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ABSTRACT: Accurate prediction of the pKa’s of protein residues is crucial to many applications in biological simulation and drug 
discovery. Here we present the use of free energy perturbation (FEP) calculations for the prediction of single protein residue pKa 
values. We begin with an initial set of 191 residues with experimentally determined pKa values. To isolate sampling limitations from 
force field inaccuracies, we develop an algorithm to classify residues whose environments are significantly affected by crystal packing 
effects. We then report an approach to identify buried histidines that require significant sampling beyond what is achieved in typical 
FEP calculations. We therefore define a clean dataset not requiring algorithms capable of predicting major conformational changes 
on which other pKa prediction methods can be tested. On this data set, we report an RMSE of 0.76 pKa units for 35 ASP residues, 
0.51 pKa units for 44 GLU residues, and 0.67 pKa units for 76 HIS residues.

I. Introduction. 

 

Accurate calculation of the pKa’s of protein residues is an 
essential molecular modeling task in many important applica-
tions in biological simulation and drug discovery1,2. Protein 
conformations, ligand binding affinities, and protein-protein in-
terfaces can all exhibit a critical dependence upon the protona-
tion state of key titratable residues. Use of the wrong protona-
tion state can lead not only to quantitative errors, but to qualita-
tively incorrect conclusions. 

However, obtaining high precision in pKa evaluations is a 
very challenging task.  To date, a variety of empirical and con-
tinuum solvent-based approaches have been employed. For 
highly solvent exposed residues, the best of these methods per-
forms reasonably well. As solvent exposure decreases, the abil-
ity to obtain results that correlate well with experiment dimin-
ishes. Explicit solvent-based MD simulations have also been 
explored, most often via the use of pH dependent simulations 
based on lambda dynamics3. Such approaches have shown some 
promise but have not yet been tested on the large data sets 
needed to make a statistical assessment of error. 

There are a large number of published protonation prediction 
methods available that listing them all is beyond the scope of 
this paper. Therefore, we briefly highlight some of the more 
popular and often benchmarked methods to illustrate the range 
of reported accuracies and dataset sizes used. One of the most 
popular empirical pKa predictors is PROPKA3.4 PROPKA3 re-
ports a combined RMSE for aspartate and glutamate of 0.79 
pKa units over a dataset of 201 residues and an RMSE of 1.0 
pKa units for histidine for a dataset of 31 residues. Continuum 
solvent based approaches such as H++5 and MCCE26 are often 
cited. H++ reports an RMSE of ~1.4 pKa units for 201 ionizable 
groups in 23 high-quality protein structures. MCCE2 reports an 

RMSE of 0.77 pKa units for 225 surface residues and 1.2 pKa 
units for 80 buried residues. Buried residues are presented sep-
arately as a significantly greater challenge than surface residues 
in MCCE2. Molecular dynamics-based method MD/GB/TI re-
ports an RMSE of 1.4 pKa units for the pKa prediction of 80 
different residues (20 each for aspartate, glutamate, lysine, and 
histidine)7.  

Constant pH molecular dynamics (CpHMD) approaches are 
an active area of work in multiple groups. These methods are 
able to handle coupled protonation states, a limitation of our ap-
proach here. However, the computational costs of these meth-
ods are non-trivial, often employing implicit solvent methods to 
cope, and the dataset sizes reported in the literature are often 
much smaller than the empirical methods, which provides chal-
lenges for statistical validation of these methods. 

Swalis, York and Roitberg report a CpHMD method that 
combines explicit solvent MD with protonation state changes 
performed under implicit solvent at fixed intervals8. The 
method is benchmarked for 10 titratable residues in hen egg 
white lysozyme (7 ASP, 2 GLU, and 1 HIS residue) with an 
overall RMSE of 0.82 pKa units. 

Radak et al report a CpHMD method that uses Monte Carlo 
moves consisting of short non-equilibrium MD trajectories with 
explicit solvent9. Their publication reported results for a set of 
titratable residues within Staphylococcal nuclease. Of the resi-
dues with precise experimental pKa values (this excludes ex-
perimental pKa values such as < 2.20), there are 6, 11, and 2 
ASP, GLU and HIS residues, respectively. The overall RMSE 
for this set is 0.58 pKa units10. 

Harris and Shen report a GPU CpHMD approach that uses a 
GB continuum solvation model and reports an RMSE of 0.92, 
0.61, and 1.04 pKa units for ASP, GLU and HIS datasets, re-
spectively11. The number of titratable residues tested were 42, 
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54, and 18 residues for ASP, GLU and HIS, respectively, one 
of the largest datasets for CpHMD validation. 

Recently, Harris et al produced a follow-up paper with the 
use of explicit solvent12. The dataset consisted of titratable res-
idues in six proteins. RMSEs reported are 0.76, 0.69, and 0.92 
pKa units for ASP, GLU, and HIS datasets, respectively, which 
showed improvements compared to the use of implicit solvent. 
The number of titratable residues tested were 28, 31, and 10 for 
ASP, GLU and HIS, respectively. 

In several recent papers, we have demonstrated the ability of 
the Schrodinger FEP+ package, using recent versions of the 
OPLS force field, to predict the effects of mutation on protein-
protein binding to an accuracy of better than 1 kcal/mole, in-
cluding the challenging case of charge changing mutations13–15. 
These results provide a reason for optimism that pKa calcula-
tions can similarly be addressed successfully. In the present pa-
per, we report an initial exploration of this hypothesis, using 
standard data sets from the literature as our initial test cases.  

In order to appropriately assess the accuracy of rigorous 
physics-based pKa calculations, a key problem, heretofore not 
discussed in the literature, must be overcome. The data sets 
mentioned above are based on high resolution crystal structures 
of small proteins. These proteins have a high surface to volume 
ratio, which leads to a profusion of crystal packing interactions 
affecting a significant number of the histidines and carboxylate 
residues of the protein. Even if we assume that the secondary 
structure framework is minimally affected by the crystal envi-
ronment, loops constrained by crystal packing in the crystal 
may well have a significantly different conformation in solu-
tion. And as the FEP simulations we perform are of relatively 
short duration, it is unlikely in such cases that the loop will have 
time to reorganize into the correct conformation. The challenge 
is therefore to disentangle errors caused by problematic starting 
conformations of the residue and its environs, as opposed to 
those due to the computational methodology. We note that a 
similar analysis would apply to all of the pKa prediction meth-
ods cited above.  

