
1

Supporting Information for:

CRIPT: A Scalable Polymer Material Data Structure

Dylan J. Walsha, Weizhong Zoua, Ludwig Schneiderb, Reid Melloa, Michael E. Deagena, Joshua
Mysonab, Tzyy-Shyang Lina, Juan J. de Pablob, Klavs F. Jensena, Debra J. Audusc, Bradley D.

Olsen*a

aDepartment of Chemical Engineering Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States

bPritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.

cMaterials Science and Engineering Division, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899, United States

2

TABLE OF CONTENTS:

CRIPT Nodes: 4
Base Attributes 5
Project Node 6
Collection Node 7
Experiment Node 7
Inventory Node 8
Material Node 8
Process Node 9
Data Node 11
Computation Node 11
Computational_process Node 12
Reference Node 13
Software Node 15

Sub-objects: 16
Identifier 16
Property 16
Condition 19
Ingredient 21
Quantity 21
Equipment 21
Computation_forcefield 22
Software_configuration 23
Algorithm 23
Parameter 24
Citation 24

CRIPT Supporting Nodes 25
User Node 25
Group Node 25
File 26

Graph examples: 28
Simple Chemical Reaction 28
Diblock Copolymer Synthesis 29
Reaction Kinetics 29
Diblock Bottlebrush Synthesis 30

3

Chemical Reaction with Aliquots 30
Multi-Step Chemical Reaction (Library Generation) 31
Material from Literature 31
Characterization of Material 32
Involved Material Characterization 32
Block Copolymer Phase Behavior Annealing Study 32
Extrusion and Characterization 33
Computation to Produce Molecular Trajectories 33
Computation to Simulate Reaction 34
Computation to Generate Atomistic Forcefield 35
Computation to Estimate Kinetic Rates 36
Collaboration Across Collections 36
Collaboration Across Projects (With Common Users) 37
Collaboration Across Projects (Without Common Users) 38
Access Control Within Projects 39

Sub-Object Examples 41
Material Node 41
Process Node 47

Controlled Vocabulary, Keys and Keywords 48

Reference 49

4

CRIPT NODES:
The following sections break down CRIPT’s (Community Resource for Innovation in Polymer
Technology) data model and provides discussion on all the nodes, sub-objects, and attributes.
Nodes are the highest level in the data organization hierarchy and are the modular units used to
construct the graph structure. Graph in this context refers to the graph data structure which consists
of a set of vertices/nodes and edges with data being stored in nodes and relationships stored with
edges. Fundamentally, nodes are an abstract blueprint of how data should be structured for a
specific instance. For example, a material node provides a specific blueprint on how data
describing water (a specific material instance) should be structured (boiling point, molecular mass,
etc.). A key feature of these nodes is the presence of a globally unique auto-generated and
persistent identifier, which for CRIPT is a URL (Uniform Resource Locator) as CRIPT is natively
web-based. This unique identifier is the key piece of information that enables the graph structure
to be built, as the presence of the unique identifier of one node in another node signifies an edge
between those two nodes in the graph.

Sub-objects are groupings of attributes that are used to build nodes; this structuring is known as
composition in object-oriented programming. They serve two purposes: first, they provide another
hierarchy for organizing and grouping data. For example, the property sub-object links key, value,
units, etc. together. On their own, each of these attributes are not conceptual distinct objects, but
together make a concrete object. The second purpose of sub-objects is to provide multiple
instances. For example, a material is likely to have multiple properties. Since a property is a sub-
object, the structure can be reused to uniformly format each property instances.

The lowest level of the data model is attributes which are the individual pieces of information that
are to be stored. Examples of an attribute include property key, property value, and unit of the
value (e.g. ‘boiling temperature: 100 °C’ is decomposed into three attributes: property key: boiling
temperature, property value: 100, unit: °C).

