

an end-of-project aerial snapshot measurement (SI section S1). We deployed four snapshot emission 

measurement technologies concurrently at these enrolled facilities during the baseline phase, and two 

CEMS technologies for continuous monitoring during the 6 months of enhanced monitoring phase [6].  

The snapshot measurements include an optical gas imaging (OGI) camera paired with a Hi-Flow sampler, 

a drone-based mass balance technology by SeekOps, Inc. (“SeekOps”), an aerial LiDAR plume 

identification system by Bridger Photonics (“Bridger”). All three technologies have undergone controlled 

tests and field trials in the past with the performance data made public through peer-reviewed studies 

[10], [42]–[44]. In addition, GHGSat conducted satellite measurements concurrently at the enrolled assets 

when weather conditions allowed. Operators are aware of measurement schedules of each measurement 

technology. The OGI team and SeekOps require site access to measure emissions, whereas Bridger does 

not require site access or operator presence to conduct their measurements. Because of the speed of aerial 

surveys, Bridger was tasked with observing emissions from non-enrolled assets operated by the producers 

participating in the QMRV project, to assess if emissions at sites selected for monitoring are 

representative of the producers’ local assets. OGI with Hi-Flow measures emissions at the component-

level, similar to conventional LDAR programs and can distinguish between leak and vent emissions. 

SeekOps and Bridger detect and quantify emissions at the equipment-level and typically do not 

distinguish between leaks and vents. Facility level emissions are estimated by aggregating individual 

component- and equipment-level emissions. In this paper, we have anonymized the basin names and 

present results from the baseline phase and key observations from the enhanced monitoring phase of the 

project. 

2.2. Field measurements 

The OGI, SeekOps, and Bridger teams collected data from 8 facilities in Basin A from June 20-24, 2021, 

from 5 facilities in Basin B from July 26-28 and August 3, 2021, and from 25 facilities in Basin C from 

August 23-26, 2021. Multiple surveys were conducted by each measurement technology, depending on 

survey speed and time, and were designed to be contemporaneous to ensure comparability of the 

measured data. SeekOps, which typically takes 1 – 3 hours per facility, completed up to 2 surveys of each 

site. Bridger Photonics, being an aerial technology, measured each site 6 – 11 times over 4 – 5 days across 

all basins. Several recent peer-reviewed studies describe the performance parameters of these 

technologies in detail [10], [44]. Emissions attribution was done by direct data collection from 
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technologies and cross-referencing with operator insight and field photos. The OGI team recorded the 

equipment associated with emitting components in their survey reports. SeekOps reported emissions by 

equipment group in basins A and B. In basin C, SeekOps was unable to measure at the equipment-level 

due to operator’s safety policy that sets flight distance restriction for their drones. Therefore, SeekOps 

only provided site-level emissions data. Bridger reported emissions by location on site without source 

identification to specific equipment. To attribute emissions, we compared the field photos from Bridger 

against those from SeekOps and Google Earth and manually labeled the equipment for each emission 

source. Satellite observations were conducted at the 38 facilities. However, the instrument’s sensitivity to 

cloud cover and aerosols in the atmosphere and surface features like water bodies resulted in few 

successful measurements. A satellite measurement is successful when conditions allow for data 

acquisition, regardless of whether an emission is identified. During the baseline phase, satellite data 

collected on days with favorable environmental and atmospheric conditions did not see any emissions 

from any of the enrolled facilities, likely because of the high detection thresholds for satellite-based 

emissions detection.  

CEMS were installed at facilities in basin A and basin B for a 6-month period to assess temporal 

variations in methane emissions and estimate the frequency and duration of intermittent emission events. 

Each site had 3 – 4 sensors depending on the size of the facility, the number of equipment with potential 

to emit methane, and the prevailing wind direction and local geography. 

2.3. Inventory estimation  

Site-level measurements from SeekOps and Bridger are used to develop measurement-informed inventory 

(MII) estimates. MII refers to a composite emission estimate for a site based on measurements from all 

technologies that surveyed the site. Measurements from OGI are not included in these estimates because 

OGI does not capture all emission sources at a facility such as engine slip and hence underestimates site-

level emissions (see SI section S2) [45]. SeekOps provided a summary report of measured emissions and 

wind-roses with detailed notes at each site. Measurements from all equipment on each facility were 

aggregated to calculate the full facility-level emission rate. A high-resolution field photo was also 

provided for each facility. Bridger conducted 2-3 rounds of measurements per day for each facility 

including multiple passes over the same facility during each round of measurement and provided a 

detailed breakdown of measured emissions from each pass by emissions location. We first calculate the 

average emission rate from an equipment in each round by averaging across multiple passes. Emissions 

across all equipment were aggregated for each round to estimate site-level emissions. Finally, emissions 

across multiple rounds on the same day were averaged to estimate a daily average emission rate for each 

facility (see SI section S4).  
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In addition to measurements, each operator was also required to submit conventional emissions inventory 

reports, estimated through EPA’s GHG Reporting Program (GHGRP) methods for individual sources 

[46]. Emissions that are known to be excluded in the GHGRP were also provided as supplementary 

information to allow comparison of measured emissions with inventory estimates (see SI section S3).  

3. Results 

Each measurement by a technology is assumed to be an independent and true (within measurement 

uncertainty and technology limitations) snapshot estimate of methane emissions. Thus, multiple 

measurements at a single facility are treated as independent and equally valid data points and are averaged 

with equal weight to all other measurements. Because measurements by both SeekOps and Bridger were 

contemporaneous, potential diurnal variations in emissions is not expected to bias this approach.  

3.1. Inventory estimates vs. measurements  

Figure 1 shows a parity chart of individual site-level methane emissions across three basins measured 

using the aerial (Bridger) and drone-based (SeekOps) survey platforms as well as the operator-estimated 

methane inventory calculated using GHGRP methodology. We make several critical observations. First, 

site-level methane emissions measured through snapshot surveys span over three orders of magnitude – 

from less than 50 standard cubic feet per hour (scfh) to over 10,000 scfh. This suggests that conventional 

inventory estimates are not representative of site-level emission on the time scale of hours to days. 

Second, average site-level emissions measured across each basin are higher than inventory estimates, a 

finding in line with recent published studies [22], [23]. For example, average site-level emissions, 

averaged across both measurement technologies, in basin A, basin B, and basin C are 1081 scfh, 473 scfh, 

and 373 scfh, respectively. By comparison, the average GHGRP-based inventory estimates in the three 

basins are 201 scfh, 432 scfh, and 97 scfh, respectively. Third, significant variation in site-level emissions 

implies that measured individual snapshot emissions can be lower or higher than inventory estimates, 

depending on the time of measurement. In basin A, 2 out of 8 sites have measured emissions lower than 

inventory estimates as measured by both Bridger and SeekOps. In basin B, all five sites have measured 

emissions by Bridger lower than inventory estimates. On the other hand, GHGRP-based estimates of 

emissions in 3 out of 18 sites in basin C are consistently at least one order of magnitude smaller than 

measured emissions. Thus, while it is true that aggregate measurement-based estimates of emissions are 

higher than inventory estimates, they are not sufficient for site-specific inventory development. This can 

be attributed to the use of static emissions factors in inventory estimates associated with time varying 

emission sources such as fugitives or tanks. Measuring the frequency, duration, and volume of such time 

varying sources is critical to developing quasi real-time, site-specific emissions estimates. Fourth, site-
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level emissions exhibit significant intra-day variation. Repeat measurements of site-level measurements 

by Bridger show up to an order of magnitude variation in emissions – these are not restricted to specific 

site-types but generally observed across all three basins. For example, one site in Basin B exhibited 

emissions between 51 scfh and 1062 scfh, with a GHGRP-based inventory estimate of 295 scfh.  

