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1. Introduction 

Chemical compound databases with annotated bioactivity data provide an essential basis for various 

applications in drug design. Through computer-aided drug design (CADD) and recently with new artificial 

intelligence (AI) techniques, it has been possible to accelerate the generation of knowledge from big data in 

biological, chemical and pharmaceutical medicine.[1] The methods developed in CADD, which have been 

optimized with machine learning (ML) algorithms, can use the vast chemical space combined with its biological 

information to obtain compounds with safety, efficacy, and low toxicity, a goal in many drug design projects. 

CADD has led to the identification and development of many drugs used in the clinic and clinical 

development.[2] Figure 1 shows chemical structures of drugs in clinical use and clinical development where 

CADD methods have contributed to their identification or development.  

 

 

Figure 1. Chemical structures of exemplary drugs recently developed with the aid of computer-aided drug 

design. The main target and approval year are indicated. 

https://paperpile.com/c/4C23Oa/BXghh
https://paperpile.com/c/4C23Oa/05c0j
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In the last two decades, substantial improvements to structure- and ligand-based drug design methods 

developed in CADD have been described, many of them driven by AI and its subfields ML and deep learning 

(DL), as recently discussed in several review papers and special issues.[3–6] For instance, in structure-based 

drug design (SBDD), the prediction of three-dimensional structures with the AlphaFold2 neural network has 

generated the most complete and accurate picture of the human proteome,[7] even highlighting its 

applications in cases where not similar structure is known.[8] Other notable applications of DL are predictions 

of chemical reactions [9], synthesis automation and de novo design.[10] 

The goal of the review is to discuss recent progress on selected concepts, resources, methodologies, and 

applications of CADD. Because of the broad scope of CADD, this manuscript is not meant to be a 

comprehensive review of the subject. It discusses progress on representative concepts, resources, and 

applications of CADD that are part of multidisciplinary efforts to advance drug discovery. Throughout the 

manuscript, we emphasize public resources broadly available to the scientific community. In this regard, we 

highlight open science. The manuscript is organized into six sections. After this introduction, the next section 

analyzes the role of bioactivity data in CADD and discusses advances and opportunities in SBDD and ligand-

based drug design (LBDD). Section 3 addresses the chemical space and chemical multiverse concept to 

analyze content and diversity of chemical libraries. Emphasis is placed on constellation plots, which are based 

on the analog series concept, as a visual representation of the chemical multiverse. Section 4 explores 

exemplary and recent applications of CADD to identify hit and lead compounds. Therein, we introduce the 

concept of ViSAS: Virtual Screening of Analog Series, an implementation built upon the analog series 

formalism by Bajorath et al.[11,12] designed to expand bioactive molecules from the screening of chemically 

related compounds in ultra-large databases. Section 5 describes recent advances in the development and 

application of extended similarity methods. Section 6 presents summary conclusions and perspectives. 

 

2. Exploiting bioactivity data in the artificial intelligence era 

In the last decade, there has been an important increase in the amount of open bioactivity data in public data 

repositories. Databases with biological activity annotations have been extensively reviewed.[13–15] As case 

in point, the latest release of the ChEMBL database (v31) contains data for 14,855 targets, 2,786,911 distinct 

compounds, and 19,286,751 activities. With the abundance of publicly available bioactivity data, it becomes 

imperative to extract, curate and explore information of interest for drug discovery, so data-driven drug 

discovery models have emerged.[16]  

Analyzing information derived from large-scale structure-Activity relationships (SAR) data can contribute 

to understanding the underlying mechanism associated with the structural transformations of compounds that 

modify their activity, in the prediction of potential target proteins for therapeutics and in network 

pharmacology,[17,18] linking targets in terms of shared active ligands. Similarly, available bioactivity data 

plays an important role in computational chemogenomics to develop predictive models [19,20]. Other 

approaches focus on identifying and describing biologically relevant regions of chemical space to guide the 

design and synthesis of new compounds.[21] 

https://paperpile.com/c/4C23Oa/FO37W+l6gQ4+K7DBh+mrpYf
https://paperpile.com/c/4C23Oa/bTEOH
https://paperpile.com/c/4C23Oa/zhVpm
https://paperpile.com/c/4C23Oa/S7D2h
https://paperpile.com/c/4C23Oa/vUW5k
https://paperpile.com/c/4C23Oa/vefh7+yd53m
https://paperpile.com/c/4C23Oa/w5QQn+inIRM+K9Ij0
https://paperpile.com/c/4C23Oa/FU7Sa
https://paperpile.com/c/4C23Oa/KtjuS+X7DzL
https://paperpile.com/c/4C23Oa/Gu7Jc+KcBxA
https://paperpile.com/c/4C23Oa/x0bT9
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Recently, the importance of disclosing inactivity data in the public domain has been highlighted. There 

may be more information in the fact that a compound does not show activity. In this regard, López-López et 

al. introduced the notion of structure-inactivity relationships (SIR) highlighting the importance of including 

reliable data of inactive compounds in the development of descriptive and predictive models.[22]  

In order to generate information and knowledge, the quantity and quality of data are vital as it improves 

the development and observed performance of chemoinformatics and AI models. As a scientific community 

we should prioritize access to complete data, e.g., activity and inactivity data (negative results) that enable 

researchers to access the “big picture” of the available knowledge. This comprehensive viewpoint could help 

to cope with data imbalance that we have to deal with on a daily basis in drug design and compound 

optimization campaigns. Additionally, data curation and the construction of reliable databases are major 

issues. The poorly curated databases complicate the assessment of the predictive performance of ML and 

DL models. However, combined efforts could facilitate access to new interesting data. Examples include 

natural products, metallodrugs, safety, preclinical, and toxicological databases that complement the current 

data available in the public domain and offer a new perspective on the known data. However, we are aware 

of the potential conflicts of interest related to the publication of data susceptible to intellectual property, e.g., 

post-marketing data that has reporting bias related to the time and clarity of shared data. 

AI methods enable the parallel study of very large volumes of diverse data for ligand-based drug design. 

However, SBDD approaches have not yet fully explored the utility of AI, although much research is in progress. 

One of the reasons is that experimental structural data are still sparse compared to compound activity and 

physicochemical data. The current protocols' limitations only partially enable the generation of reliable 3D 

conformational states or binding modes. On the other hand, recent progress in AI-driven de novo structure 

prediction (see Section 4.3) has provided an unprecedented wealth of putatively reliable structural templates, 

with coverage recently approaching the entire protein universe. 

There are several recent reviews discussing examples of AI applications in drug design and 

development.[4,23–26] Some challenges and opportunities that face AI discussed by experts in the industry, 

academia, and other institutions were recently discussed on a public online event.[27] It has been emphasized 

that sufficient knowledge and correct application (beyond the hype) are necessary. For this reason, it has 

been proposed to integrate “augmented intelligence” models into drug design, which shows a trend towards 

almost total automation (“Human-assisted”). This model of partnership between human intelligence and AI 

aims to improve cognitive performance, including learning, decision-making and the generation of new 

experiences by leveraging the capabilities offered by AI models and the medicinal chemist's own 

expertise.[28] 

 

2.1 Databases annotated with biological activity 

Given the usefulness of chemical databases, many companies and researchers have taken it upon 

themselves to compile and put on web servers databases with diverse information. In an effort to classify 

these databases, Masoudi-Sobhanzadeh et al. distinguish five classes useful for drug repositioning based on 

https://paperpile.com/c/4C23Oa/H1Xmr
https://paperpile.com/c/4C23Oa/mEAyI+BsFIZ+l6gQ4+hDObI+Cr2Mj
https://paperpile.com/c/4C23Oa/s1nvb
https://paperpile.com/c/4C23Oa/teKq6
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data content, including: raw data (e.g. data from literature, in-house and clinical), target-based (include genes, 

proteins, pathways and side effects information), specific data (traditional medicine, disease-specific or 

geographical databases), drug design (containing the 3D structure of molecules, and molecular replacement 

information which are based on the resolved protein structures), and tool-based DB (tools and web 

servers).[15]  