To address this problem, we formulate a scoring function 
which evaluates the degree to which crystal packing affects 
each of the test cases in our data set. A cutoff value of the scor-
ing is defined using a training set of residues, and performance 
of the FEP calculations on residues that score below the thresh-
old (implying minimal crystal packing perturbation) and above 
it is computed. A significant improvement in the RMS error and 
correlation coefficient can be observed for the residues deemed 
to be minimally affected by crystal packing, which we interpret 
as reflecting the performance that one can expect if the correct 
solution structure is used as a starting point. We note that our 
scoring function can also be used to determine which loops are 
likely distorted by crystal packing in any crystal structure; if any 
such loops impact key functional interactions (such as ligand 
binding), refinement of these loop structures may be necessary 
to achieve accurate results in, for example, FEP simulations of 
protein-ligand binding. 

Once crystal packing effects have been (approximately) re-
moved, the remaining errors in pKa prediction must be due to 
one of three sources: experimental uncertainty, incomplete sam-
pling, or errors in the force field model. Incomplete sampling is 
most likely to arise when the crystal structure is adapted to the 
neutral form of the residue, and a transformation to the charged 
species creates a highly unfavorable set of interactions (note 
that this is far more likely to be an issue for a histidine residue 

as opposed to a carboxylic acid, simply because the great ma-
jority of carboxylates are crystallized in the charged form). In 
some cases, the unfavorable set of interactions of the charged 
species induces a significant conformational change, which the 
limited FEP MD sampling is not able to fully access. We have 
developed an algorithm, specific to histidine, which can auto-
matically identify such cases, based on both the crystal structure 
and the MD trajectory from the FEP simulation. This algorithm 
captures a high fraction of the largest outliers in the histidine 
data set, and explains why the raw histidine results are substan-
tially worse than those for carboxylates (not only in our ap-
proach, but in others as well). We develop a simple, one param-
eter empirical correction for these buried histidine cases which 
in essence reverts their error distribution to a value comparable 
to that obtained for the overall data set. 

We can then estimate force field error/experimental error 
(which cannot be disentangled easily) by examining a data set 
from which both the suspected crystal packing and incomplete 
sampling outliers (as defined above) have been removed. The 
resulting RMS error is consistent with that obtained in our prior 
work on FEP binding affinity calculations in protein-protein 
complexes 13. In these latter efforts, we have discovered a few 
unusual structures (carboxylic acid making an exceptional num-
ber of hydrogen bonds) where the errors (estimated indirectly 
based on binding affinity data) are much larger, which we at-
tribute to the failure to explicitly treat polarization in the OPLS4 
force field (testing of the performance of an explicitly polariza-
ble model for these systems is currently in progress). However, 
our assessment based on the residue environments for the cur-
rent data set is that none of the cases discussed in the current 
paper fall into this category.   

The paper is organized as follows. In section II, we describe 
the literature data set that we have assembled, comprising 105 
Asp/Glu and 86 His cases in total. Section III summarizes our 
FEP methodology for evaluating pKa’s of the residues in the 
data set, including force field improvements motivated by com-
paring calculated pKa’s with experiment. Section IV compares 
computed and experimental pKa values for all residues in the 
data set, without considering crystal packing effects. In section 
V, we then develop a model to identify residues that are strongly 
affected by crystal packing and train the parameters of the 
model using the experiment/theory comparisons obtained in 
Section IV (using standard statistical techniques to assess over-
fitting). In section VI, we present attempts to resolve errors due 
to limited sampling by using additional simulation time, and 
then identifying cases via an automated algorithm which are 
suspected to suffer from sampling limitations that are presumed 
to require simulation time well beyond the scope of this work. 
In section VII the discussion, we compare the results obtained 
when crystal packing and limited sampling effects are excluded 
with those obtained from the unfiltered data sets and draw con-
clusions with regard to the accuracy and reliability of our ex-
plicit solvent based pKa prediction methodology. In section 
VIII, the conclusion, we summarize our results and outline fu-
ture directions. 

 

II. Literature Data Set for pKa Calculations 

 

We use a data set of 191 experimentally obtained pKa values 
for individual protein residues from 44 separate proteins. Of 
these 191 residues, 157 residues are from crystal structures and 
the remaining 34 from NMR structures. This dataset has overlap 
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with the PKAD16, although for some proteins we refer to more 
recent experimental data. For example, for human hemoglobin, 
PDB ID 1HHO, we use a 2010 reference17 for HIS pKa values 
rather than a publication from 198018 referenced by the PKAD. 
Supplemental Table S9 lists the PDB IDs of each protein and 
the associated reference for single residue pKa values. The lim-
ited size of the data set is due primarily to the paucity of reliable 
experimental measurements that are available in the literature. 
For example, while the PKAD reports experimental pKa values 
for 225 histidine residues, many of them are duplicates of the 
same protein with different PDB IDs, for example, PDBIDs 
1A6K and 1A6M. 

 

III. FEP Methodology for pKa Prediction 

 

The pKa of a titratable group within a protein, pKa,protein, is 
determined by its intrinsic pKa, also referred to as model pKa, 
pKa,model and the perturbation created by the protein environ-
ment, ∆pKa. 

 

!"!,#$%&'() = !"!,*%+', + ∆!"! 

Equation 1. Calculation of single titratable group pKa 

 

The ∆!"!, also referred to as the pKa shift, is calculated using 
free-energy perturbation15 to arrive at a ∆∆G of deprotonating a 
single residue in the protein versus solution environment. Equa-
tion 2 shows the approach for calculating ∆!"!. Calculations 
are run with a default of 20 ns using the OPLS4 force-field19 in 
SPC explicit water in the 2022-1 Schrödinger release20. This re-
lease includes additional refinements to the HIS side chain pa-
rameters, although no fitting was done to pKa results. Details 
about the generation of improved HIS side chain parameters are 
in Appendix B in the supporting information. Sodium and chlo-
ride ions are added to match experimental salt concentration, 
when available, otherwise we default to 0.15 M. Supplemental 
Table S9 lists the salt concentration used for each titratable res-
idue. Complete details of the protein FEP methodology are dis-
cussed in reference 15. 

 

∆!"! =
∆∆'

ln(10)./ =
1

ln(10)./ (∆'#$%&'() − ∆'-%,.&(%)) 

Equation 2. Calculation of the pKa shift. 

 

In Equation 2, ∆'-%,.&(%) is calculated using just the titratable 
residue capped with ACE and NMA, run in explicit solvent. 