Figure 1: Parity chart of individual, aggregate, site-level emissions (y-axis) as measured by Bridger 

Photonics (Figure 1a) and SeekOps (Figure 1b) in comparison with GHGRP-based inventory estimates 

(x-axis) for each of the sites in basins A (turquoise circles), B (yellow squares), and C (purple triangles). 

All measurements were conducted in one week at each basin. Error bars indicate measurement 

uncertainty of Bridger and SeekOps technologies as determined through controlled release tests [11], 

[44].  

3.2. Equipment-level temporal variation in emissions  

Site-level temporal variation in emissions can be attributed, in part, to specific equipment groups. Figure 

2 shows temporal variation in tank emissions from sites in basin A and B measured by both Bridger and 

SeekOps. Recent field studies of methane emissions have demonstrated that tanks are one of the largest 

sources of methane emissions from upstream O&G facilities [37], [39]. Measurements in both basin A 

and B show that distribution of individual emissions measurement from tanks span over three orders of 

magnitude – from as low as 10 scfh to around 10,000 scfh. Averaging emissions from each site across all 

measurements, we calculate average tank emission rates of 597 scfh and 239 scfh in basin A and basin B, 

respectively. Thus, individual estimates of tanks emissions can be multiple standard deviations away from 

the time-averaged emissions estimate, indicating that snapshot measurements will be insufficient to 

develop accurate annualized site-level emissions estimates. More importantly, reconciling top-down 

measurements and bottom-up inventory estimates would be impossible without an understanding of the 
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frequency and duration of emissions events from equipment groups such as tanks. Variations in tank 

emissions may be caused by process conditions such as the frequency and volume of unloading 

operations from wells and separators, malfunctioning equipment, or maintenance issues. In addition, 

ambient temperature and liquid levels in tanks can also affect observed methane emissions. Establishing 

the bounds of emissions variation through monitoring is key to developing updated emissions inventory 

estimates. It is hence paramount to effectively estimate the duration and frequency of such intermittent 

emissions, which requires the use of a high sampling frequency measurement system.  

Figure 2: Aggregate tank-level methane emissions measurements by Bridger (red circles) and SeekOps 

(blue triangles) at all sites in basin A and basin B. Datapoints show both repeat measurements conducted 

on the same day as well as multi-day measurements at a site. Inventory estimates at these sites are 

between 40 and 700 scfh (see Figure 1).  

The variation in tank emissions shown in Figure 2 is tightly linked to total site-level emissions. Figure 3 

shows total site-level emissions in basins A and B, disaggregated by three major equipment types 

typically seen at upstream production facilities – tanks, gas processing units (GPU), and wellheads. Each 

column represents a round of measurement by either Bridger or SeekOps. Emissions not associated with 

these three major equipment categories are classified under ‘other’ – these can include piping, meters, or 

other co-located equipment. We make a few important observations. First, emissions vary by about an 

order of magnitude across basins, with basin A exhibiting significantly higher emissions associated with 
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tanks compared to basin B. Second, tank emissions dominate total emissions in both basins, contributing 

58% and 50% of total emission in basin A and basin B, respectively. Thus, variability in site-level 

emissions is dominated by variability in tank-related emissions. Third, basin characteristics can 

significantly affect the composition of equipment-level emissions. Although tanks contribute the majority 

of emissions in both basins, GPUs contribute only 14% of total emissions in basin A but 33% of total 

emissions in basin B. Thus, a non-dominant equipment type in one basin could be a dominant equipment 

type in another, underscoring the need to understand basin characteristics to inform measurement and 

sampling procedures.  

 

Figure 3: Site-level emissions in basin A (top) and basin B (bottom) disaggregated by three major 

equipment groups: tanks (turquoise), gas processing units (pale green), wellheads (beige), and other 

equipment on site (pink). Each bar represents a single round of measurement by either Bridger or 

SeekOps and is sorted in descending order of site-level emissions. Tanks are the dominant emission 

source in both basins, although gas processing units contribute a larger share of total emissions in basin 

B (33%), compared to basin A (14%).  

3.3. Intra-day temporal variations 

Intra-day variation in methane emissions can be significant. These can arise from process conditions such 

as separator dumps or liquid levels on tanks, environmental conditions such as ambient temperature, or 

equipment failure such as broken level indicators and thief hatches. Figure 4 shows time series of same 

day measurements of tank emissions as recorded by Bridger and SeekOps across basins A and B. Most 
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measurements occurred within a span of 8 hours at each site and varied by over an order of magnitude 

within a given day. Specifically, Site S3 exhibited the greatest variation with a low measurement below 

detection threshold and a high measurement of over 15,000 scfh. Bridger measured this high tank 

emissions coming from four emissions locations on three closely located tanks on site. Thus, the ability to 

identify short duration but high-volume events is critical to develop accurate annualized emissions 

inventories. Multi-pass measurements with aerial technologies reveal the importance of characterizing 

intra-day emission variations. Moreover, while emissions attribution of measurements from aerial 

technologies is an ongoing field of research, correlating operational data with snapshot measurements can 

help with root cause analysis. The key to explaining any discrepancy between measurements and 

emission inventory estimates requires an improved understanding of the frequency and duration of 

emissions from variable sources such as tanks.  

 

Figure 4. Time series of tank-related methane emissions observed on each site by Bridger Photonics (red 

circles) and SeekOps (blue triangles), where each row represents a site. The area of the dots represents 

volume of emissions. All times are in local time of measurement.  
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3.4. Using continuous emissions monitoring system (CEMS) to estimate frequency and duration 

of intermittent emission events  

Repeated snapshot methane measurements using SeekOps and Bridger technologies demonstrate the 

importance of understanding the nature of temporal variations to develop accurate annualized inventory 

estimates. Without data on the frequency and duration of intermittent emissions events, it would be 

impossible to directly compare methane emissions seen by one or a few top-down snapshot measurements 

to an annualized inventory. For example, annual average emissions at a site with significant contribution 

from uncontrolled tank emissions (Figure 3, basin A) will be strongly correlated with the frequency and 

duration of tank flash emissions. A snapshot aerial or drone-based measurement that happens to capture 

an intermittent emission event may not provide an accurate annualized emission estimate for the site, as 

emissions events may be infrequent. This top-down measurement needs to be scaled by the typical 

frequency and duration of events on the site to make a direct comparison to the annualized inventory. 