Other databases that are having a major current trend in drug discovery are virtual compound libraries 

and de novo designed libraries.[29] Also, it is ongoing an effort to build and curate a compound database with 

metal-containing molecules in preclinical and clinical development, and approved for therapeutic use.[30] 

Natural products have been sources of bioactive compounds that later have been used in the clinic or that 

have been used as starting points of drug candidates.[31] The application of computational methods including 

chemoinformatic approaches and AI to further advance natural product research is a current trend.[32–34] As 

early as 2012 there have been efforts to put together natural product databases in the public domain.[35] The 

most recent large compound collection of natural products in the public domain is the Collection of Open 

Natural Products, COCONUT.[36] In Latin America, there is an ongoing effort to put together and curate 

compound databases composed of natural products from the vast diversity contained in Latin American 

countries.[37,38] 

 

2.2 Opportunities of AI in ligand-based drug design 

In addition to in vitro and in vivo methods, we can use in silico methods to mitigate serendipity and rationalize 

those phenomena that experimental methods cannot explain. During rational drug design, serendipity might 

occur, leading to unexpected but potentially positive results such as the 

discovery of Lyrica (pregabalin).[39] However, the dramatic increase of data in chemical databases with 

biological annotations limits the chance of serendipitous positive results and calls for enhanced methods for 

the identification of molecules with clinical application.[6] Such tasks can be addressed by using AI.[6, 40]  

Increasing numbers of AI algorithms are being developed for predicting the relationship between chemical 

structure and biological activity. For example, DeepChem is an open-source platform with tools for applying 

AI algorithms that allow the prediction not only of biological activity but also of multiple drug properties, 

including physicochemical features, and toxicity.[41] DeepChem has supported the development and 

benchmarking of new AI models with diverse goals. [42–44] 

Efficacy prediction using diverse inputs (chemical and physicochemical properties, biological -in vitro and in 

vivo- information, -omics, preclinical, clinical, and post-marketing data) is one of the main objectives of 

applying AI in drug design. For example, Wang et al. used a model based on Support Vector Machines (SVMs) 

to discover nine new compounds and their interactions with four key targets. The model was trained on 15,000 

protein-ligand interactions and was developed based on primary protein sequences and structural 

characteristics of small molecules. [45] Yu et al. used two random forests (RF) models with high sensitivity 

and specificity to predict possible drug-protein interactions by combining pharmacological and chemical data. 

[46] 

https://paperpile.com/c/4C23Oa/K9Ij0
https://paperpile.com/c/4C23Oa/NErfc
https://paperpile.com/c/4C23Oa/HVqXv
https://paperpile.com/c/4C23Oa/X8c2g
https://paperpile.com/c/4C23Oa/9D4ZI+e8m33+FwJBz
https://paperpile.com/c/4C23Oa/HjXct
https://paperpile.com/c/4C23Oa/E0bjt
https://paperpile.com/c/4C23Oa/wh84I+5Pnpz
https://paperpile.com/c/C9qbCq/KZMRc
https://paperpile.com/c/C9qbCq/qh5Iu
https://paperpile.com/c/C9qbCq/qh5Iu+BiBX7
https://paperpile.com/c/C9qbCq/bm3XD
https://paperpile.com/c/C9qbCq/eSvm7+ybRcA+81Tuv
https://paperpile.com/c/C9qbCq/t2o74
https://paperpile.com/c/C9qbCq/R1TFc
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KinomeX, an AI-based online platform trained with over ~14 000 bioactivity data points derived from over 

~300 kinases, can efficiently investigate the overall selectivity of compounds for the kinase family and specific 

subfamilies of kinases, which can aid in developing new chemical modifiers.[47] A last example is PyRMD, 

an AI algorithm based in Random Matrix Discriminant (MD) -a subtype of ML- that can be trained to recognize 

the distinctive pharmacophoric features from the target bioactivity data available at the ChEMBL. Selected 

negative data are incorporated in the learning to identify structural features that are irrelevant or detrimental 

for the intended bioactivity.[48] 

Identification of toxic effects in early stages of drug design allows to remove undesirable characteristics of 

bioactive compounds. At present, multiple AI-based are employed to assess toxicity by predicting the off-

target ligand binding. For example, Ligand Express, Cyclica's cloud-based AI platform, uses proteome-

screening data to find receptors that can interact with a specific small molecule, predicting on- and off-target 

interactions and suggesting the drug's potential side effects.[49] Other AI web-based tools that help predict 

toxicity include LimTox, pkCSM, admetSAR, and Toxtree.[50] A particularly remarkable case is DeepTox, an 

ML-based algorithm that using features within chemical descriptors accurately predicted the toxicity of 12,707 

environmental compounds and drugs during the Tox21 Data Challenge.[51] The DeepTox algorithm uses 

static descriptors, such as molecular weight, Van der Waals volume, or the presence/ absence of a predefined 

substructure or a toxicophore descriptor, as well as calculated dynamic descriptors.[51] Despite a potentially 

infinite number of different dynamic features, the method keeps the dataset within manageable limits and 

shows good accuracy in predicting the toxicology of compounds. 

After a molecule has been virtually screened for potential bioactivity and toxicology, a chemical synthesis 

pathway is required for their evaluation in relevant models of disease. Despite knowledge of hundreds of 

thousands of transformation steps, novel molecules cannot be efficiently synthesized due to novel structural 

features or conflicting reactivities.[52]  AI can help to identify possible and less complicated synthesis routes 

for compounds simultaneously or sequentially with prediction of bioactivity. [53] Computer-aided synthesis 

planning can also suggest millions of structures that can be synthesized and predict multiple synthesis routes 

for each of them.[54]  

New AI methods can support multiple applications such as analog series identification (fragmentation), de 

novo drug design signatures study, SAR visualization, reactivity predictions, similarity searching, and 

visualization of chemical space. Two examples of such methods are Extended Similarity Indices developed 

by the research group of Miranda-Quintana,[55, 56] and the Structure-Activity Relationships Matrix approach 

and its deep learning extension by Bajorath et al.[57] 

A strategy still to be consolidated is data expansion or augmentation[58] using multiple layers of inputs. 

This approximation could allow the generation of the most representative similarity searching to identify 

chemical mimetics capable of reverting disease signatures (instead of altering one molecule activity). For 

example, drug design approaches might be developed for reverting (or preventing) molecular pathway 

alterations or for predicting toxicity or safety issues for marketed drugs.  

 

https://paperpile.com/c/C9qbCq/iFx2P
https://paperpile.com/c/C9qbCq/OSCRy
https://paperpile.com/c/C9qbCq/OrDl5
https://paperpile.com/c/C9qbCq/ts68s
https://paperpile.com/c/C9qbCq/e25Kd
https://paperpile.com/c/C9qbCq/e25Kd
https://paperpile.com/c/C9qbCq/mKFVR
https://paperpile.com/c/C9qbCq/Ovh64
https://paperpile.com/c/C9qbCq/UGNMX
https://paperpile.com/c/C9qbCq/J0RcO+tMxKN
https://paperpile.com/c/C9qbCq/BMQXG
https://paperpile.com/c/C9qbCq/RiioW
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2.3 Opportunities in structure-based drug design  

SBDD has reached notable maturity over the past decades, especially structure-based virtual screening, 

despite its intrinsic limitations.[10] In recent years, DL has been used in attempts to improve the performance 

of SBDD methods further. Perhaps the most well-known example of this is the usage of DL for protein structure 

prediction. De novo structure prediction with Alphafold [8] and RoseTTAfold [59] or other programs has yielded 

many protein models of near-experimental accuracy which has further expanded the opportunities and 

applicability domain of homology modeling. Other uses of AI in SBDD include but are not limited to potentials 

similar to quantum-chemical descriptions (ANAKIN-ME) [60] force field development;[61] Boltzmann 

generators trained to identify transition states f;[62] protein-ligand interaction fingerprints  [63] such as SPLIF 

[64] or extended connectivity interaction features (ECIF),[65] and scoring functions like GNINA.[66] 

Recently, the geometric DL approach was used to learn distance distribution and ligand-target interactions 

or predict the binding conformation of bioactive compounds. This potential performs similarly or better than 

well-established scoring functions.[67] Geometry DL uses a mesh on the protein surface as a molecular 

representation. 