 

For the imidazole ring of histidine, there are two distinct mi-
croscopic pKa values for the delta and epsilon nitrogens. We 
protonate in place the target histidine to HIP, the charged histi-
dine form, and then perform FEP calculations mutating the HIP 
to HIE and separately from HIP to HID. The free energy differ-
ence, ∆∆G, is calculated by considering both mutations as 
shown: 

 

∆∆'
= ∆∆'/01→/03
− ./12 31

+ 10#4!,#$%&'()*+)5#4!,#$%&'()*-)45! ∆∆'/01→/03 − ∆∆'/01→/06./ 6 

Equation 3. Calculation of the free energy difference for histidine. 

 

The model HIS micro-pKa values in Equation 3 are taken 
from the literature21 and are shown in Table 1. 

 

Table 1. Microscopic pKa values for histidine tautomers 

HIS Tautomer Microscopic pKa 

HID 6.92 

HIE 6.53 

 

In summary for the prediction of ASP/GLU pKa shift, we di-
rectly apply Equation 2 simulating with FEP just the perturba-
tion from the charged to neutral state. For histidine pKa predic-
tion, we perform FEP twice, mutating from HIP to either HID 
or HIE, calculate an overall ∆∆G using Equation 3, insert the 
result into Equation 2, and then use that result in Equation 1 
with the !"!,*%+', being the HIE microscopic pKa. 

We utilize the OPLS4 force field for all FEP+ pKa simula-
tions that follow. As is discussed in detail in ref. 19,  parameters 
for ionic species were reoptimized in OPLS4, fitting initially to 
quantum mechanical calculations of hydrated dimer and cluster 
(ion plus multiple water) energies for a number of important 
ions, including the charged states of the carboxylate and histi-
dine side chains. First van der Waals parameters were refit for 
the ions, and then torsions were optimized appropriately in re-
sponse to the van der Waals changes. 

Refinement of the torsional parameters was then carried out 
for the carboxylate side chains (ASP and GLU by fitting to pKa 
data, using the same data set as we discuss herein). This led to 
a significant improvement in the RMS error as compared to the 
older set of torsional parameters and was essential for achieving 
the quality of results discussed below. Our objective in the pre-
sent paper with regard to the carboxylate data set is to partition 
the remaining error into crystal packing, incomplete sampling, 
and the remaining experimental/force field component, as dis-
cussed in the Introduction above. 

No explicit fitting to the histidine pKa results was carried out 
in the development of OPLS4, or subsequently, so this data set 
constitutes an independent test of the accuracy of the model. 
Achieving reliable predictive capabilities for HIS has been very 
challenging in previous work on pKa prediction; for example, 
in ref. 11, which uses a continuum solvent based simulation ap-
proach, a correlation coefficient of nearly zero was obtained for 
a histidine data set that is a subset of the one used in the present 
paper. As in the case of the carboxylates, we can obtain an as-
sessment of the force field accuracy, to within the limits of the 
experimental error bars, by identifying and filtering out outlier 
cases due to crystal packing and incomplete sampling. 

As the work here is focused on single residue pKa prediction, 
we set the protonation state of the surrounding residues as if the 
system was at the pH of the experimental pKa of the target res-
idue. If the surrounding residue’s experimental pKa or model 
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pKa (for cases where the experimental pKa is unknown) is 
within 1 pKa unit of the titratable residue’s pKa, then we kept 
the protonation state of the neighboring residue as assigned by 
Schrödinger’s Protein Prep Wizard22,23. For example, for a tar-
get ASP with pKa of 4, a surrounding ASP with pKa of 5.5 is 
set to be protonated. If the surrounding ASP also had a pKa of 
4, the protonation state was assigned by Schrödinger’s Protein 
Prep Wizard22,23. 

A final point is that there are a small number of cases where 
it appears as though the pKa’s of two or more residues are cou-
pled, and a more powerful simulation approach than single res-
idue pKa prediction (fixing the remaining residues at either their 
experimental values, when known, or otherwise at estimated 
values) is required. In such a situation, improved results can be 
obtained via constant pH simulations utilizing lambda dynam-
ics to simultaneously optimize all of the relevant protonation 
states. Our constant pH simulation methodology is currently un-
der development and will be described in more detail in a sub-
sequent publication.  The approach is similar to published work 
from other groups11,12,24–26, with the exception of the use of the 
OPLS4 force field with explicit solvent as opposed to alterna-
tives such as CHARMM or AMBER. 

 

IV. Initial FEP Results for pKa prediction 

 

In Figure 1 we show the initial performance of protein FEP 
for pKa prediction on the complete data set of 191 residues. 

 

 

Figure 1. Correlation between experimental pKa and calculated 
pKa for the full data set of 191 residues. 

The plot shows three large outliers. These outliers are 3EBX 
A:HIS6, 3SSI A:HIS43, and 2LZT A:ASP66. These outliers all 
shift the FEP calculated pKa to be lower than experiment, pre-
ferring the deprotonated form of the residue. 

As we will discuss in more detail below, we attribute the pres-
ence of these large outliers (as well as a considerable number of 
less extreme outliers in Figure 1) to the difficulty we have using 
relatively short FEP simulations (20 ns) to sample large confor-
mational changes in the protein structure. There are two major 
factors potentially leading to the requirement for substantial 

conformational modification of the starting experimental struc-
ture. Firstly, crystal packing interactions can lead to significant 
distortions of loop geometries, as compared to what would be 
observed in solution (which is where the experimental pKa 
measurements are carried out). Secondly, the experimental 
structure is obtained at a specific pH, which mandates one par-
ticular protonation state of the residue of interest.  However, the 
FEP simulation to predict the pKa of the residue requires sam-
pling both protonation states equally well. In a nontrivial num-
ber of cases, a change of protonation state from that present in 
the experimental structure leads to a very substantial conforma-
tional rearrangement of the protein in response. In such cases, 
the calculated altered protonation state can be significantly de-
stabilized as compared to the lowest free energy basin that is 
accessible experimentally.  

An illustrative example of the effects of crystal packing is 
presented in Table 2: the results for the prediction of HIS 52 in 
ovomucoid inhibitor across both several crystal structures and 
an NMR structure. For the NMR structure, 1OMU, the first 
NMR model was arbitrarily used. Notably, the pKa prediction 
for the NMR structure is significantly closer to experiment than 
either crystal structure and is of course free from crystal contact 
artifacts. 

 

Table 2. Prediction of the pKa of HIS52 starting from three 
experimental structuresa 

 1PPF 

(Xtal) 

2OVO 
(Xtal) 

1OMU 
(NMR) 

Experi-
ment 

Predicted 
pKa 

5.50 5.76 6.47 7.50 

Error  -2.00 -1.74 -1.03 N/A 

a. PDB IDs 1OMU and 1PPF are both of Turkey ovomucoid in-
hibitor, as is the experimental result. PDB ID 2OVO is from Silver 
Pheasant, 98% sequence identical to Turkey ovomucoid inhibitor. 