CEMS provides a means of estimating the frequency and duration of common emission events on a site-

by-site basis (see methods and SI section S4.3). These sensors provide near-continuous concentration 

measurements without needing a human operator. While reliable site-level or equipment-specific 

emission quantification is still an open problem, current CEMS can act as an indicator for methane 

emission events [47]–[49]. See Figure S13 in the SI for an example of emission events on an enrolled 

asset that were captured by the CEMS. Figures S2-S7 and S13 indicate that CEMS can detect small 

methane concentration enhancements on the order of 1ppm. The CEMS used in this study were used 

during the 6 months of enhanced monitoring phase as event detection sensors since quantification was not 

available. Because event detection relies on large changes in methane concentration, the analysis 

presented here is invariant to potential calibration errors or uncertainty in absolute concentration 

measurements. Future work will focus on emissions quantification using CEMS data. 

As outlined above, understanding the distribution of methane emission event frequencies and durations is 

critical for accurate scaling to annualized inventories for production sites. We outline a framework for 

doing so here and show initial results. First, we use CEMS to record ambient methane concentrations at 

participating facilities. Typical CEMS technology provides 1-minute averaged data on atmospheric 

methane concentration, local wind speed, and wind direction. Second, we translate these concentration 

data into a log of emission events by applying a spike detection algorithm to the maximum concentration 

reading across sensors on a minute-by-minute basis. Working with the maximum across sensors 

simplifies the problem by collapsing multiple signals into one while preserving the spikes that we are 

interested in analyzing. The spike detection algorithm uses a gradient-based method to flag elevated 

methane concentrations and group them into events, which can be later filtered by their background-
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corrected amplitude. This algorithm does not distinguish between operational and fugitive events. A 

detailed description of the spike detection algorithm can be found in the SI section S4.3. Third, after 

recording a sufficient number of events, we estimate the distribution of time-between-events (referred to 

as “wait times”) and event durations. The advantage of using this probabilistic framework is that the 

distribution of event wait times and durations can be refined as more data are collected, thereby helping 

develop custom, site-specific distributions over time. Furthermore, we can use Monte Carlo methods to 

sample from these empirical distributions and scale the less-frequent top-down measurements that happen 

to capture intermittent emission events. As CEMS deployment expands, future work can explore these 

methods to develop facility and equipment-specific emissions statistics to scale snap-shot measurements. 

Figure 5 shows the empirical distribution of emission event durations and wait times for all emission 

events identified by the spike detection algorithm using a background-corrected amplitude threshold of 20 

parts per million (ppm). This value was selected to isolate concentration spikes that were notably higher 

than background readings. Note, however, that thresholds from 10-30 ppm were tested, and the 

conclusions we present here are consistent across thresholds (see SI section S4.2 for details). We do not 

attempt a root-cause analysis for the events presented in Figure 5, as current CEMS solutions do not 

provide reliable localization capabilities. Therefore, a root-cause analysis at this stage would depend on 

records of site activity provided by the operator. Since record keeping practices varied across operators, 

we believe this would introduce unnecessary biases. Future work will use CEMS for source localization. 

Also, no CEMS data were collected in Basin C. 
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Figure 5. Empirical distributions of emission event durations (Figure 5a and 5c) and wait times (Figure 

5b and 5d) between subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and 

basin B (bottom panel, purple). CEMS data spans October 2021 to March 2022. Note that a wait time of 

78 days was omitted from subfigure (b) for visual clarity. 

Figure 5 shows that many CEMS-detected emission events are short duration, with 49% of the events 

from Basin A and 76% of events from Basin B lasting less than 2 hours. Based on operational and 

supervisory control and data acquisition (SCADA) data from Basin B, many of these short-lived events 

could be attributed to blowdowns and welldown events. This highlights the importance of high frequency 

measurements when developing accurate emissions estimates of subsets of an oil and gas supply chain, as 

monthly or even weekly measurements are likely to miss these short-lived events. While this matters less 

for basin-level average emissions estimates, it is essential in small sample size applications such as 

individual supply chains or assessments for small geographic regions. Furthermore, the slightly heavier 

tail in subfigure (a) compared to subfigure (c) indicates that events (i.e., elevated methane concentrations) 

tend to last longer in Basin A than Basin B. Finally, subfigures (b) and (d) show that events in Basin A 

tend to occur more frequently than events in Basin B, with a median wait time between events of 1.1 days 

in Basin A and 1.9 days in Basin B. 

This analysis is currently performed at the site-level and aggregated to the basin-level. As more data are 

aggregated from each site, the event duration and wait time distributions can be estimated for specific 

types of emission events such as blowdowns, thief hatch leaks, or liquids unloading events. Using current 
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CEMS technology, this will require operator insight (e.g., operation logs or SCADA data) to translate the 

list of events into a list of likely sources. This more detailed approach will make the probabilistic scaling 

framework described above more accurate, as different types of emission events likely have different 

distributional characteristics. It will also allow for a more detailed root cause analysis of the differences 

observed across basins in Figure 5. Future work will also use a localization algorithm in conjunction with 

operator insight to estimate sources for each emission event. 

4. Discussion 

Our multi-scale field measurements described here find the following:  

(1) Methane emissions in all three basins exhibit significant intraday and daily variation, resulting in a 

range of three orders of magnitude in snapshot measurements both at the site-level and at the 

equipment-level, 

(2) GHGRP-based inventories, on average, underestimate methane emissions at the basin-level. 

However, individual sites can have significantly lower emissions than inventory estimates, and 

(3) Characterizing operator-specific distributions of the frequency and duration of intermittent emissions 

events is critical to developing an accurate annualized emissions estimate. 

Accurate estimates of average emissions at the basin-level are insufficient for developing target-based 

policies such as methane fees, methane border adjustment or low leakage certification frameworks. 

Individual transactions involving natural gas, even at high volumes, can be sourced from a small number 

of high-producing assets, and there can be significant design, operational and maintenance variation that 

impacts emissions even within a basin or sub-basin [16], [50]–[52]. In this context, multi-scale 

measurements of methane emissions have demonstrated the need for a robust approach to improve 

emissions inventories. 

Based on results of this study, we recommend the following four guidelines for measurement protocols to 

accurately estimate methane emissions and inform mitigation strategies.  

1. Snapshot measurements are needed to quantify all methane sources at the equipment- or site-level 

to help reconcile measurements with inventory estimates. While site-level estimates are sufficient 

for providing a measurement-based inventory, equipment-level data can help reconcile 

measurements with inventory estimates and provide data to develop mitigation strategies. 

2. Measurements to develop distributions of the frequency and duration of intermittent emissions 

events are key to annualize any snapshot measurement. Because events can last less than 24 

hours, high sampling rate technologies like CEMS will likely be needed to develop these 
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distributions. Though CEMS do not yet provide accurate quantification data, their use as event 

detectors informs near real-time mitigation strategies. 

3. Detailed record-keeping of one-time events, maintenance activities, and upset conditions will 

help to reconcile measurements with engineering-based inventory estimates and to correlate 

emissions with specific work-practices enabling development of appropriate mitigation options.  

4. Independent verification of measurements and quantified emissions, along with operational data, 

using transparent, peer-reviewed approaches can enable trust-building with the broader public. 

This verification must go beyond satisfying a checklist of operator actions but involve academic 

experts who can provide an independent evaluation of all relevant data.  