In all, AI should be used and practiced for the right reason and not because of just hype or a trendy fashion 

in current drug discovery.[68] 

 

3. Chemical space and chemical multiverse 

Chemical space, sometimes referred to in the literature as the “chemical universe” [69] and recently extended 

to “chemical multiverse”,[70] is a concept that is central and distinctive of chemoinformatics as an independent 

theoretical discipline.[71] Chemical space refers to all possible molecules as well as multi-dimensional 

conceptual spaces representing their structural and functional properties, depending on the type of 

representation.[72] Indeed, in contrast to cosmic space, the chemical space is relative to the structural and 

functional properties used to construct or define a given chemical space. Since there is not a molecular 

representation that captures all structural and functional properties, the concept of “chemical universe” has 

been introduced to account for the alternative chemical spaces of a compound data set that can be generated 

by different sets of descriptors.[70] Structural representation is the most relevant feature in basically any 

chemoinformatics application, and computational study [73] and it is an area under constant research.[74] In 

virtual screening, defining the chemical space to be explored is crucial, as it defines the applicability domain 

that will be searched. In practice, it is common to conduct virtual screening campaigns focused on regions of 

the medicinally relevant chemical space.[75, 76] Nonetheless, it is becoming a regular practice to explore 

novel regions of the chemical space, given by the emerging large- and ultra-large chemical libraries.[77] 

The chemical space concept has practical applications in many areas of chemistry including drug 

discovery, organic synthesis, food chemistry, and material sciences to name a few examples. A key distinction 

between the different ways of mapping compound data sets into the chemical space lies in the type of 

descriptors that are used to represent the compounds of interest. For instance, the nature of the descriptors 

employed to represent small organic molecules will be different to describe chemicals with applications in, for 

https://paperpile.com/c/C9qbCq/4h71N
https://paperpile.com/c/C9qbCq/xJC7K
https://paperpile.com/c/C9qbCq/uH7xn
https://paperpile.com/c/C9qbCq/iyCQu
https://paperpile.com/c/C9qbCq/JhMSn
https://paperpile.com/c/C9qbCq/xWMfQ
https://paperpile.com/c/C9qbCq/zUYfN
https://paperpile.com/c/C9qbCq/ISCPx
https://paperpile.com/c/C9qbCq/yXpkl
https://paperpile.com/c/C9qbCq/1QRUl
https://paperpile.com/c/C9qbCq/14wqk
https://paperpile.com/c/C9qbCq/TgA7r
https://paperpile.com/c/C9qbCq/21EeF
https://paperpile.com/c/C9qbCq/RsUnJ
https://paperpile.com/c/C9qbCq/7UYZb
https://paperpile.com/c/C9qbCq/7zpn7
https://paperpile.com/c/C9qbCq/RsUnJ
https://paperpile.com/c/C9qbCq/WD5Dt
https://paperpile.com/c/C9qbCq/RtXm0
https://paperpile.com/c/C9qbCq/hw44E+puCce
https://paperpile.com/c/C9qbCq/yf9P6
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example, material sciences. In some cases, the chemical space concept is used to guide drug discovery 

projects, but a generalized or unique manner to represent visually the chemical space remains elusive. A 

typical example of this challenge is the visual representation of the chemical space of metal-containing 

compounds.[30] 

In drug discovery, chemical space was used as a spatial navigation framework, helpful for understanding 

and generating knowledge of pharmacokinetic properties and molecular diversity of biologically relevant 

compounds [78]. As the number of compounds and their information in chemical databases increased, more 

sophisticated molecular descriptors and visualization techniques were developed to expand their applications. 

For example, explorations of chemical space have considerably improved our understanding of biology and 

have led to the development of many tools for the exploration of SAR and structure-property relationships 

(SPR).[79, 80] The availability of software libraries and the rise of AI [9] have led to the emergence of several 

tools that integrate ML methods as versatile tools to design, generate, and visualize the chemical space of 

small molecules.[81, 82] 

 

3.1 Recent progress on chemical space 

The chemical space concept has been of interest in several areas of chemistry for a number of years. 

However, the rapid and continued increase of large- and ultra-large libraries has renewed the interest of the 

scientific community to generate/implement methods to handle and use for practical applications the large- 

and ultra-large chemical space associated with the newly generated compound libraries.[29] Hence, the 

chemical space concept continues to be of significant interest to study the very large chemical libraries. There 

are several reviews addressing the concept of chemical space, covering different aspects such as 

enumeration of chemical compounds using de novo design, calculation of molecular descriptors, progress on 

visualization methods with emphasis on publicly available tools, web servers to explore the chemical space 

of chemical libraries, applications to study structure-property relationships.[81–83] A recent development in 

this area is the chemical library networks.[84] This development is further elaborated in Section 5.  

 

3.2 Chemical multiverse and constellation plots 

Another recent progress in the research on chemical space is the introduction of the term chemical multiverse 

as an expanded view of the chemical space.[70] This novel term is based on the chemical space concept that 

implies that a set of m molecules described with different descriptors would lead to distinct chemical spaces. 

Varnek and Baskin points out that “unlike real physical space, a chemical space is not unique: each ensemble 

of graphs and descriptors defines its own chemical space”.[71] It follows that molecules with different chemical 

natures, e.g., macromolecules, metal-containing compounds, biologics, etc., yield distinct chemical spaces 

because of the nature of the descriptors required to represent the compounds. 

In physics, Everett’s multiverse [85] is “a hypothetical collection of potentially diverse observable 

universes, each of which would comprise everything that is experimentally accessible by a connected 

community of observers.” Thus, the multiverse “is a hypothetical group of multiple universes.” In analogy with 

https://paperpile.com/c/C9qbCq/SUaKF
https://paperpile.com/c/C9qbCq/cXnkb
https://paperpile.com/c/C9qbCq/F1Wih+0a228
https://paperpile.com/c/C9qbCq/wO87p
https://paperpile.com/c/C9qbCq/S9dBz+SIws4
https://paperpile.com/c/C9qbCq/6huyo
https://paperpile.com/c/C9qbCq/YFud0+S9dBz+SIws4
https://paperpile.com/c/C9qbCq/H2t9V
https://paperpile.com/c/C9qbCq/RsUnJ
https://paperpile.com/c/C9qbCq/7UYZb
https://paperpile.com/c/C9qbCq/bWjnB
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the cosmic multiverse, the chemical multiverse was defined as “the group of numerical vectors that describe 

it differently from the same set of molecules”.[70] A chemical multiverse can also be seen as a “group of 

multiple chemical spaces, each one defined by a given set of descriptors.” As reviewed recently [70] different 

chemical space representations can lead to alternative spaces, and the relationships between chemical 

compounds could change. It has been shown that the concept of chemical multiverse is applicable to different 

types of molecules such as small organic molecules and peptides for drug discovery applications, food 

chemicals, and natural products. Eventually, the chemical multiverse can be expanded to any type of 

compounds, including inorganic compounds. 