Figure 2 shows the difference between crystal structure 
2OVO and NMR structure 1OMU. The titratable histidine, 
HIS52, is shown near the center of the image. As shown, the 
histidine is in nearly an identical position with only a minor 
change to its loop. The only significant change is in the position 
of the N-term of the protein which in the NMR structure folds 
towards HIS52 while in the crystal structure is pointing away 
from HIS52, packed against other crystal mates (not shown). 
Here the influencing crystal contacts are not directly in contact 
with the titratable residue but rather interact with residues form-
ing the environment around the titratable residue. In the next 
section we demonstrate an empirical model to classify titratable 
residues as being affected by crystal contacts, either directly or 
through contacts to environment residues. 
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Figure 2. Comparison of the protein environment around HIS52 for 
crystal structure 2OVO (white) versus NMR structure 1OMU 
model 1 (green). 

An illustrative example of a residue which is in the neutral 
state in the crystal structure and is then poorly sampled when 
converted to the charged state, is 3SSI HIS43, the largest FEP 
outlier in Figure 1. The environment of HIS43 in the crystal 
structure is shown in Figure 3. It can be seen that the residue is 
completely buried. When a hydrogen is added to yield a charged 
histidine, the effect is to create a buried charge with no solvent 
exposure. The FEP simulation relieves the worst of the electro-
static clashes by flipping the backbone residue, but cannot, even 
in a 100 ns trajectory (Table 4), enable significant solvation of 
the histidine (or formation of a stable salt bridge, which would 
be an acceptable substitute). The large underestimation of the 
pKa as compared to experiment (in essence asserting that the 
charged histidine state is massively destabilized) is the result.  

 

 

Figure 3. The environment around 3SSI A:HIS43. The histidine in 
the neutral form is an acceptor for a buried NH group, the backbone 
NH of A:ALA45. The histidine is completely buried with both im-
idazole nitrogens acting as either a donor or acceptor to the protein 
backbone. 

  

In order to statistically analyze the errors across our data set, 
we need automated approaches to identify the systematic prob-
lems with crystal packing and incomplete sampling of an alter-
native charge state that have been discussed above. We present 

initial versions of such approaches in the next two sections. 
Larger and more diverse experimental data sets will enable re-
finement of these tools going forward.  

 

V. Empirical Model for Identifying Residues Substantially 
Impacted by Crystal Packing 

 

In Supplemental Table S9, we list the proteins from which 
the data sets discussed in Section II are drawn. The proteins are 
quite small, typically with an average of 163 residues. This 
leads to a large number of crystal contacts present in the struc-
tures that we use as a starting point for FEP simulations, due to 
the high surface to volume ratio of proteins of this size. As noted 
above, significant crystal packing effects on loops can lead to a 
distorted starting point for a solution phase simulation (which 
is where the pKa experiments are carried out) and hence erro-
neous prediction results if the solution phase conformation can-
not be accessed by the FEP simulation in the allotted time 
frame. 

We define two qualitatively different types of crystal packing 
effects which our model is then aimed at identifying. In the first, 
the target residue (the residue for which a pKa calculation is to 
be performed via FEP) is itself in a loop, and that loop has a 
sufficient number of crystal contacts in proximity to the residue 
to make it likely that in solution, a different loop conformation 
would be adopted. It is of course possible that this loop confor-
mation would, perhaps accidentally, yield a similar pKa to that 
of the loop in the crystal structure, but there is no guarantee that 
this is the case.  

The second situation is one in which the target residue can be 
located on any type of protein segment (loop, helix, or strand), 
but is in close contact with a neighboring loop which has a sub-
stantial number of crystal contacts. Such a loop can signifi-
cantly impact the pKa of the target residue in two different di-
rections. Firstly, it can block access of solvent to the side chain 
moiety, thus destabilizing the charged state relative to the un-
charged state. Secondly, it can facilitate salt bridge formation 
by creating a favorable geometrical situation for this to occur, 
in this case stabilizing the charged state relative to the un-
charged state. 

The goal of our scoring function is not to unambiguously 
identify residues whose pKa’s would be definitively shifted by 
structural reorganization in the absence of crystal packing. 
Coming to such a conclusion requires a lot more computation; 
after all, just because a loop has many crystal contacts does not 
mean that the crystal conformation would not be the lowest free 
energy conformation in solution. Rather, it is to delineate the 
subset of residues from our data set for which a significant pKa 
shift upon such reorganization would have a strong possibility 
of occurring. We can then assess the accuracy of pKa prediction 
when these cases are removed from the database. While the 
cases remaining in the database may themselves be subject to 
some structural reorganization, the magnitude will presumably 
be significantly smaller, and in some cases may be remedied by 
the MD simulation carried out during the FEP calculations. 
Note that following the above argument, we expect to remove 
some test cases for which the prediction starting from the crystal 
structure has good agreement with experiment. This is unprob-
lematic as long as a substantial fraction of the initial cases re-
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main, as the primary objective is to create a clean data set al-
lowing a better assessment of MD sampling and force field 
problems.  

 

The scoring function is constructed via a two-part process: 

 

(1) Identify any loops whose conformations would likely 
have a significant impact on the target residue pKa. As outlined 
above, the list of candidate loops includes both the loop on 
which the target residue resides (assuming it is on a loop) and 
also any loops in close contact with the target residue. We de-
fine a surrounding residue to be in close contact if there is a 
hydrogen bond to the titratable residue, including to its back-
bone, or the surrounding residue has a backbone atom within 5 
Å from the titratable residue. If this surrounding residue is part 
of a loop, we consider the crystal contacts to that loop as well. 

(2) For each relevant loop obtained from (1), enumerate a list 
of relevant crystal contacts (those sufficiently close to the target 
residue) and calculate an overall score to which each contact 
contributes, with the magnitude of the contribution dependent 
upon the contact distance, type of interaction, and whether that 
interaction involves backbone or side chain atoms. We optimize 
the scores of the various types of contacts by fitting to a subset 
of the experimental test cases as described below but impose 
physical constraints on the parameter values; for example, the 
impact of a backbone hydrogen bond should be larger than a 
simple pair of heavy atom contacts, shorter contacts should be 
more important than more distant ones, and backbone contacts 
should have more impact than those between a pair of side 
chains. A detailed description of the scoring function, and the 
approach used to optimize the parameters, is provided in Ap-
pendix A in the supporting information. 