Several studies have demonstrated that official inventories underestimate average methane emissions 

[22], [23]. Yet, such inventories are often a major component of any operator or government’s climate 

action plans. These inventories form the official basis for domestic regulations as well as submissions to 

international collaborations such as the UNFCCC process. Given that, it is important to leverage 

measurements to reconcile and bridge the gap between measurement-based and engineering-based 

inventory estimates. While site-specific measurements represent an improvement over existing 

conventional inventory methods like the GHGRP, snapshot measurements have their own limitations 

associated with temporal variability in emissions. A major open question in methane science is the 

distribution and frequency of intermittent emission events. While large sample sizes could make up for 

temporal variation in developing basin-level emissions estimates, such an approach is inadequate for 

developing target-based approaches to facility-level mitigation policies. Multi-scale measurements at each 

facility that provide quantitative information on emissions volume and frequency and duration of 

intermittent events are necessary to identify and update equipment-level or facility-level emissions factors 

in national inventories. This targeted approach where data from the field is used to continuously update 

inventory assumptions will help bridge the gap between measurements and inventory estimates over time. 

Furthermore, such detailed information on intermittent events can also be used to updated process-based 

models such as the Methane Emissions Estimation Tool (MEET) to better align with observations [53], 

[54]. As technology – especially CEMS flux algorithms and emissions localization capability – improves, 

it would be possible to provide real-time estimates of site-level methane emissions that can be used in lieu 

of engineering-based inventory estimates for each site. 

The key to building trust for regulators, investors, and the public in a framework for monitoring methane 

emissions is through independent, third-party verification. The goal of this verification should encompass 

both evaluating the validity of direct measurements as well as to provide robust uncertainty bounds on 

emissions based on operational and maintenance records, emissions and activity data, and an inventory 
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estimate that has been reconciled with measurements. The role of an independent third-party is not only 

important to provide impartiality, but also the necessary expertise to understand both methane emissions 

and data analytics. There are several ways to perform verification. One approach would be to undertake 

multiple snapshot verification measurements, across relevant temporal and spatial scales at a 

representative group of facilities and compare verification measurements with that of reported emissions 

estimates [55]. Statistical models can then be used to evaluate if the posterior likelihood of the 

verification measurement data is consistent, or not, with the reported inventory estimates. Another 

approach would be to use data from CEMS installed at sites to independently estimate emissions through 

publicly available modeling tools. It is important to have CEMS on a representative sample of the sites to 

be verified, which will change depending on the basin and operators involved. Measurement approaches 

should be based on basin-specific characteristics of methane emissions but the key to effective mitigation 

is the ability to independently verify emissions estimates.  

This work has demonstrated the need for multi-scale measurements, including snapshot measurements 

and high frequency CEMS to accurately estimate methane emissions. In addition to improving methane 

emissions estimates, many measurement technologies can identify and reduce methane emissions in the 

near-term, identifying leaks at the equipment-level and acting as event detectors, which will provide 

operational as well as climate benefits. While we recognize the challenges of going from zero to multi-

scale measurements, operators should consider developing monitoring plans that ramp up over a 

reasonable period. Technology developments of the past few years have made developing quasi real-time 

estimates of supply chain methane emissions using networked sensor data in a transparent and trusted 

manner increasingly likely.  
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Supporting Information 

S.1 Elements of a QMRV protocol  

The elements of the quantification, monitoring, reporting, and verification (QMRV) protocol developed as 

part of this study are outlined in this section. Operators were expected to use this protocol as a guideline to 

develop site-specific QMRV plans. The protocol is designed to be flexible so operators could choose a 

technology for methane measurements that best suited the activity and emissions profile of their sites. There 

are four main elements to the QMRV protocol. 

1. Development of a QMRV plan  

2. Emissions inventory estimation and reporting  

3. Multi-scale emissions monitoring  

4. Independent verification  

The four elements are summarized in Figure S1 and further described below.  

 

Figure S1. Four major elements of the QMRV plan include (1) preparation of the QMRV plan by the 

operator, (2) initial inventory and emissions intensity estimation, (3) monitoring that includes periodic 

surveys (phase-1) and the use of continuous emissions monitoring system (CEMS, phase-2), and (4) 

verification.  

Element 1- Development of a QMRV plan: 

The intent of the QMRV plan is to provide operators with the agency to make choices about emissions 

monitoring, reporting, and verification on their sites, within the guidelines established through this protocol. 
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As part of the QMRV plan, the operator is expected to identify the list of sites along with activity data that 

are enrolled in the program, specify emissions estimation and reporting methods, including any 

supplementary emissions data that are typically not included in conventional inventories such as the EPA 

greenhouse gas reporting program (GHGRP) or those specified by other regulatory agencies such as the 

Environment and Climate Change Canada. In addition, the operator specifies the technologies that will be 

used in the monitoring element of the protocol, mitigation methods and work practice standards employed. 

The total number of sites enrolled in a QMRV program is based on a fixed total production volume. If the 

enrolled assets are only a fraction of the total assets owned and/or operated by the operator, they should 

include a list of non-enrolled sites in the basin that are not part of the QMRV plan. This is necessary to 

survey non-enrolled assets using top-down measurement approaches to ensure representativeness of the 

enrolled assets in the QMRV program.  

Element 2- Emission Inventory Estimation and Reporting:  

For each enrolled site, the operator is expected to calculate and report the operator estimated inventory 

which includes GHG emissions, GHG emissions intensity and methane emissions intensity by employing 

methods identified in section S3. These estimates should be based on empirical activity data from the 

enrolled sites and EPA-specified emissions factors. In addition, the operator should also include 

supplementary emissions information that account for known deficiencies in the GHGRP such as methane 

slip from exhaust using AP-42 emissions factors. Finally, other known sources of emissions that are not 

included in the GHGRP can also be included (see section S3). These include small combustion sources that 

do not need to be reported, methane emitted for operational activities such as truck-loading, emissions from 

operational issues such as improperly open thief hatches, improved emissions tracking of blow-through 

from dump valves, flare and combustor downtimes and inefficiencies, small blowdowns, or compressor 

starts. The operator must include all emissions from handling of the gas stream, from the enrolled assets at 

production sites through to central handling facilities, even if the central handling facilities are downstream 

and away from the well site. As central handling facilities may also handle production from other well sites 

that are not included in the QMRV program, the operator will only include a portion of the total emissions 

from these central handling facilities. The fraction of the central handling facility emissions will be in 

proportion to the gas volumes received from the wells enrolled in the QMRV program. In all cases, the 

methodology to develop the composite inventory (GHGRP + supplemental inventory, see section S3) 

should be specified in the QMRV plan and must be maintained throughout the duration of the QMRV 

program. 

Element 3 – Multi-scale emissions monitoring:  
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Operators will undertake up to two phases of emission measurement and monitoring on all enrolled sites. 

Phase-1 consists of periodic leak detection and repair (LDAR) surveys using survey-type technologies at 

a minimum monthly survey frequency. Phase 2 consists of enhanced monitoring using continuous or 

near-continuous emissions monitoring systems (CEMS) to detect intermittent, high-volume, emission 

events and to initiate mitigation actions faster than a periodic survey would allow.  