One approach to analyze chemical multiverses is through constellation plots. A common limitation of most 

visualization methods of chemical space is that they capture a single type of molecular representation, 

emphasizing the dependence of the chemical space on the structure representation. To address this issue, 

constellation plots, generally depicted in Figure 2, combine, in a single graph, multiple structural 

representations providing a broader perspective of the contents, diversity, and, if desired, a property of interest 

(e.g., biological activity, either experimental or predicted). Specifically, constellation plots combine a 

coordinate-based chemical space representation of analog series. Constellation plots facilitate the 

identification of entire zones in chemical space enriched with active compounds (‘bright’ SAR) or with 

predominantly or all inactive molecules (‘dark’ regions or “black holes”). In analogy with the cosmic space, the 

name ‘constellations’ is associated with clusters of analog series with similar chemical structures (given by 

similar coordinates in the two-dimensional plot). Combining multiple structural representations or, more 

generally, complementary approaches, is founded on the general notion that multiple and well integrated 

approaches perform overall better than individual methods.[86–89] Since constellation plots combine various 

structural representations in a single plot, it can be proposed that these plots are a manner to represent 

visually chemical multiverses. 

 

https://paperpile.com/c/C9qbCq/RsUnJ
https://paperpile.com/c/C9qbCq/RsUnJ
https://paperpile.com/c/C9qbCq/qFaNC+56ApA+d8huY+IPkoF
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Figure 2. The general form of a constellation plot is illustrated in this image. Every core is represented by a 

dot, the size of which is proportional to the number of compounds mapping to it. Edges represent cores 

connected by at least one shared molecule in the dataset. The color coding can represent any feature, such 

as the average scores of the molecules represented by the corresponding core in virtual screening. In this 

example, the color indicates the average of the cLogP values of the compounds sharing the core structure. 

 

Virtually any property of interest can be depicted in a constellation plot, such as experimental activity data 

or results from virtual screening, for instance, docking scores, predicted binding affinities, similarity values, or 

any other estimated value. This can be useful to identify, for instance, promising analog series for prioritization 

in experimental screening or additional computational studies before final selection for experimental 

evaluation. 

Constellation plots have already been used to aid the visualization of chemical space for different practical 

applications. For example, the authors analyzed the results of a docking-based virtual screening of 2789 

molecules from a commercial virtual library focused on inhibitors of DNA methyltransferase (DNMT). The 
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docking scores were visually represented on the plot, enabling the rapid identification and grouping of analogs 

(e.g, “constellations”) of compounds to be prioritized for further screening.[79] Constellation plots have also 

been used to explore the SAR of 827 inhibitors of AKT1 obtained from a public database, and the structure-

multiple-activity relationships -SmART- of 286 molecules experimentally tested as inhibitors of three DNMTs 

and assembled from public sources [79, 90–92] consistent cell-selective analog series of chemical 

compounds. This analysis was done through a systematic analysis of high-throughput screening data of 

41,821 compounds consistently assayed against the same panel of 73 human cancer cell lines used by the 

National Cancer Institute of the United States. In that study, the most relevant analog series were identified 

as measured by a therein developed combined selectivity and consensus score. Also, all the 3,750 cores of 

the entire data set were used as queries or reference structures to virtually screen the entire ZINC 15 database 

identifying 82,409 purchasable analogs for 1,980 of the 3,750 cores.[91] 

One more recent application of the constellation plots was to contribute to a comprehensive SAR analysis 

of 851 compounds tested as tubulin inhibitors and bioactivity data in different cancer cell lines. A total of 147 

analog series were identified and analyzed in a constellation plot. Visual analysis of the plot (an interactive 

version of the plot was made freely available using DataWarrior,[84] rapidly identified “bright” and “dark” 

regions in chemical space, i.e., analog series with overall high and low activity, respectively, as inhibitors of 

tubulin.[92] The code to generate constellation plots is freely available at https://github.com/navejaromero/analog-

series. 

 

4. Hit Identification, optimization, and development of bioactive compounds 

One of the most frequent approaches to identify active compounds from large compound libraries is through 

the computational filtering of possibly large or extremely large screening compound databases, followed by 

the relevant experimental validation. Certainly, virtual screening is a widely used tool in drug discovery. 

 

4.1 Virtual screening 

Virtual screening is a general approach devised to predict promising molecules, termed computational hits, 

that, upon experimental validation, have the potential to turn into lead molecules.[93, 94] Hits selected based 

on other features, such as physicochemical properties and smooth SAR, become leads ready to undergo 

optimization cycles. After intensive optimization, a drug-like molecule, termed a clinical candidate, might be 

considered for further preclinical and clinical development.[95] This process can be extremely costly and time-

consuming and is bound to high attrition rates. Therefore, virtual screening could assist in hit identification at 

early preclinical stages.[94] Iterative rounds of virtual screenings [96] and scaffold-based analyses [97] could 

then aid in hit expansion and lead optimization. In a recent example, Steadman et al. [98] reported a docking-

based virtual screening to identify new inhibitors of Notum, a negative regulator of Wnt signaling. They 

screened several successful series and found the [1,2,4]triazolo[4,3-b]pyradizin-3(2H)-one series as a new 

chemical class of Notum inhibitors.  

https://paperpile.com/c/C9qbCq/F1Wih
https://paperpile.com/c/C9qbCq/F1Wih+UAiQJ+z1tXA+2Q3CB
https://paperpile.com/c/C9qbCq/z1tXA
https://paperpile.com/c/C9qbCq/H2t9V
https://paperpile.com/c/C9qbCq/2Q3CB
https://github.com/navejaromero/analog-series
https://github.com/navejaromero/analog-series
https://paperpile.com/c/C9qbCq/MvRLk+EBovz
https://paperpile.com/c/C9qbCq/t4SL6
https://paperpile.com/c/C9qbCq/EBovz
https://paperpile.com/c/C9qbCq/hDJvg
https://paperpile.com/c/C9qbCq/5M1EI
https://paperpile.com/c/C9qbCq/1IaLr
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With the rise of large and ultra-large chemical databases, virtual screening has evolved as a natural way 

to exploit their contents and diversity.[99, 100] Besides a database to search in, virtual screening requires 

additional information, for example, the receptor's structure and a force field for docking scoring (example of 

a structure-based approach) or known ligands and a system for assessing similarity (example of a ligand-

based approach). Throughout this section, we will focus on ligand-based virtual screening, in particular, 

similarity-based virtual screening. This approach typically includes using one or more bioactive molecules as 

queries or references to compare against the database. The compounds most similar to the reference 

molecules are the computational hits.[101] Measuring similarity is, nonetheless, dependent on the operational 

definition of similarity: it might use, for example, chemical fingerprints, physicochemical properties, 

pharmacophoric features, and even combined approaches.[102] Several strategies for performing ligand-

based virtual screening exist, but there is no consensus on the best method for every case.  

Table 1 lists a few examples of successful cases of virtual screening.[2] This technique is gaining 

attention as the research community witnessed the applications identifying candidate compounds against 

COVID-19 from ultra-large compound databases.[103] Despite the extensive contributions and progress of 

virtual screening, this is one of the current grand challenges that face CADD. The hurdles include defining the 

search space, i.e., the type of chemical libraries to be explored, improving the algorithms to augment the hit 

rate, and developing or refining the current virtual screening processing tools to enhance the quantity and 

quality of the computational hits as well.[104] 

 

Table 1. Examples of recent successful virtual screening campaigns including experimental validation. 

Hit compound(s) activity  Virtual screening approach Reference 

11β-HSD1 inhibitors. Growth-based screening of the ZINC 

database (1.8 million compounds). 

[105] 

Two inhibitors of SARS-CoV-2 Mpro 

inhibitors with IC50 values in the micromolar 

range. 

Docking-based virtual screening of an in-

house focused library. 

[106] 

Thirty-two inhibitors of Notum with IC50 

values lower than 500 nM.  

Docking-based virtual screening of 1.5 

million compounds in a synthetic and 

commercial library (ChemDiv). 

[98]  

Four histone deacetylase inhibitors with 

nanomolar activity vs. HDAC 1, 3, and 6. 