We have designed the scoring function to be a binary classi-
fier: that is, the target residue is either considered to be substan-
tially impacted by crystal packing (in which case we will be re-
moving it from the data set to produce a “clean” subset of cases, 
hopefully able to achieve good solution pKa prediction starting 
from the crystal structure), or minimally impacted by crystal 
packing (in which case the residue will be retained in the clean 
data set). In order to check for overfitting, we adopt leave one 
out (LOO) calculations in which the scoring function is built 
without including data for each target residue. 

To train the scoring function, we designate 15 titratable cases 
as true positive crystal contacts out of the 157 residues solved 
with x-ray crystallography. Each of the 15 cases are excluded 
one at a time and the scoring function re-optimized with the re-
maining 14 true positive cases. The one excluded case is then 
scored to determine if it would have been classified as impacted 
by crystal contacts. 

Of the 15 cases, one case could not be recovered during 
leave-one-out optimization, 2RN2 A:ASP70, so this case is not 
excluded from the final statistics despite what we feel are sig-
nificant crystal contacts. The scoring function weights various 
contacts (backbone-backbone, backbone-sidechain) between 
residues in the environment of the titratable residue and residues 
in crystal mates. Evidently, the crystal contacts to the environ-
ment residues around 2RN2 A:ASP70 are not similarly ob-
served in any of the other 14 true positive cases leading to the 
failure during LOO optimization. This exposes a limitation of 
our dataset size. However, the purpose of the work here is to 
construct an unbiased, quantitative method to exclude cases 

suspected of being influenced by crystal packing which we feel 
is accomplished. What remains is a cleaner and unbiased dataset 
to evaluate pKa prediction accuracy. 

For purposes of evaluating the accuracy of our pKa predic-
tions, we define the clean data set from the LOO results. A total 
of 36 target residues are eliminated from the data set, leaving 
121 residues from crystal structures plus the 34 residues from 
NMR, a total of 155 titratable residues to be incorporated into 
the pKa statistics. A complete list of the classification of each 
of the target residues is provided in Supplemental Table S3. We 
note that the fraction of residues that remain is sufficiently large 
for both carboxylates (79) and histidines (76) to constitute a 
critical mass of data. Furthermore, the distribution of pKa shifts 
that remains is similar (although not identical) to that in the 
original data set, so that there are a sufficient number of large 
pKa shifts to enable a meaningful assessment of the methodol-
ogy (an objective that would be difficult to achieve if the cases 
were overwhelmingly composed of small shifts). Note that this 
data set can be used to more accurately evaluate the perfor-
mance of other approaches to pKa prediction.  

Finally, in order to further explore the validity of our hypoth-
esis that crystal contacts with a key loop are responsible for 
many of the outliers, we select an example outlier, repredict the 
conformation of a proximate loop suspected to be influenced by 
a large number of crystal contacts, and carry out pKa calcula-
tions for the target residue using the top ranked structure ob-
tained from loop prediction. The loop prediction is performed 
using the latest version of the Schrodinger Prime loop predic-
tion methodology27.  

Briefly, the loop prediction algorithm proceeds as follows. 
We previously constructed a scoring function of cbeta to cbeta 
contacts, similar to a united residue approach28. As the back-
bone of the loop is being constructed, we score nascent loops 
with this scoring function to triage unlikely cbeta-cbeta con-
tacts. Separately, we bin backbone positions by spatial position 
and the formation of backbone-to-backbone hydrogen bonds to 
consider diversity of loops. Once the backbone is placed, side 
chains are optimized on the loop and the surrounding environ-
ment, and the loop plus surrounding environment is mini-
mized29. Side chain optimization and minimization is done with 
the OPLS4 forcefield19 and the VSGB2 implicit solvent 
model30. 

 

 

 

 

 

 

 

 

 

 

Table 3. pKa prediction of ASP121 in PDB 7RSA with and 
without contacting loop predictiona 

Structure ASP121 pKa 

Experimental pKa Measurement31 3.0 

7RSA 4.84 
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7RSA Loop A:64-A:71 Prediction, ASP121 4.46 

7RSA Loop A:64-A:71 Prediction, ASH121 3.63 

a. Loop prediction of residues A:64-A:71 is done twice, with the 
target residue, ASP121, in either the charged or neutral ASH state. 
The lowest energy loop prediction for each ASP state is reported. 

Table 3 lists the results of pKa prediction when a loop inter-
acting with the target residue is in an alternative conformation 
compared to the experimental coordinates. This case, 7RSA 
ASP121, is one of the cases that is considered a true positive for 
the purposes of building a crystal contact severity scoring func-
tion, as previously discussed in Section V. The target residue, 
ASP121, its interaction with loop A:64-A:71, and that loop’s 
interaction with a crystal mate is shown in Figure 4. Here 
ASP121 is shown to have limited solvent exposure. 

The pKa prediction using the deposited coordinates for 7RSA 
results in a pKa prediction of 4.84 compared to the experimental 
value of 3.0; the charged form of ASP is being overly penalized, 
presumably due to the very limited solvent accessibility caused 
by ASP121 packing against the A:64-A:71 loop.  

As shown in Table 3, prediction of the loop with ASP121 in 
the protonated ASH state was necessary to yield pKa results in 
close agreement with experiment. This loop prediction shifted 
the backbone away from ASP121, moving the THR70 NH 
shown in Figure 4, by 2.93 Å from its native position into solu-
tion and away from the ASP. Evidently, this produces a loop 
conformation that permits proper sampling of both the ASP and 
ASH states during FEP, despite the fact that in the crystal struc-
ture, which was solved at pH 5.3, the ASP will still be charged32.  

 

 

Figure 4. Interactions of ASP121 with loop A:64-A:71 and that 
loop's interaction with a crystal mate in PDB ID 7RSA. The asym-
metric unit protein is shown in white with the crystal mate in green. 
ASP121 forms a hydrogen bond to LYS66 backbone NH. The in-
teracting loop is closely surrounded by crystal mates and form a 
backbone to backbone hydrogen bond between THR70 NH and the 
ASP38 carbonyl in the crystal mate. 

 

Figure 5 shows the performance of pKa prediction following 
the exclusion of 36 cases selected by our empirical model as 
likely to be affected by crystal packing. Excluded now are two 
of the three severe outliers that were previously mentioned in 
Section IV and shown in Figure 1, as well as cases which were 
not outliers but must be excluded for consistent application of 
empirical model of crystal packing severity. The overall R2 im-
proved from 0.76 to 0.79 and the RMSE was reduced from 0.97 

to 0.88 pKa units. The one remaining exceptionally large outlier 
is 3SSI A:HIS43 which is addressed in the next section. 