Phase-1 monitoring consists of monthly LDAR survey using OGI-based infrared cameras or snapshot 

approaches such as aerial or drone-based measurements. Any LDAR survey is required to measure all 

emissions at the facility, not just fugitive emissions or leaks in order to enable comparisons to top-down 

measurements. These include sources such as storage tanks, compressors, inefficient flares, and pneumatic 

controllers. Alternative monitoring programs can be proposed by the operator for Phase-1 if they can 

demonstrate mitigation equivalence with monthly LDAR surveys using models such as FEAST [56]. The 

operator is expected to maintain detailed records of these surveys including emission events, repairs 

undertaken, and potential causes for repair delays. In addition, operators are required to conduct weekly 

surveys using audio, visual, olfactory (AVO) detection, EPA method-21, or other appropriate technology 

to catch episodic emissions that might occur between the monthly surveys. Phase-1 monitoring should also 

focus on detecting abnormal methane and CO2 emissions from the sources at the site. If abnormal emissions 

are detected during a LDAR survey – regular or informal – the operator must investigate, repair (or 

otherwise address) any problems, record the survey results and any actions taken, and either measure or 

estimate total emissions released based on an estimated duration of the emissions. 

Phase-2 enhanced monitoring consists of deploying an appropriate CEMS across all enrolled sites. The goal 

of the Phase-2 monitoring is to capture intermittent and short-duration emission events that can occur 

between surveys. Recent studies have demonstrated that intermittent emissions contribute significantly to 

total basin-level emissions [16]. Without a near-CEMS approach to identifying the frequency and duration 

of such events, snapshot measurements are unlikely to provide an accurate annualized emissions estimate. 

Furthermore, the distributions of the frequency and duration of intermittent events for each operator and 

basin can be used to appropriately scale snapshot measurements to estimate annualized emissions. Finally, 

CEMS data provides real-time verification that high volume emission events are not missed because of 

gaps in periodic monitoring, allowing third-party verifiers to independently assess emissions estimates. 

While commercially available CEMS do not yet accurately quantify emissions, they can function as a 

‘smoke alarm’ to quickly detect and localize high volume emission events. Improvements in CEMS 

technology in the future could be used to develop real-time estimates of emissions across the natural gas 

supply chain. Because CEMS technologies are relatively new, operators are requested to evaluate the cost 

and logistical ease of using these sensors to inform future deployment. 
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A key aspect of the QMRV plan is that data collected through this multi-scale monitoring approach be made 

available to the third-party verifier and independent assessor for review as part of the verification process 

monthly.  

Element 4 – Verification: 

Independent verification is key to building trust in any QMRV program and includes steps taken by the 

QMRV program administration, operator, third-party verifier, and independent assessor. Here, verification 

consists of several steps:  

a. Independent baseline emissions measurement conducted by the program administrator at all enrolled 

sites employing both top-down and bottom-up approaches such as aerial- and drone-based surveys, 

OGI surveys, and satellite observations. These measurements must be completed before the start of the 

monitoring phase. If the number of enrolled sites is small compared to the asset portfolio of the operator, 

the baseline top-down measurements should include emissions quantification at non-enrolled sites to 

ensure representativeness of sites participating in the QMRV program. The data will be made available 

to the operator, third-party verifier, and independent assessor.  

The key goals of the baseline measurement phase are as follows:  

• Compare the operator estimated inventory with measurement informed inventory  

• Characterize site emissions, including the frequency of potential super-emitters  

• Correlate the normal and super-emitter emissions with site operations and maintenance 

records. 

• Inform planning for the rest of the QMRV program, including identification of major sources 

of emissions, to guide the enhanced monitoring phase.  

 

b. Final end-of-project top-down emissions measurements conducted by the program administrator 

using the same technologies as the baseline. The data will be made available to the operator, third-

party verifier, and independent assessor.  

 

c. A final report by the operator attesting that all measurements and analysis have been conducted in 

compliance with the QMRV plan. This includes a reconciliation analysis conducted by the operator 

when the end-of-project measurements are different than the measurement informed inventory 

estimates by over 50%. This threshold is based on an analysis of typical uncertainties associated 

with current top-down measurement technologies. This report by the operator will be made 

available to the third-party verifier and the independent assessor.  
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d. A ‘verification report’ prepared by a third-party verifier to assess the validity of baseline and 

verification emissions measurements and analysis, the final report prepared by the operator, and 

whether the goals of the QMRV program have been achieved. This verification report will confirm 

to the QMRV program administrator whether the operator has satisfied the requirements of the 

program and that the final operator report does not contain data or analysis errors. The third-party 

verifier can choose to re-analyze all data collected throughout the program if necessary.  

 

e. Finally, the independent assessor will develop an ‘Independent assessment report’ to synthesize 

findings from all measurements conducted at enrolled sites, assess monitoring technologies, and 

provide recommendations for improvements to the QMRV program and scale up across operator’s 

portfolio of assets. The independent assessor may also analyze public data on the enrolled sites 

(e.g., satellite or other measurements) to compare emissions measured through the QMRV 

program. The role of the independent assessor, as the name implies, is to independently assess the 

‘verification report’ through data collected as part of the QMRV program as well as any other 

available data. As such, the independent assessor must have domain knowledge of O&G operations 

and be an expert in methane data analysis. 

S.2 Measurement technologies 

S.2.1 OGI camera 

The bottom-up survey used optical gas-imaging (OGI) camera paired with Hi-Flow Sampler to detect and 

quantify emissions. The OGI camera is a common technology used by operators to conduct LDAR surveys 

because it can localize emissions for future repairs. There are several factors that impact the detection rate 

of OGI camera, including imaging distance, plume temperature, atmospheric temperature, background, 

humidity, gas compositions etc. [57] Moreover, recent study by Zimmerle et al. found that the experience 

of the measuring technician also plays a significant role in emissions detection rate [58]. It is worth noting 

that OGI cameras has difficulties detecting methane slips due to the high temperatures of vapors [59]. 

The bottom-up survey included 1-2 measurements of each site and quantified both leak and vent emissions 

at the component-level. Detected emissions are quantified with Hi-Flow Sampler, where possible. Hi-Flow 

Sampler is commonly used for emissions quantification at oil and gas facilities. Studies have shown that 

Hi-Flow Sampler could bias emissions towards the lower end but with proper calibration and operational 

procedures, it is suitable to measure methane emissions [60]–[64]. When Hi-Flow Sampler cannot access 

the emission source, the field crew quantified emissions using visual estimates. Besides emission rates, the 

field crew collected data on emissions type (leak vs vent), process block, field equipment designation, 
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component, operating mode, gas type, and additional description on emissions. Data are reported in Excel 

spreadsheets.  

S.2.2 Bridger Photonics 

Bridger Photonics used advanced light detection and ranging (LiDAR) technology, a downward looking 

plume identification system, to map out methane emissions. By mounting it on a helicopter or small plane, 

the system can scan dozens of sites daily, revisit sites with detection in the same day for persistence checks 

and provide indications of detected emissions. Bridger’s technology does not require any observer or 

operator to be present at the site. However, quantification of detected emissions requires a week or more to 

produce, and the accuracy of the estimates depend on accuracy of wind data. Johnson et al. tested the 

uncertainty range of Bridger’s technology to be +/- 31 to 68%, depending on the availability of accurate 

wind data [65].  