Pharmacophore model and docking of an 

in-house database of 22,700 molecules. 

[107] 

Six compounds with activity against 

Mycobacterium tuberculosis peptide 

deformylase. 

Docking-based virtual screening of a 

commercial compound library with 7,120 

small molecules. 

[108] 

https://paperpile.com/c/C9qbCq/yXQBG+7pAMK
https://paperpile.com/c/C9qbCq/UvHLh
https://paperpile.com/c/C9qbCq/KnHPR
https://paperpile.com/c/C9qbCq/lKJEz
https://paperpile.com/c/C9qbCq/qcg9G
https://paperpile.com/c/C9qbCq/o0zw8
https://paperpile.com/c/C9qbCq/jFtgj
https://paperpile.com/c/C9qbCq/JIIZA
https://paperpile.com/c/C9qbCq/1IaLr
https://paperpile.com/c/C9qbCq/G4UlU
https://paperpile.com/c/C9qbCq/1736I
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4.2 VISAS: general approach that expands bioactive molecules 

Sometimes a focused virtual screening approach might be desirable. One way of delimiting the chemical 

space implies carefully selecting the collection to screen. For instance, the database could be confined to 

drug-like molecules, natural products, synthesizable compounds, or datasets focused on a set of molecular 

targets, e.g., focused or targeted libraries. Thus, the hits will comply with relevant selection criteria, depending 

on the project. A second factor to consider is the similarity threshold to define hit compounds. A more flexible 

hit definition puts novelty and scaffold-hopping in the spotlight, whereas stringent criteria would be suitable 

for identifying lead compounds, SAR analysis, and hit expansion. We propose that the most extreme hit 

definition requires that the query and hit molecules are chemical analogs, i.e., molecules with a close 

synthetical relationship. Since query and hits might as well have arisen from an organic synthesis project, it 

might be understood as a “pseudo-optimization” algorithm enabling the rapid extraction of purchasable or 

readily available analogs for experimental SAR exploration. We term this approach ViSAS (Virtual Screening 

based on Analog Series) since the practical implementation builds upon the analog series formalism by 

Bajorath et al.[11, 12]  Figure 3 depicts two exemplary analog series according to the definition presented by 

Naveja et al.[109] Briefly, the process of finding putative cores for a molecule begins with fragmenting the 

molecule (for instance, using RECAP retrosynthetic rules [110]) and subsequently filtering for relevant fully-

connected fragments that include most of the original structure (we require that at least two-thirds of the heavy 

atoms from the molecule must be included in the fragment’s structure). Fragments obtained through this 

procedure are termed putative cores. Although this method allows every molecule to map to more than a 

single core, large analog series can be usually summarized in a few cores that comprehensively map all 

molecules in the series (see Figure 3). Nevertheless, keeping a record of all putative cores permits the later 

inclusion of new molecules, which is the principle on which we base the virtual screening approach proposed 

here.  

 

https://paperpile.com/c/C9qbCq/uKF27+Ey2Hf
https://paperpile.com/c/C9qbCq/KQhCe
https://paperpile.com/c/C9qbCq/ou2Wf
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Figure 3. The general concept of analog series. All molecules in series A share a common core, which, for 

some applications, could be used to summarize it. Series B is somewhat more complex and requires at least 

two minimally overlapping cores for a comprehensive representation. Note that our definition of analog series 

allows every molecule to map to multiple cores. For clarity, not all putative cores are shown in this Figure. See 

reference [109] for more details on the fragmentation-and-indexing algorithm employed. 

 

Algorithms and applications related to the automatic identification of analog series in large data sets have 

been reviewed.[12] For over a decade, the analog series algorithms derived from matched molecular pair 

analysis have demonstrated a compelling balance between chemical interpretability and scalability.[111] 

Recent developments have emphasized the ability of analog series for SAR and activity cliffs 

rationalization.[11, 112, 113] However, other industrial applications, such as the evaluation of progress in lead 

optimization,[114] highlight the potential for analog series analyses to assist drug discovery teams dealing 

with organic synthesis and biological evaluation.[12] 

The logical formulation of virtual screening from the analog series emerges from the definition of chemical 

analogs: two molecules are considered analogs if they share a common core structure. Therefore, a typical 

fragment-and-index approach lists all possible matching cores for molecules in a dataset. Any new molecule 

that could be reduced to a fragment matching the fragments list would be an analog of the molecule(s) in the 

dataset indexed to this fragment. It remains only to define a fragmentation procedure and the requirements of 

a fragment to be considered a valid core. Many different such approaches have been reviewed elsewhere.[12, 

111] For instance, exhaustive methods may consider every possible substructure to be a valid core. 

Nonetheless, such strategies might lead to practical limitations. For instance, even relatively small libraries of 

somewhat complex molecules might lead to a combinatorial explosion while exhaustive substructure 

enumeration. Furthermore, synthetic interpretability is not prioritized in this approach, thus leading to a harder 

https://paperpile.com/c/C9qbCq/KQhCe
https://paperpile.com/c/C9qbCq/Ey2Hf
https://paperpile.com/c/C9qbCq/RiXaO
https://paperpile.com/c/C9qbCq/uKF27+alEHm+nHlOh
https://paperpile.com/c/C9qbCq/gBHBI
https://paperpile.com/c/C9qbCq/Ey2Hf
https://paperpile.com/c/C9qbCq/Ey2Hf+RiXaO
https://paperpile.com/c/C9qbCq/Ey2Hf+RiXaO
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rationalization of the results. Therefore, matched molecular pairs obtained through retrosynthetic 

fragmentation [115] gradually developed into several applications relying on analog series computational 

identification,[11] such as analog series-based scaffolds [116], compact chemical space representations of 

analog series in constellation plots,[90] and the novel SAR rationalization approaches.[109, 113] 

Another application of analog series yet to be fully harnessed is virtual screening in ultra-large libraries. 

While most virtual screening methods focus on identifying single molecules with a desired predicted property, 

working with analog series up front has the potential of readily identifying a whole family of compounds to be 

prioritized for additional computational analysis or tested experimentally for a richer and in-depth SAR 

analysis. In essence, ViSAS is a substructure search algorithm (see Figure 4). However, the valid 

substructures to search are delimited before a direct comparison between queries and compounds in the 

database to search occurs. This allows the fragmentation of the databases to be computed in advance, thus 

reducing the substructure search to a text-matching problem. Moreover, the inherent hierarchical structure of 

analog series can be represented as scaffold networks and R-group tables allowing prompt local SAR 

analyses early on. 

 

 

Figure 4. Virtual screening of analog series (ViSAS) concept. In this example, one query molecule is 

fragmented through RECAP rules, and only fragments retaining at least two-thirds of the heavy atoms in the 

query are considered cores. The cores are then used for searching for exact matches in the precomputed 

cores of the ZINC database. This allows searching for chemical analogs in ultra-large libraries (in this case, 

>740 million unique molecules). For each core, an R-group table with the matching compounds can be 

computed. 

https://paperpile.com/c/C9qbCq/e7VdV
https://paperpile.com/c/C9qbCq/uKF27
https://paperpile.com/c/C9qbCq/nxruI
https://paperpile.com/c/C9qbCq/UAiQJ
https://paperpile.com/c/C9qbCq/KQhCe+nHlOh
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We fragmented ZINC15 (an ultra-large database of commercial compounds containing >740M unique 

chemical structures) to prepare it for virtual screening. Although fragmentation was time-consuming (about 

one month even with parallel processing), fragment-and-index approaches require fragmenting each molecule 

only once. This implies that updates would be faster, as only new molecules have to be processed and added 

to the dictionary. Any new molecule that is processed undergoes a standard washing procedure consisting of 

salt removal, extraction of the largest fragment, charge neutralization, and removal of stereochemistry 

information. Afterward, the washed molecule is searched in the list of processed SMILES, to avoid processing 

a compound twice. This list maps every unique washed SMILES to the identifiers - IDs - of the compounds 

mapping to it after the washing procedure. Any new SMILES are fragmented as described in [109, 117]. The 

fragmentation procedure is easy to run in parallel, as every molecule can be processed independently. We 

provide bash scripts for downloading and processing ZINC in https://github.com/navejaromero/analog-series. 