 

 

Figure 5. Correlation between experimental pKa and calculated 
pKa for the data set of 155 residues which excludes 36 residues that 
were classified as being potentially affected by crystal packing. 

 

VI. Detailed Analysis of Buried Histidine Outliers 

 

Shown in Figure 3 is the local crystal structure of the remain-
ing large outlier, 3SSI HIS43. Based on the experimental pKa 
of this residue as compared to the pH at which crystallization 
was carried out, we can confidently assert that the crystal struc-
ture incorporates the neutral form of the HIS residue. This his-
tidine is entirely buried with zero solvent exposed surface area. 
The delta nitrogen is acting as an acceptor for the backbone NH 
of ALA45 while the epsilon nitrogen is a hydrogen bond donor 
to the backbone carbonyl of VAL110. If a proton is added to the 
delta nitrogen, a severe electrostatic clash will be introduced 
with the ALA 45 backbone NH; furthermore, a net charge will 
be buried in a highly hydrophobic region. Understandably, the 
experimental33 pKa of this histidine is severely shifted down to 
3.25, favoring the neutral form, relative to free histidine which 
has a pKa of 6.3821. 

While it is trivial to qualitatively predict that this histidine 
will prefer the neutral state, a quantitative prediction of the pKa 
of this group is challenging. The FEP calculation considers the 
charged state to be even more unfavorable relative to the neutral 
state than experiment, yielding a pKa of -2.68. The error here is 
presumed to be due to the necessity of a major structural reor-
ganization of the environment for the protonated form of the 
histidine which is not correctly sampled over our default 20 ns 
simulation.  

The 3SSI HIS43 test case is an extreme example of a phe-
nomenon that can be seen more generally in our HIS data set. 
Histidine residues that are partially or fully buried, and manifest 
a substantial number of hydrophobic contacts with the protein, 
are invariably in the neutral state in the experimental structure 
unless they form a salt bridge with a carboxylate group. Such 
structures may be initially highly unfavorable for the charged 



 8 

form of HIS, and hence require extensive conformational sam-
pling to achieve their lowest free energy state. A short molecu-
lar dynamics simulation, as is carried out in the FEP+ pKa pre-
diction protocol, may not be sufficient to achieve the requisite 
conformational change, thus leading the charged state to be cal-
culated as too unfavorable as compared to experiment. Major 
problems of this type are much less likely to arise for carboxylic 
acid residues because they generally occur in the charged form 
in a crystal structure (although incomplete sampling for a car-
boxylate case is certainly possible, and likely accounts for some 
of the discrepancies between theory and experiment seen in Fig-
ure 5). Consequently, in the present paper, we carry out a de-
tailed analysis of the buried HIS cases in our data set, as dis-
cussed below. 

The first step in this analysis is to identify the subset of HIS 
cases in which at least one of the two histidine nitrogens is bur-
ied, and for which the environment provides significant hydro-
phobic contacts (if there are few hydrophobic contacts, the mo-
lecular dynamics will most likely be able to reorganize the 
charged HIS state without a problem). A key parameter is the 
minimum number of hydrophobic contacts, which we set at 6. 
How we precisely count hydrophobic contacts is explained be-
low. Table 4 presents a list of all of the HIS cases which satisfy 
these criteria.  It can be seen that many (although not all) of the 
entries in Table 4 are significant outliers; indeed, they constitute 
a high percentage of the large outliers in the HIS data set. 

The next question is whether any cases can be accurately cor-
rected by extending the FEP simulations to a longer (but still 
practically accessible) timescale. Table 4 shows the results ob-
tained when the FEP simulations are extended to 100 ns rather 
than the default 20 ns runs. Most cases are altered only mini-
mally, but 3RN3 A:48 improves significantly, and 3SSI A:43 
more modestly. 

An important feature of the simulation results, the persistence 
of salt bridge formation, is also displayed in Table 4. We have 
already excluded from this table cases where the HIS is hydro-
gen bonded to a carboxylate in the crystal structure (thus form-
ing a salt bridge in the charge state). However, in a fair number 
of cases in Table 4, a salt bridge, not present originally, forms 
during the course of the FEP simulation of the charged state. 
There is a sharp divide between cases where salt bridge persis-
tence is greater than or less than 70%.  Strikingly, all of the 
cases in the latter category have reasonably good agreement 
with experiment if a 100 ns simulation is used in FEP. In the 
low salt bridge persistence category, with the exception of 
3RN3: A48 (discussed immediately below), the errors in pKa 
prediction are always in the direction of insufficiently stabiliz-
ing the charged state, consistent with the hypothesis that the 
simulation is unable to carry out a conformational change 
needed to optimize the free energy of that state, with the error 
being greater than 1 pKa unit. 

3RN3:48 has a highly unusual environment which leads to 
adequate solvation of the charged state despite the low level of 
salt bridge persistence. Specifically, we find that in our FEP 
simulations, on average the charged HIS side chain makes 5.73 
close interactions with acceptors, a qualitatively larger number 
than is observed for any other residue in Table 4, and substan-
tially more than one would expect to see for a HIS monomer in 
bulk solution. 

We define an acceptor interaction to be either a hydrogen 
bond or an aromatic CH interaction. The donor here is coming 
from the protonated histidine sidechain, which has no acceptors. 

The donor-acceptor distance must be less than 2.85 Å, and the 
donor angle better than 90º. When the acceptor is a carbonyl, 
we measure the distance from the donor to the acceptor oxygen 
and separately the distance to the carbonyl carbon attached to 
the acceptor oxygen. The unfavorable hydrogen-carbon dis-
tance must be 0.5 Å or larger than the favorable hydrogen-oxy-
gen distance. In essence we require good hydrogen bonding or 
aromatic CH---O geometry.  

It is reasonable to expect that such an environment does not 
require substantial reorganization to achieve the correct low 
free energy basin of the charged HIS species. A snapshot of the 
average structure observed from the molecular dynamics simu-
lation of 3RN3:A48 HIP is shown in Figure 6, with the 
HIP/acceptor interactions indicated.  

 

 

Figure 6. An individual MD frame during the 100 ns FEP simula-
tion of 3RN3 A:48. This frame comes from the replica with 
lambda=0, the HIP state is physically present. This frame shows 6 
acceptor interactions, including hydrogen bond and aromatic CH 
interactions. 