Bridger conducted 2-3 rounds of measurement of a site every day to collect emissions data. During each 

round of measurement, Bridger flew over the site 2-3 times within a couple of minutes. Emissions locations 

are marked by Emissions Location numbers indicating the location of emissions on site. Individual plumes 

are recorded by “Detection ID”. Bridger also recorded data on scan date and time, max concentration (ppm-

m), wind speed (mph), persistence rate, latitude, and longitude. Data is reported at flight-level in Excel 

spreadsheet and in .kmz files and reported at site-level in PDF report with site photos.  

S.2.3 SeekOps 

SeekOps used a SeekIR methane sensor mounted on a drone and a ground meteorological station to inspect 

and quantify emissions on site. A drone pilot flies the drone downwind of site equipment to scan for 

methane emissions. The uncertainty range on emissions estimates is ± 30% [66] and the results take 

approximately a week to produce. SeekOps’ technology requires site access to measure emissions.  

SeekOps conducted 1-2 measurements of each site in total. Emissions are reported in PDF format by 

equipment group as marked on site photos. Additionally, the emissions report contains a wind rose, 

background levels, and site notes from the field crew. The site notes include emissions details, wind changes 

during measurement, on-site activities, etc.  

S.3 Inventory data 

Operators are required to develop an emissions inventory prior to the start of the program, and monthly 

thereafter through the phase-1 and phase-2 monitoring periods. To standardize inventory reporting, 

operators are required to use the Environmental Protection Agency’s Greenhouse Gas Reporting Program 

(GHGRP) template and supplement it with sources that are known to be excluded in the GHGRP [46]. 
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GHGRP sources include the following: pneumatic devices, pneumatic pumps, dehydrator vents, well 

venting for liquids unloading, onshore production petroleum and natural gas gathering and boosting storage 

tanks, flare stack emissions, reciprocating compressor venting, equipment leak surveys, and supply chain 

combustion emissions. A detailed list of GHGRP sources, methodology reference, and any associated 

changes to the GHGRP methodology is shown in Table 1.  

Supplemental sources of emissions that are not part of the conventional GHGRP reporting must be 

separately accounted for in the inventory estimation process. Sources include methane slip in compressor 

engines, vessel blowdowns, compressor blowdowns, compressor starts, pressure release valve (PRV) 

venting, produced water tank emissions, combustion emissions from small sources, and any observed 

emissions as part of the phase-1 and phase-2 monitoring. A detailed list of supplemental sources and 

associated emissions factors are shown in Table 2. 

S.3.1 GHGRP Sources 

Table 1: List of source categories in the GHGRP used for inventory calculation for the enrolled sites in 

the QMRV program, along with any modifications to methodology necessary 

Source Categories GHGRP Methodology 

Reference 

Changes to GHGRP methodology 

Pneumatic devices 40 CFR Part 98.233(a) • “Countt” limited to enrolled sites  

• “GHGi” limited average concentration of 

methane or CO2 in enrolled sites  

• “Tt” limited to operating hours for the duration 

of the QMRV program 

Pneumatic pumps 40 CFR Part 98.233(c) • “Countt” limited to enrolled sites  

• “GHGi” limited average concentration of 

methane or CO2 in enrolled sites  

• “T” limited to operating hours for the duration 

of the QMRV program 

Dehydrator vents 40 CFR Part 98.233(e) • For calculation methodology 1, “hours 

operated” limited to operating hours for 

duration of the QMRV program 

Well venting for liquids 

unloading 

40 CFR Part 98.233(f) • “W” limited to enrolled sites  

• “Vp” limited to liquid unloading events for the 

duration of the QMRV program 

Gathering and boosting 

storage tanks 

40 CFR Part 98.233(j) • For calculation methods 1 and 2, 

o “Es,i,o” limited to enrolled sites 

o “En” limited to flare stack emissions from 

enrolled sites 

o “Tn” limited to the operating hours for 

duration of the QMRV program 

• For calculation method 3,  

o “Es,i” limited to enrolled sites 

o  “Count” limited to enrolled sites 
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Flare stack emissions 40 CFR Part 98.233(n) • “Es” limited to enrolled sites 

Reciprocating 

compressor venting 

40 CFR Part 98.233(p) • “Count” limited to enrolled sites 

• “EFi,s” limited to the average concentration of 

methane or CO2 in enrolled sites 

Equipment leak 

surveys1 

40 CFR Part 98.233(q) • “GHGi” limited average concentration of 

methane or CO2 in enrolled sites  

• “Xp” limited to enrolled sites 

• “Tp,z” limited to operating hours for the 

duration of the QMRV program 

Combustion emissions 

(production, gathering 

and boosting, 

distribution) 

40 CFR Part 98.233(z) • For Tier-2 calculation methodology in 40 CFR 

Part 98.33(a) and 98.33(c)(2): 

o “CO2” limited to enrolled sites 

o “CH4” limited to enrolled sites 

o “N2O” limited to enrolled sites 

o “Fuel” limited to the operating hours for 

duration of the QMRV program 
1In some cases, leaker factors may be generated from supplemental sources to replace factors from Table 

W-1E of subpart W.  

S3.2. Supplemental Sources 

1. Methane slip in compressor engines  

GHG emissions from reciprocating compressor engines can be estimated using the appropriate methane 

emissions factor from the AP 42 emissions factors [67]. The emissions factors in Table 2 will be 

substituted in place of the methane emissions factor from Table C-2 of Subpart C in the GHGRP. 

Table 2: Supplemental emissions factors for methane slip in compressor engines. 

Engine Type Pollutant 

Emission Factor 

(lb/MMBtu) 

(fuel input) 

Emission Factor 

(kg/MMBtu) 

(fuel input) 

Uncontrolled emission factors for 

2-stroke lean-burn engines 

Methane 1.45E+00 6.58E-01 

Uncontrolled emission factors for 

4-stroke lean-burn engines 

Methane 1.25E+00 5.67E-01 

Uncontrolled emission factors for 

4-stroke rich-burn engines 

Methane 2.30E-01 1.04E-01 

 

 

2. Vessel blowdowns, compressor blowdowns, compressor start, and pressure release valves 
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GHG emissions for these supplementary source categories can be estimated using the ONE Future 

methane intensity protocol methodology and the appropriate GHGI emission factor as shown in Table 3 

[68]. The emissions factors must be multiplied by the activity data (count of vessels, count of 

compressors, count of PRVs) to estimate total emissions.   

Table 3. Supplemental emissions factors based on the ONE Future methane intensity protocol 

methodology 

Activity Units Average CH4 EF  

(2019, Table 3.6-2) 

Average CO2 EF 

(2019, Table 3.6-12) 

Vessel blowdowns kg/vessel 1.6 0.2 

Compressor 

blowdowns 

kg/compressor 76.9 8.5 

Compressor start kg/compressor 172.1 19.1 

Pressure release valve kg/PRV 0.7 0.1 

 

3. Produced water tank emissions 

Greenhouse gas emissions from produced water tanks that are not controlled by a flare or combustor are 

generally not reported under the GHGRP. Emissions from produced water storage tank flashing, working, 

breathing, and loading will be estimated as a supplemental source for the QMRV program. These can be 

estimated using ProMax simulation software which incorporates estimation equations from the EPA’s 

AP-42 chapter 7 on liquid storage tanks [67, p. 42]. 