Also, the post-fragmentation ZINC library can be downloaded from Zenodo (10.5281/zenodo.6562818). 

To further show the application of the analog series in virtual screening, in the next section we discuss a 

case study using public data to address a global health issue.  

 

4.2.1 ViSAS on an antituberculosis chemical dataset 

The process of hit expansion itself using the processed ZINC database has been recently described by 

Madariaga-Mazón et al. [118] In this case study, for the purpose of illustrating ViSAS in a real-life example, 

we used 118 recently published antituberculosis compounds as queries.[119] The fragmenting procedure 

identified 261 cores, which were then used for the text search in the preprocessed ZINC database. 3091 

computational hits were identified. 67 cores matched at least one molecule in ZINC, however, only seven 

minimally-overlapping cores resulted in more than two hits (Figure 5). Note that this method only finds analogs 

by matching cores; it is not designed to directly add more cores to the chemical space, but only to enrich those 

that are already represented in the queries. Nonetheless, the results might be fragmented again and used for 

another round of virtual screening: this would increase the coverage of the chemical space at the cost of 

adding more diverse analogs. In this example, the total size of the database increased ~26-fold. However, a 

significant number of hits could be found only for a few cores, whose SAR could be characterized. For 

instance, the most represented core had over a thousand hits and two substitution sites. A selection of these 

hits might be readily acquired and tested experimentally (Figure 6). 

 

https://sciwheel.com/work/citation?ids=6419644,7801537&pre=&pre=&suf=&suf=&sa=0,0
https://paperpile.com/c/C9qbCq/KQhCe+TXAGk
https://github.com/navejaromero/analog-series
https://github.com/navejaromero/analog-series
https://paperpile.com/c/C9qbCq/qplW1
https://paperpile.com/c/C9qbCq/IdROu
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Figure 5. Constellation plot depicting the cores chemical space of a collection of 118 molecules with 

antituberculosis activity from the cores viewpoint. Every dot represents a valid retrosynthetic core. Larger 

points represent cores to which two molecules are mapped. Six complex analog series were found, forming 

constellations in the original data set. ZINC15 was searched for analogs of any of the cores, successfully 

finding more than a single molecule for seven of them (structures shown and dots highlighted with a clear 

halo). For simplicity, only 124 cores summarizing the whole core space are plotted; these were selected for 

minimal overlapping as described in [109]. 

 

https://paperpile.com/c/C9qbCq/KQhCe
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Figure 6. R-group table showing a selection of the 1048 analogs matching M178, the most populated core 

from the antituberculosis collection in [119] matching the processed ZINC database. Prices as of May 2022, 

according to the ZINC Express website.[120] 

  

4.3 De novo design libraries 

Automated de novo design and virtual screening represent the in silico methods for chemical synthesis of new 

molecules and high throughput screening. The main goal of de novo design is the proposal of novel chemical 

entities. This computational approach considers a series of constraints to construct new molecular structures. 

These constraints could include: desired biological effect (primary constraint), drug-likeness, pharmacokinetic 

properties, toxicity or chemical feasibility (secondary constraints). The desired biological effect is considered 

the primary constraint for the reason that all programs contemplate this objective.[121] In addition, de novo 

design software has to address three tasks: the assembly of the new molecules, molecule scoring and 

optimization of the molecules.[122]  

More than forty algorithms for de novo design have been published since the early 1990s. Taking into 

account the available information, structure-based or ligand-based approaches can be selected. The three-

dimensional coordinates of the receptor are fundamental for the first and active binders for the second.[121] 

A recurrent ligand-based strategy is the definition of a pharmacophore model from an ensemble of known 

actives. PhDD [123] is a pharmacophore-based de novo design method, it incorporates the assessment of 

synthetic accessibility and the bioactivity of the proposed molecules is estimated with a fit value to the 

pharmacophore model. Another example of ligand-based de novo design is the reaction-based software 

DOGS,[[124] this program recommends a synthetic route for each compound. The scoring function of DOGS 

calculates the similarity of the new molecules with a known bioactive reference. The molecule scoring is 

another stage where the knowledge of active modulators can be exploited for automated de novo design. 

https://paperpile.com/c/C9qbCq/IdROu
https://paperpile.com/c/C9qbCq/Mt033
https://paperpile.com/c/C9qbCq/U8vr5
https://paperpile.com/c/C9qbCq/RtaEg
https://paperpile.com/c/C9qbCq/U8vr5
https://paperpile.com/c/C9qbCq/SwiKz
https://paperpile.com/c/C9qbCq/xlgKC
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Most recent software considers fragments above atoms as building blocks. Fragments’ databases come 

from different sources including external inputs as catalogs or fragment-like compounds. Databases can also 

be constructed from virtual fragmentation of complete drug molecules to increase the probability of obtaining 

a drug-like molecule with synthetic accessibility.[125] This last strategy can be exploited not only with complete 

drugs but also with known active compounds against our target of interest.To follow the strategy of using 

bioactivity data the selected program has to admit this type of focused fragments, examples of softwares with 

this characteristic are LUDI (available with Discovery Studio) [126] and LigBuilder.[127] 

It is possible that the software incorporates the fragmentation step from complete molecules entered by 

the user, like alvaBuilder (Alvascience, alvaBuilder (software for de novo molecular design) version 1.0.6, 

2021, https://www.alvascience.com). In case the virtual fragmentation has to be made before entering the 

information to the program it is necessary to construct a database of active modulators. The threshold value 

to separate actives and inactives can be established in 10 𝛍M as suggested by previous studies.[128] Another 

strategy is to analyze the bioactivity data of the selected compounds for the target of interest, for example the 

median can be calculated to set a different limit to the particular database. Once the active set is ready, the 

molecular fragmentation can be done with algorithms like RECAP [110] and the resulting fragments with the 

suitable properties are selected as input. 

To deal with the tasks of molecular generation and the increasing amount of available bioactivity data, 

artificial intelligence has been applied to automated de novo design. Taking into account the scoring of 

molecules, ML approaches like target prediction that classifies compounds into active and inactive or 

quantitative structure-activity relationships (QSAR) could be applied [129] Inverse QSAR or inverse 

quantitative structure-property relationships (QSPR) are also related with de novo design. These 

methodologies seek to correlate desired properties, including biological activity, to molecular structural 

feature. [130] 

Research work from 2018 proposed an approach based on a generative model that made use of a 

recurrent neural network for de novo drug design. The model was trained with a large molecular set from the 

ChEMBL database, which annotates biological activity data and chemical structures. With this training the 

model learned the grammar of SMILES, the chosen molecular representation for the molecules. To generate 

focused libraries the model was fine-tuned with active modulators of a specific target. This was another 

strategy that took advantage of bioactivity data to generate novel molecules.[129] 

 

4.3.1 Case study: DNMT focused libraries 

This case study is centered in the discovery of new hits against DNMT. Automated de novo design was 

employed for the proposal of compounds. We hypothesized that de novo design could lead to molecules that 

expand the epigenetic-relevant chemical space, due to the expected novelty of the compounds. We selected 

alvaBuilder (Alvascience, alvaBuilder (software for de novo molecular design) version 1.0.6, 2021, 

https://www.alvascience.com), a ligand-based de novo design program, to construct the molecules. This 

software selects fragments as construction blocks and incorporates a genetic algorithm to optimize the search 

https://paperpile.com/c/C9qbCq/8Xplg
https://paperpile.com/c/C9qbCq/y4Izp
https://paperpile.com/c/C9qbCq/AtEK9
https://paperpile.com/c/C9qbCq/AD4Qe
https://paperpile.com/c/C9qbCq/ou2Wf
https://paperpile.com/c/C9qbCq/heFLY
https://paperpile.com/c/C9qbCq/5TNZP
https://paperpile.com/c/C9qbCq/heFLY
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of suitable compounds. To create the fragments and linkers the user has to select a database of entire 

molecules. The user enters data to create the training set, the molecules are then fragmented into ring 

systems, linkers, and lateral chains. This approach allows taking advantage of bioactivity data since active 

modulators could constitute the training set. 