 

In Figure 7 we highlight another case, 1YPH C:HIS40, a bur-
ied histidine that is able to achieve close agreement with exper-
iment (predicted pKa is 0.14 pKa units from experiment). We 
have examined the FEP molecular dynamics trajectory, and we 
observe that the protonated histidine residue is able to form a 
stable salt bridge with the carboxylate residue C:GLU70 over 
the course of the simulation. Figure 7 shows the initial structure 
and a snapshot from the FEP simulation in which the salt bridge 
has been formed. The persistence of the salt bridge after for-
mation is documented in this figure which plots the closest his-
tidine – glutamate distance as a function of simulation time. In 
contrast with that is 3SSI A:HIS43, shown in Figure 3, which 
scarcely forms a salt-bridge over the course of the simulation 
and is the largest outlier in the dataset with the predicted pKa in 
error by -5.93 pKa units, severely over penalizing the proto-
nated state. 
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Figure 7. Formation of a new salt-bridge for 1YPH C:HIS40 when 
the histidine is protonated. (A) A plot of the distance in ångstroms 
between C:GLU70 versus simulation time. Reported is the closest 
distance between either HD1 or HE2 and carboxylate oxygen on 
GLU70. As can be seen, a stable salt-bridge forms at 10 ns. (B) The 
deposited coordinates for 1YPH C:HIS40 showing the neutral his-
tidine is 5.88 Å from GLU70. (C) The final frame of the simulation 
at 20 ns where the histidine has flipped over to form the salt-bridge 
with GLU70. 

 

The above results suggest a systematic approach to treating 
buried HIS cases in prospective applications of FEP for pKa 
prediction (i.e. when the experimental answer is not known in 
advance): 

 

(1) Compute the solvent exposed surface area of both histi-
dine nitrogens and count the number of hydrophobic atoms 

within 5 Å of the histidine sidechain heavy atoms. We define a 
hydrophobic atom to be any carbon atom not bonded to a het-
eroatom, except for the carbon atoms in the aromatic rings of 
TYR and TRP which we also consider hydrophobic. If at least 
one histidine nitrogen is buried and there are 6 or more hydro-
phobic contacts nearby, without a preexisting hydrogen bond to 
a negatively charged group (e.g. ASP or GLU), then a further 
investigation of the detailed behavior of the residue in an ex-
tended FEP simulation is required, as described in the steps be-
low.  

(2) Run a 100 ns FEP simulation for each case identified us-
ing the criteria of (1) above, and track the salt bridge persistence 
and average number of acceptor interactions. If it is above 70% 
or there are on average 5 or more acceptor interactions, accept 
the result as is. Otherwise, proceed to step 3 below.  

(3) Apply an empirical correction to the FEP calculated pKa 
to take into account the estimated sampling error. Fitting the 9 
cases which have between 6 and 10 hydrophobic contacts yields 
a value for the correction of 1.5 pKa units. 3SSI A:43 has a 
much more hydrophobic environment (15 hydrophobic con-
tacts) and hence it makes sense that the error is much larger 
(5.07 pKa units). There is not enough data at present to build an 
interpolation function to reliably handle cases in this regime 
(one would want to interpolate between the correction of 1.5 
and the 5.07 value obtained for 3SSI), but at the very least, one 
would be alerted to the presence of a challenging problem, and 
could explore more extensive conformational sampling options 
if it was important to obtain an accurate pKa value for the resi-
due in question (as opposed to classifying it as having a very 
large pKa shift, which might be sufficient for most practical ap-
plications).  

 

 

 

Table 4. Histidine residues where at least one nitrogen is buried, which makes a significant number of protein hydrophobic 
contacts, and which are not initially forming a salt bridge in the experimental structurea 

Case Exp pKa Pred pKa 
(20ns) 

Pred pKa 
(100 ns) 

Salt-Bridge 
Persistence 
(100 ns) 

Average Acceptor 
Interactions for 
HIP (100 ns) 

Num. Hydrophobic 
Contacts 

Buried N 
Atoms 

pKa Cor-
rection 

Pred pKa w/ Correc-
tion (100 ns) 

1A6K 
A:119 

6.26 4.18 4.52 60.05% 1.21 10 NE +1.5 6.02 

1DE3 
A:137 

5.80 4.78 4.79 1.20% 1.01 6 NE, ND +1.5 6.29 

1DE3 
A:50 

7.70 8.69 8.67 91.63% 1.86 6 ND 0 8.67 

1DWR 
A:119 

6.56 4.39 4.59 54.31% 1.04 8 ND +1.5 6.09 

1EY0 
A:46 

5.86 5.14 4.93 48.56% 1.19 9 ND +1.5 6.43 

1H4G 
B:11 

6.52 3.98 4.00 38.04% 0.41 7 ND +1.5 5.5 

1HHO 
A:112 

7.53 7.60 7.66 98.80% 1.72 13 ND 0 7.66 

1PTD 
A:227 

6.90 5.94 5.48 61.48% 2.67 8 NE +1.5 6.98 
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1YPH 
C:40 

7.20 7.06 7.68 79.19% 2.99 8 NE,ND 0 7.68 

2CPL 
A:126 

6.34 4.63 5.11 0.0% 2.26 10 ND +1.5 6.61 

3RN3 
A:48 

6.00 8.25 7.11 31.10% 5.73 8 NE, ND 0 7.11 

3SSI 
A:43 

3.25 -2.68 -1.82 0.48% 3.38 15 NE, ND +5.0 3.18 

3SSI 
A:106 

6.00 4.55 4.99 3.59% 1.90 10 ND +1.5 6.49 

6GST 
A:83 

5.18 3.17 3.16 0.24% 1.01 8 ND +1.5 4.66 

a. A histidine is considered buried if either the epsilon or delta nitrogen has no solvent exposed surface area and is forming a hydrogen 
bond. Salt-bridge persistence refers to the percent of the simulation time (100 ns) in which a salt bridge has formed between the protonated 
histidine and a carboxylate (GLU, ASP, etc). This salt-bridge was not present in the PDB deposited experimental structure. A protein-HIS 
side chain hydrophobic contact is defined by a hydrophobic atom of the protein approaching within 5A of a heavy atom in the HIS imidazole 
ring. We have estimated the number of contacts required for a critical mass as 6. An acceptor interaction is a hydrogen bond or aromatic CH 
bond where the donor is either a proton or aromatic CH on the protonated histidine. 