 

4. Flares, glycol dehydrators 

Emissions from flares and glycol dehydrators can be estimated directly using methods specified by the oil 

and gas methane partnership (OGMP) 2.0 or the EPA GHGRP [69], [70]. All assumptions, inputs, and 

software tools used in this estimation must be documented.  

5. Combustion emissions from small sources 

GHG emissions from external combustion sources with a heat rating less than 5 MMBtu per hour and 

internal combustion sources with a heat rating of less than 1 MMBtu per hour are exempt from emissions 

calculations under the GHGRP. For the purposes of the QMRV program, GHG emissions from these 

small combustion sources will be estimated using the same calculation methodologies in 98.233(z) of the 

GHGRP. 

6. Observed emissions 
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Observed emissions during the monitoring phase (phase 1 and phase 2) of the QMRV program can be 

estimated based on one or more of the following methods. The operator will select the most appropriate 

method for emissions estimation and document which method is used. 

• Emission rates for similar components or equipment as measured during the baseline emissions 

survey at enrolled sites 

• Emissions rates estimated by continuous monitoring technology (Phase 2 only) 

• Employ emission factors based on Table 4 for sources not well represented in the GHGRP 

 

Table 4. Leaker emissions factors for observed emission sources not well represented in the GHGRP. All 

emissions factors are based on values in Zimmerle et al. [71].  

 

Source Emissions Factor (scfh) 

Tank vent (common multi-unit) 109.0 

Tank vent (common single-unit) 43.7 

Thief hatch 25.9 

Rod packing vent (operating) 24.9 

Rod packing vent (not operating, pressurized) 20.1 

Rod packing vent (not operating, depressurized) 9.3 

S.4 Measurement Methodology 

S.4.1 Snapshot measurement data  

Bridger’s data is analyzed at the emitter (Emissions Location) level. First, based on the scan date and time 

in the Excel spreadsheet and the .kmz file, we grouped each overflight into rounds of measurements 

undertaken by Bridger. Next, we calculate the average emissions rate for each Emissions Location in that 

round of measurements. Finally, Emissions Location from the same round of measurements were added 

together to represent site-level emissions rate for that round of measurement. Bridger conducted 2-3 rounds 

of measurements each day.  

SeekOps measured emissions at equipment group level. Site-level emissions was calculated by summing 

equipment group level emissions. SeekOps conducted 1-2 measurements of each site during the study. The 

equipment identification provided by SeekOps’ report provided a good reference for emissions attribution. 

By comparing Bridger’s site photos against SeekOps’, we were able to identify emitting equipment 

measured by Bridger.  

Each measurement from Bridger and SeekOps was considered an independent estimate of emissions that 

best represented each site’s emissions at the time of measurement. Due to the fluctuations in equipment 

emissions, there was no certain time that best represents the sites’ emissions. As a result, every measurement 

was considered equally valid, and the average of all rounds of measurement from Bridger and SeekOps was 



 Non-peer reviewed preprint submitted to ChemRxiv  

taken as the best representation of site-level emissions. Basin-level emissions are calculated as the average 

of site-level emissions in the basin.  

We did not independent conduct any tests of technology performance because prior peer-reviewed studies 

demonstrate the fundamental characteristics of Bridger and SeekOps systems [65], [72]. The uncertainties 

used in the analysis are based on these peer-reviewed studies. However, we note that the uncertainties 

presented in this analysis are conservative estimates and do not account for higher sample sizes in our study 

that will reduce aggregate uncertainty [30].  

S.4.2 OGI baseline measurement data 

Equipment- and site-level emissions were calculated by summing component-level emissions. OGI survey 

conducted 1-2 measurements of each site during the study. The limitation of OGI camera paired with Hi-

Flow Sampler is discussed in Section S.2.1. Equipment- and site-level emissions for each basin is listed 

below. In Table 5, we show equipment-level emissions comparison for major equipment groups as 

measured by OGI, SeekOps, and Bridger for Basin A and Basin B. Equipment-level comparison is 

unavailable for Basin C due to operator restrictions. Average equipment-level emissions are calculated as 

the average of all rounds of measurement taken by each technology.  

Table 5: Equipment-level emissions comparison 

Basin Equipment OGI (SCFH) Bridger (SCFH) SeekOps (SCFH) 

Basin A Tanks 104 657 271 

Basin A Wellheads 6 139 89 

Basin A GPU/Separator 19 157 38 

Basin B Tanks 95 228 311 

Basin B Wellheads 8 26 25 

Basin B GPU/Separator 91 148 201 

 

In Table 6, we show site-level emissions comparison as measured by OGI, SeekOps, and Bridger for basin 

A, basin B, and basin C. Average site-level emissions is calculated as the average of all rounds of 

measurement taken for each site by each technology. Bridger did not measure 2 enrolled sites in basin C 

due to wrong coordinates. Consequently, the site-level emissions comparison of basin C excludes these 2 

enrolled sites.  

Table 6: Site-level emissions comparison 

Basin OGI (scfh) Bridger (scfh) SeekOps (scfh) 

Basin A 131 1153 696 

Basin B 199 448 638 

Basin C 51 430 184 
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At the equipment-level, Bridger and SeekOps technologies measure up to an order of magnitude more 

emissions than the OGI +Hi-Flow measurement. While the OGI survey also notes that tanks as a major 

contributor to emissions, measured tank emissions by the Hi-Flow instrument are significantly lower than 

that by Bridger and SeekOps. At the site-level, OGI+Hi-Flow system constantly measured less emissions 

than Bridger and SeekOps. Due to the limitations of OGI camera discussed in section S.2.1, measurements 

from OGI are not included in the calculation of measured emissions. 

S.4.3 Continuous emissions monitoring systems (CEMS) 

Continuous emissions monitoring systems (CEMS) were deployed on several assets enrolled in the QMRV 

program. These sensors record ambient methane concentrations at their location, which is typically at the 

fence line or next to equipment with high potential for methane emissions. Using these concentration 

measurements to estimate emission source locations and rates is a complicated problem, and while some 

CEMS vendors have preliminary tools for doing so, these location and rate estimates were not made fully 

available due to their experimental nature. Therefore, we only consider concentration data in this paper. 

In section 3.4 of the main text, we propose a framework for better understanding the distribution of emission 

event durations and wait times using CEMS concentration data. These distributions provide insight into 

emission characteristics at the basin-level and can be used to scale snapshot top-down measurements that 

happen to capture an episodic event (e.g., liquids unloading or blowdown events) to make a direct 

comparison to an annualized inventory. This framework depends on an algorithm that translates 

concentration data into a list of emission events and their corresponding start times and durations.  