For the selection of the training set, we constructed a database of DNMT1 inhibitors with an IC50 of 10 𝛍M 

or less. Bioactivity data was obtained from ChEMBL database version 29 (2021). Since it has been previously 

observed that bioactivity data could differ between experimental techniques,[131] we only maintained 422 

molecules with IC50 values (48% of those with annotated bioactivity). After data curation, we had 259 unique 

compounds with the desired inhibitory concentration. 

The scoring function is also customized by the user, the score is a conglomeration of a set of rules. The 

first rule finds molecules that have a target value for the selected descriptor, from the 91 available. The second 

rule calculates the similarity to a reference, and the third evaluates if the molecules contain or not a molecular 

pattern. The result of the scoring aggregates with either arithmetic or geometric mean and exhibits values 

from zero (worst) to one (best). 

To establish the scoring function, we selected seven descriptors: molecular weight, donor atoms for H-

bonds, acceptor atoms for H-bonds, consensus LogP model, LogS aqueous solubility, synthetic accessibility 

score (SAscore) and topological polar surface area (TPSA). Synthetic accessibility is one of the major 

concerns about de novo design. Therefore, we included this quantitative estimation in addition to other 

physicochemical properties. 

We calculated the descriptors of the active molecules with alvaDesc (Alvascience, alvaDesc (software for 

molecular descriptors calculation) version 2.0.10, 2021, https://www.alvascience.com). This program has the 

same algorithms for the computation of descriptors as alvaBuilder. With this information, we set up the donor 

atoms for H-bonds to be ≥ 2 and the SAscore to ≤ 5.979. For the rest of the descriptors, the range was 

designated to the mean ± the standard deviation of the calculated numerical values for the active inhibitors. 

The final score was aggregated with the arithmetic mean of the selected rules. We defined a population size 

of 65 and a maximum number of iterations of 100 for the genetic algorithm. With the same training set and 

scoring function we obtained 10 sets of new molecules. 

With the ten different sets, we computed similarity matrices with PUMA server [132]. The results confirmed 

that predicted physicochemical properties are highly similar, with Tanimoto coefficients between 0.969 and 

0.983. The similarity results were expected due to the definition of the scoring function. Since we confirmed 

that molecular properties were alike, we also wanted to compute structural similarity between the compounds.  

We calculated two different fingerprints: MACCS keys (166-bits) and Morgan radius 2 with RDKit node for 

KNIME. Preliminary results showed that the similarity inter and intraset is lower than the calculated with 

molecular properties. Cumulative distribution functions computed with PUMA showed median similarity values 

from 0.471 to 0.590 with MACCS keys and 0.114 - 0.149 with Extended Connectivity Fingerprints radius 4, 

both results present interset similarity. Overall, the results showed that new molecules exhibit highly similar 

properties. These molecular properties were established as secondary constraints by the scoring function. 

https://paperpile.com/c/C9qbCq/QQLfF
https://paperpile.com/c/C9qbCq/egzjD
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Nevertheless, the sets exhibit less structural similarity according to the selected fingerprints. The calculated 

structural diversity is expected for a de novo design. In this case, it could also be influenced by the initial 

diversity of the training set. This is encouraging due to the probability that the desired bioactivity could also 

be transferred to the novel molecules. 

 

5. Extended similarity methods 

Binary similarity indices [133] and metrics are core elements of the machinery used to explore chemical space, 

classify molecules, design new drugs, and screen molecular libraries in search for promising compounds. 

However, as well-studied and ubiquitous as they are, these indices have a fundamental drawback, given by 

the fact that they can only compare two molecules at a time. This means that if we want to estimate the 

similarity of N compounds, we will need O(N2) operations, which greatly limits the scaling of these algorithms 

and restricts them to narrow sections of chemical space. Motivated by these issues, a new family of similarity 

indices [55, 56] (extended or n-ary similarity indices) was recently proposed, that can compare multiple 

molecules at the same time. In this section we briefly review the characteristics of these indices, and some 

exemplary applications. 

 

 5.1 The extended similarity framework 

The defining characteristic of the extended similarity indices [55, 56] is that they are capable of comparing 

any number of molecules at the same time. Remarkably, the procedure leading to this generalization is 

extremely simple, which contributes to the ease of implementation of these indices. The starting point is having 

all the molecules that are going to be analyzed in a suitable representation. For now, all the cheminformatic-

related applications of the n-ary indices have mostly relied on binary fingerprints (e.g., any type of fingerprint, 

including MACCS keys, RDKit fingerprints, and circular or Morgan fingerprints), but there has been extensive 

work on generalizing the domain of definition of these indices, so one could also use arbitrary sequence 

representations,[134] latent-space descriptor-based approaches,[135] or even coordinate-based 3D 

representations.[136] The key is that all the molecules will be encoded by equal-length “vectors”. Then, we 

just need to form a cumulative vector, σ, with components σk equal to the sum of each of the components of 

the molecules to be analyzed (if the molecular representations are aligned in a matrix-like array, then σ will 

correspond to the sums of the columns of this matrix). This is the most time-consuming step in the calculation 

of the n-ary indices, however, it is easy to see that it will scale as O(N), so it is dramatically more efficient than 

using any binary comparison (e.g., recent benchmarks have been able to compare tens of billions of molecules 

using extended indices in a regular laptop). The next step is to define a coincidence threshold, γ, that is going 

to be used to determine which of the components of σ are going to be identified as corresponding to similarity 

or dissimilarity descriptors. This classification is extremely easy to perform, since we just need to notice that 

|2*σk -n| > γ indicates that σk will be a similarity, while |2*σk -n| ≤ γ indicates dissimilarity (with n being the 

number of molecules to be compared). We can gain even more detail into the nature of the similarity 

descriptors: if 2*σk -n > γ, the similarity will be given by the dominant contribution of “on” bits in the fingerprints 

https://paperpile.com/c/C9qbCq/PCrzF
https://paperpile.com/c/C9qbCq/J0RcO+tMxKN
https://paperpile.com/c/C9qbCq/J0RcO+tMxKN
https://paperpile.com/c/C9qbCq/Ml8FG
https://paperpile.com/c/C9qbCq/4A9jM
https://paperpile.com/c/C9qbCq/9u83g
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(they mostly share the presence of the same feature), but if n - 2*σk > γ, then the similarity will be given by 

the preponderance of “off” bits in the fingerprints (the given feature is mostly absent from the molecules). Of 

course, this means that unless we select γ = n – 1 (which is an extreme choice), we are going to consider 

similar descriptors that do not necessarily correspond to a perfect coincidence of the features. To properly 

account for this, we have to introduce weight functions in the formalism, which will penalize these partial 

coincidences. Then, with all these ingredients, we just need to substitute the (weighted) 1- and 0-similarity, 

together with the dissimilarity descriptors in the same expressions used to define the binary similarity indices, 

and we have their corresponding extended version. 

These new indices give more freedom at the time of performing any similarity-based analysis, because 

now we can study correlations between an arbitrary number of molecules.[56] Reassuringly, it has been 

already shown that they are internally and externally consistent with respect to the newly introduced hyper-

parameter γ.[133, 137, 138] The former implies that they will rank multiple datasets in the same way, largely 

independently of the value of γ. The latter reflects the fact that the ranking obtained from extended indices 

and the ranking obtained from standard binary indices will also be the same over most γ values. 