 

 

VII. Discussion 

 

 

 

Table 5. Final pKa prediction results across the various datasets 

 

Amino Acid 

Full Data Set Crystal Packing Corrected Data Set Packing Cor-
rected + Buried 
N Removed 

Packing Corrected + 
Empirical Correction 

ASP GLU HIS ASP GLU HIS HIS HIS 

Number of Cases 48 57 86 35 44 76 66 76 

R2 0.71 0.49 0.59 0.79 0.50 0.61 0.65 0.64 

RMSE (pKa units) 0.85 0.62 1.20 0.76 0.51 1.08 0.59 0.67 

RMSE (kcal/mol) 1.17 0.86 1.65 1.05 0.71 1.49 0.81 0.92 

 

 

We are now in a position to determine the RMS errors and 
correlation coefficients obtained from FEP based pKa predic-
tion for the three titratable residues under study (ASP, GLU, 
and HIS) as we systematically modify the data sets (Table 5). 
We consider four data sets: (1) the original, unfiltered data sets 
for all three residues; (2) data sets with crystal packing cases, as 
identified by the algorithm described in Section V, removed; (3) 
a HIS data set with both crystal packing cases and buried N 
cases removed that fail to form a salt bridge with a minimum 
salt-bridge persistence of 70% of the simulation or with an av-
erage of 5 acceptor interactions, as described in Section VI and 
Table 4. This is excluding the cases where we apply an empiri-
cal correction; (4) A HIS data set with the empirical corrections 
applied as listed in Table 4 to the remaining buried cases (as 
determined by salt bridge persistence and the buried NH de-
scriptor). For each data set/protocol, we present the number of 
cases included, the correlation coefficient R2, and the RMSE in 
pKa units and kcal/mol. 

When the buried HIS outliers are either removed or corrected, 
the results for all three residue types are now comparable to 
those obtained for OPLS4 for an extensive series of small mol-
ecule binding affinity predictions34,35, as well as for residue mu-

tation free energy changes at protein-protein interfaces13,15, tak-
ing into account for the latter that changing the charge of a bur-
ied residue could produce intractable sampling problems (simi-
lar to those seen here for the buried HIS residues discussed in 
Section VI). The RMS error range of approximately 0.7-1 
kcal/mol has been difficult to reduce further, unsurprisingly 
since estimates of experimental error for both binding and pKa 
measurements are on the order of 0.5 kcal/mol RMS error. In 
the present case, this level of accuracy is suitable for assigning 
protonation states as a function of pH when studying challeng-
ing problems such as the prediction of pH dependent binding of 
antibodies, a key functionality for proteins such as the neonatal 
receptor FcRn. The accuracy is significantly better than results 
reported in previous work4–7,11,12, although those papers did not 
remove crystal packing or remove or empirically correct ex-
treme sampling cases as we have done here. 

It is interesting to note that identification and removal of the 
ten buried HIS cases that fail to form a persistent salt-bridge or 
multiple acceptor interactions during FEP brings the HIS RMS 
error down to that observed for the ASP and GLU calculations. 
This is encouraging with regard to the performance of the 
OPLS4 force field model, and the approach used therein to op-
timize parameters for charged systems. As noted above, the HIS 
data set represents an independent test set for the protocol, with 
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no direct fitting of HIS parameters to pKa measurements. The 
results shown here argue that the force field is well balanced 
with regard to its treatment of both positive and negative ions.  

It is clear from the above results that crystal packing effects 
can lead to a major perturbation of the predicted pKa’s of pro-
tein titratable residues in solution, due to biasing of the initial 
conformation towards that seen in the crystal. Truly converged 
sampling would of course overcome any such difficulties. How-
ever, when standard FEP simulation protocols are used (even 
when the simulation time is extended to 100 ns), the trajectories 
are apparently not long enough to reach the correct conforma-
tional basin in a significant fraction of cases. The (admittedly 
anecdotal) success reported above in improving pKa predic-
tions in such cases, via loop predictions in the solution environ-
ment, support this interpretation. Investigation of a larger set of 
analogous test cases would provide useful validation of our 
Prime based loop prediction algorithms. Furthermore, the algo-
rithm we have developed to detect a high degree of crystal pack-
ing effects could be applied routinely at the beginning of any 
structure-based drug discovery project, and the affected loops 
repredicted. The resulting protein structures could then be 
tested for improvements in calculations other than pKa predic-
tion, such as FEP computations of ligand binding affinity.  

The results in the present paper provide a road map as to how 
to achieve accurate and robust predictions in prospective appli-
cations. When embarking on a project using a crystal structure 
as a starting point, the crystal packing classification algorithm 
is initially used to identify loops which are likely to have a mod-
ified conformation in solution. If the pKa of one or more resi-
dues impacted by these loops is deemed important, it will be 
necessary to apply structural refinement methods (e.g. long time 
MD simulations and/or loop predictions) to obtain a more accu-
rate structure prior to running pKa calculations. Future work 
will focus on understanding in detail what sorts of refinement 
protocols are necessary for such an effort to yield useful pKa 
predictions. 

As noted above, the fixed charge force field optimized in 
OPLS4 can break down when the environment of a carboxylate 
deviates in an extreme way from the normal solution environ-
ment, either via a large number (5-6) of persistent hydrogen 
bonds or an unusually small number of hydrogen bonds. In 
these cases, use of an explicitly polarizable model appears to be 
necessary to properly model the changes in effective hydrogen 
bond and salt bridge strength across different carboxylate envi-
ronments if a first principles simulation approach is employed. 
Work in this direction is ongoing in our group.  

 

VIII. Conclusion 

 

In the present paper, we have described an FEP based algo-
rithm for predicting pKa’s of protein residues, using the OPLS4 
force field. We show that a naïve assessment using standard ex-
perimental pKa data sets fail to properly evaluate the intrinsic 
accuracy of the force field model, due to the presence of signif-
icant crystal packing effects and also buried HIS cases which 
require a major conformational change that is not accessible via 
a 100 ns molecular dynamics simulation. We have developed 
automated algorithms to identify residues likely to be impacted 
by crystal packing, and buried neutral histidine residue which 
are likely to require major conformational change when con-

verted to the charged HIP state. A simple one parameter empir-
ical correction scheme has been developed which, at present for 
a limited data set, achieves significant improvement in the 
agreement with experiment for the relevant test cases.  

In addition to providing confidence in prospective pKa pre-
diction via FEP+/OPLS4 for new systems, our results in the pre-
sent paper can serve a number of other functions. Firstly, they 
define a clean data set, not requiring algorithms capable of pre-
dicting major conformational changes, on which other pKa pre-
diction methods (for example those employing continuum sol-
vent models, which require much less computational effort than 
explicit solvent based FEP) can be tested. Secondly, a comple-
mentary data set is defined in which structural refinement of the 
protein crystal structure is required in order to achieve the ap-
propriate lowest free energy structures for various residue pro-
tonation states. The accuracy of structural refinement ap-
proaches can then be tested by comparing the pKa’s predicted 
by such approaches with experiment. One could also further 
validate these structural refinement predictions experimentally, 
e.g. via NMR or cryo-EM data at sufficient resolution. 
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