At a high level, the algorithm flags spikes in a methane concentration time series that we believe to be the 

result of activity on the site and returns their start time and duration. The algorithm operates on univariate 

time series only. In section 3.4 of the main text, we apply it to the maximum methane concentration across 

sensors deployed on a single site on a minute-by-minute basis. This simplifies the problem, as it collapses 

the data from each sensor into one signal that preserves the spikes that we wish to analyze. Because we are 

interested in spikes that are the result of site activity, we do not target gradual changes in methane 

concentration (i.e., shallow bumps), but rather sharp increases (i.e., spikes), as we have found that methane 

emissions typically result in rapid increases in ambient concentrations above baseline. 

The type of events that are flagged by the algorithm depend largely on three parameters: 

1. The going up threshold is used to flag rapid increases in methane concentration and trigger the 

start of an event. The default value is 0.25ppm. Note that this parameter is scale dependent. 

2. The return threshold is used to determine when an event has ended. The default is 10% of the 

maximum event concentration. Note that this parameter is scale independent. 
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3. The amplitude threshold is used to filter out events that are too small after considering background 

concentrations. Note that this parameter is scale dependent. 

The algorithm proceeds as follows. First, input a univariate time series (i.e., the methane concentration data) 

and take the first order difference. Flag positive differences greater than the going up threshold. These 

time steps are recorded and will be used later to indicate the start of an event. Call these points the event 

start times. Next, initialize a Boolean event flag to FALSE, and then loop through each time step in the 

time series. At each time step, do the following: 

• If not already in an event (i.e., event flag is FALSE) and: 

o If this time step is an event start time, enter an event (i.e., set event flag to TRUE). The 

time series will remain in the event until the event exit conditions are met. 

o If this time step is not an event start time, do nothing. 

• If already in an event (i.e., event flag is TRUE) and: 

o If the methane concentration at this time step has returned to return threshold percent of 

the maximum concentration recorded during this event, exit the event (i.e., set event flag 

to FALSE). 

o If the methane concentration at this time step has not returned to return threshold percent 

of the maximum concentration recorded during this event, remain in the event. 

This methodology provides a mask that covers the duration of each event in the time series. Note that the 

return threshold is defined as a percent of maximum concentration rather than a negative difference 

because we have found that while events almost always start with a rapid increase in concentrations, they 

sometimes dissipate at a slower rate. By using this methodology, we impose the following definition of an 

event: time steps following (and including) the event start times up until the methane concentration has 

returned to return threshold percent of the maximum concentration recorded during that event. Looping 

once through the time series in this manner results in a list of flagged events. Next, loop through these 

events. For each event, do the following: 

• Fit a LOESS curve to the methane concentration data that have not been flagged as an event in a 

local region surrounding the event. By default, the algorithm uses 120 observations on each side of 

the event. 

• Using the LOESS fit, predict methane concentrations at the time steps that were flagged as the 

event. This gives an estimate of the local background methane concentrations. 

• The amplitude of this event is computed as the maximum methane concentration of the event minus 

the corresponding background estimate from the LOESS fit. 



 Non-peer reviewed preprint submitted to ChemRxiv  

• Discard the event if the event amplitude is less than the amplitude threshold. 

 

This step allows us to filter events by their background-corrected (or background removed) amplitude. The 

output of this algorithm is a list of events along with their start times and durations. The start time is simply 

the first time step of the event. The event duration is the difference between the last time step and the first 

time step. These fields allow us to compute the time between events as the difference between the start time 

of one event and the last time step of the preceding event. 

 

Note that while this algorithm depends on several hand tuned parameters, these parameters are designed to 

balance each other out. Specifically, the going up threshold is by default set to a small value to catch spikes 

that build up slowly. The amplitude threshold can then be set to a large value to throw out any spikes that 

did not end up being large enough to be deemed significant. This ensures that no spikes are missed and that 

only large or significant events are returned. Additionally, we check for events that contain four differences 

in a row below 0.4ppm, indicating that the event has returned to baseline without triggering the return 

threshold. In these rare cases, we discard the event. 

 

We use an amplitude threshold of 20ppm in section 3.4 of` the main text. To provide intuition on the type 

of events that are flagged with this threshold, we plot the minute-by-minute maximum methane 

concentration across sensors on a single site enrolled in the QMRV program in Figures S2-S7. The data 

ranges from October 2021 to March 2022, and we plot each month in a separate figure. Colored lines 

indicate a flagged event, with different colors corresponding to different events (the colors have no other 

meaning). 
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Figure S2. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 

program for October 2021. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  

 
Figure S3. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 

program for November 2021. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  
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Figure S4. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 

program for December 2021. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 

by the spike detection algorithm are highlighted in color, with different colors indicating different events. 

 
Figure S5. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 

program for January 2022. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  
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Figure S6. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 

program for February 2022. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 

by the spike detection algorithm are highlighted in color, with different colors indicating different events. 

 
Figure S7. Maximum methane concentration recorded across sensors on a single site enrolled in the QMRV 

program for March 2022. Note that the vertical axis is restricted to [0,60] to show detail. Spikes flagged 

by the spike detection algorithm are highlighted in color, with different colors indicating different events.  
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There are rare instances in which the spike detection algorithm does not detect a notable spike (e.g., October 

1, 2021, and February 28, 2022). In future work we will improve the logic used in this algorithm to eliminate 

these errors. 

Finally, we test a range of amplitude thresholds (10, 15, 20, 25, and 30ppm) to ensure that the conclusions 

we present in the main text are not threshold dependent. We find consistent results across thresholds. 

Specifically, for all tested thresholds: 

• A large portion of the events in both basins last less than 2 hours. 

• Events in Basin A tend to last longer than events in Basin B (indicated by a heavier tail in subfigures 

(a) compared to subfigures (c)). 

• Events in Basin A tend to occur more frequently than events in Basin B (indicated by a lower 

median in subfigures (b) compared to subfigures (d)). This is true for the smallest amplitude 

threshold but is more apparent in the larger thresholds. 

 

For transparency, we show the event duration and wait time histograms for each threshold tested in 

Figures S8-S12.  

 

Figure S8. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 

threshold of 10 ppm. 
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Figure S9. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 

threshold of 15 ppm. 

 

Figure S10. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 

threshold of 20 ppm. 
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Figure S11. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 

purple). CEMS data spans October 2021 to March 2022. Events identified using a spike detection amplitude 

threshold of 25 ppm. 

 

Figure S12. Empirical distributions of emission event durations (a and c) and wait times (b and d) between 

subsequent emission events recorded by CEMS in basin A (top panel, turquoise) and basin B (bottom panel, 

purple). CEMS data spans October 2021 to March 2022. Events are identified using a spike detection 

amplitude threshold of 30 ppm. 
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To further support the claim that “CEMS can act as an indicator for methane emissions events,” we show 

CEMS concentration data during two operational events that occurred on an enrolled asset in the QMRV 

program in Figure S13. Shaded rectangles show the operator-reported duration of the operational activity. 

These two events align closely with spikes in the methane concentration time series. Note that the slight 

delay between spike and operator-reported timing is likely due to a lag between the operator’s actual activity 

and their reporting. These two examples are representative of other operational events. 

 

Figure S13. Two examples of emission events on an enrolled asset that were captured by the CEMS. Shaded 

rectangles show the operator-reported timing of the operational activity. Black line shows the methane 

concentration readings. Note that the slight delay between spike and operator-reported timing is likely due 

to a lag between the operator’s actual activity and their reporting. 
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