 

 5.2 Global description: chemical diversity, Chemical Library Networks, and clustering 

The ability of the extended similarity indices of requiring O(N) operations to compare N objects makes them 

immediately attractive to explore large sections of chemical space, potentially dealing with numbers of 

molecules out of reach for current approaches. The first direct application related to this is quantifying the 

chemical diversity of large molecular libraries.[84] The key insight here is that while raw similarity values can 

be hard to interpret (except in the trivial cases when they are 0 or 1), we can easily determine the relative 

degree of diversity with respect to a given reference dataset. This makes it easier to readily interpret what one 

means when saying that libraries are more or less diverse. Several detailed benchmarks showed that the 

combination of RDKit fingerprints and extended Tanimoto index provides the most robust measure of chemical 

diversity. 

The hyper-efficiency of the n-ary indices motivated their use in representations of chemical space 

spanning millions of molecules. The inspiration here came from Maggiora and Bajorath’s Chemical Space 

Networks (CSNs). The CSNs start from a set of molecules and use these molecules as nodes/vertices in a 

graph. Then, one decides whether to connect these nodes with edges depending on the (binary) similarity 

between the involved molecules. As powerful and intuitive as this process can be, it has the same problem as 

other binary-based approaches, since it demands O(N2) operations. The extended similarity indices, on the 

other hand, can be used to define Chemical Library Networks (CLNs),[84] which borrow inspiration from the 

CSNs, but now the nodes of the graph correspond to complete libraries, and the edges are associated to the 

extended similarity resulting from comparing any two such datasets. Preliminary studies have applied this 

methodology to representing chemical spaces with more than 18 million molecules, which is several orders 

of magnitude more than what has been represented using CSNs. This provides an unprecedented opportunity 

to map extremely large sections of chemical space, study how the connectivity patterns depend on factors 

https://paperpile.com/c/C9qbCq/tMxKN
https://paperpile.com/c/C9qbCq/PCrzF+SHkk2+w0YaP
https://paperpile.com/c/C9qbCq/H2t9V
https://paperpile.com/c/C9qbCq/H2t9V
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like the molecular representation, and potentially see how the relations between large libraries evolve in a 

dynamic when elements are added or removed to them. This versatility strongly points out to the potential of 

CLNs to be used in polypharmacology and drug repurposing. 

The structure of the extended similarity indices naturally leads to a new way of performing hierarchical 

clustering.[56, 139] Notice that if in any given moment (e.g., kth iteration) we have clusters c1(k), c2(k), …, 

cN(k), we can proceed to the (k + 1)th iteration by combining the two clusters that maximize their joint extended 

similarity. In other words, we have a new linkage criterion. While the scaling of this algorithm is the same as 

those relying on standard linkage criteria like single, average, complete, etc., the n-ary clustering has two key 

advantages. On one hand, this new clustering algorithm has proven to be more robust than current methods, 

as quantified by the V-measure.[139] Moreover, with the extended clustering, we can provide a very 

convenient estimate of the number of clusters in the data, without any extra computational cost. Recent 

studies have shown that this new method is capable of readily classifying various JAK inhibitors derived from 

different scaffolds.[56] 

 

5.3 Local description: diversity selection and medoid calculation 

A less obvious advantage of the n-ary indices is their ability to shed light into the local structure of large 

chemical spaces by singling out a molecule, or sampling a few species. The first of such applications that was 

explored in detail was the use of extended indices in diversity selection [56] (e.g., selecting a maximally 

diverse subset from a given library). There are several ways to do this using binary comparisons (like the 

MaxMin and MaxSum algorithms), but they scale as O(N2). On the other hand, with the extended similarity 

indices one can just directly maximize the diversity of the selected set by minimizing the extended similarity 

of the molecules that are going to be picked (e.g., the Max_nDis [56] or ECS_MeDiv [136] algorithms). This 

simple procedure scales linearly, so it is in perfect position to handle very large datasets. Moreover, several 

benchmarks have shown that the Max_nDis algorithm can result in sets that are more than 3 times more 

diverse than those selected by MaxMin or MaxSum. 

Perhaps even more surprisingly, the extended indices allow us to find the most representative elements 

of a set with great ease.[139] This is a key task in several fields, known as the medoid problem. However, the 

usual solutions either scale as O(N2), or use several approximations and stochastic tools to get down to 

O(NlogN). The main insight to approach this problem using extended indices is to introduce the concept of 

complementary similarity. That is, given an element in the set, the complementary similarity is the extended 

similarity of all the elements in the set, except for the chosen one. It is clear then that the medoid will 

correspond to the element in the set that has the lowest possible value of complementary similarity. This 

simple recipe provides excellent results when applied to the analysis of biological ensembles,[139] and has 

also been used to explore epigenetic-focused libraries.[140] An enticing possibility of this algorithm is 

classifying all the molecules in a library depending on how “central” or “outlier” they are, and information that 

we can use to select either “stars” or “satellites” in order to represent chemical space regions with more detail. 
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6. Conclusion and outlook 

CADD has made clear contributions to identify and advance drug candidates that are now in clinical use. Over 

the past few decades, and more remarkably in recent years, AI (arguably better called augmented intelligence) 

altogether with even richer databases is advancing drug research at a tremendous speed. AI has made clear 

and dramatic advances in SBDD and LBDD. However, the scientific community should employ AI  correctly 

and for the right reasons beyond hype or fashion: ultimately, “fashion vanishes with time but quality 

(reasoning) is timeless”.  

As part of the large data sources currently available to train AI models, large and ultra large compound 

databases are emerging, many of them being designed with the aid of de novo design. Consequently, the 

chemical space is expanding, boosting the proposal and evolution of novel visual graphical representations. 

Similarly, the concept of chemical multiverse has recently emerged as an approach to capture alternative 

chemical spaces of a compound data set given by different molecular representations. In this regard, the 

constellation plots, which are based on the concept of analog series, are visual representations of chemical 

multiverses that facilitate SP(A)R analysis, including the analysis of virtual screening campaigns. We would 

like to emphasize the advantage to look beyond the traditional chemical space typically composed of small 

organic compounds obtained from medicinal chemistry and computational efforts such as de novo design. 

The community should look into “neglected or underrepresented chemical spaces” such as metal-containing 

compounds, food chemicals, and other molecules from natural sources. 

Systematic computational searches in chemical and biological spaces -virtual screening or target fishing- 

is a common and useful practice in drug discovery with several documented successful cases. To this end, 

ViSAS is a general approach that expands bioactive molecules' chemical space by finding analogs in libraries 

of purchasable compounds. The hits can be arranged in an R-group table, similar to a molecule optimization 

campaign; however, this is probably a first in virtual screening. Although the ViSAS concept is formalized in 

this review, its principles and applications have been published and discussed. We anticipate that local SAR 

analysis with ML can help select the most relevant analog series to test experimentally. Similarly, the ViSAS 

concept can be extended to the analysis of de novo libraries, to focus on novel analog series and identify 

those that have commercially available precursors.  

In order to speed and facilitate the navigation of the large and ultra large compound libraries, the extended 

or n-ary similarity indices were recently proposed. These novel indices have found a broad range of 

applications such as quantifying the chemical diversity of (large) molecular libraries, the graphical 

representation of chemical space through Chemical Library Networks, clustering, diversity selection, and 

identifying the most representative compound of a compound data set (the medoid). 

 A practical perspective to the continued improvement of CADD and AI, besides the methodological 

challenges and their application in drug discovery projects, is the convenience of formal training and education 

at the undergraduate and graduate level. Several practitioners learn and practice CADD “on the fly” as the 

research needs emerge. Formal training at early ages would prepare better researchers and practitioners of 

CADD, AI and it will be advantageous for the continued improvement of communication between 
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multidisciplinary research teams so that experts in CADD can communicate more effectively with medicinal 

chemists and other drug discovery team members. 
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