In the following sections, each node or sub-object will be discussed, and a table of attributes will
be provided. Attribute tables include links between CRIPT nodes, required attributes, and
attributes that have a controlled vocabulary. Links from one node to another can be identified in
the tables by looking at the ‘type’ column, and the values in blue signify that it links to another
node or sub-object. The attribute tables have a column dedicated to required attributes that must
be provided to have a valid node/sub-object. Attributes that have an official CRIPT controlled
vocabulary are denoted in the ‘vocab’ column. The other headers in the table are ‘attribute’ which
contains the attribute names, ‘type’ referring to data type (e.g. int, float, list, str), examples, and
description. Attributes with a ‘list’ type enable multiple objects to be added to that attribute and
the attribute name is made plural. In the text of the following sections, nodes and sub-objects will
be placed in italics and attributes will be placed in ‘single quotes’. This notation will help
differentiate between the colloquial use of the word and the same word showing up as a node in
one context and an attribute in another.

As mentioned above, several attributes have a controlled vocabulary. The controlled vocabulary is
introduced for these attributes to avoid the same key being entered multiple different ways (for
example, ‘boiling point’ might be entered as ‘boiling point’, ‘boiling temperature’, ‘BP’, ‘Bp’,
‘bP’, ‘bp’) which would erode data interoperability. For more details on all the controlled

5

vocabularies see Section ‘Controlled Vocabulary, Keys and Keywords’ below. To avoid limiting
users from entering only keys that are supported, CRIPT does allow user-defined vocabulary to be
entered if it begins with a ‘+’. It is anticipated that on a regular basis, the controlled vocabulary
will be expanded to include the most common user-defined properties, and the degenerate
representations will be unified. The ‘+’-prefix ensures that the official namespace does not have
conflicts with user-defined vocabulary when new keys are added to the controlled vocabulary.

Figure 1: Overview of all the connections between nodes in the CRIPT data model. Solid lines

indicate reference between nodes. Dashed lines indicate a reference originating from a sub-object
within one of the nodes. An arrowhead indicates a temporal relationship. Colored lines have no

additional meaning and are only to help with visualization.

Base Attributes
Base attributes are common among all nodes. Nearly all base attributes are required, except for
‘notes’; however, ‘name’ is the only required attribute that the user will specify. The other
attributes are all predefined or auto-filled metadata. The ‘group’ attribute provides the key link to
the group node for access control. The ‘public’ attribute indicates whether the node is viewable by
the public or only the members of the owning group. The ‘locked’ attribute defines weather a node
is still editable and will be discussed further in the collection node. The ‘notes’ attribute is a
miscellaneous information section which accommodates any information that is not explicitly
supported by the data model. Ideally, the use of the ‘notes’ section will have a defined structure,
like JavaScript Object Notation (JSON), which can make it findable and interpretable in the future
or with custom codes. This is a key design feature that allows users to add custom data structures
within CRIPT’s predefined data model, extending CRIPT for specific uses. The ‘node’ attribute
refers to the type of node: collection, material, process, etc. The ‘model version’ serves to keep
track of the data model version the document was encoded in. Recording this information in the
node allows preforming updates to the data model.

6

Table 1: Base attributes.
attribute type example description required vocab

url str unique ID of the node True
group Group group that owns the node True

public bool True boolean indicating whether
the node is publicly viewable True

locked bool True boolean indicates whether
the node is still editable True

name str “ATRP kinetic
experiments” descriptive label True

notes str miscellaneous information, or
custom data structure

node str user type of CRIPT node True
model_version str 0.0.1 version of data model True

updated_by User user that last updated the
node True

created_by User user that originally created
the node True

updated_at datetime* 2022-02-
03T06:14:22.610253Z

last date the node was
modified (UTC time) True

created_at datetime* 2022-01-
04T10:13:52.325531Z

date it was created (UTC
time) True

Abbreviations: Atom Transfer Radical Polymerization (ATRP), Universal Time Coordinated
(UTC)

* Datetime is formatted as International Organization for Standardization (ISO): yyyy-mm-
ddThh:mm:ss.SSSZ string value. This applies for all future instances of datetime.

Project Node
The project node is a grouping of collections that embody the works of a research group, a research
thrust, or work related to a specific area. Examples of a project are ‘sustainable polyester project’
or ‘self-assembly behavior of bottlebrush polymers’. The only required attribute is the ‘name’ (in
the base attributes), and the ‘name’ needs to be unique within the database. A project node links
to one or more collections and all the material nodes used in the project. Material nodes are linked
to the project to address issues with uniqueness and the reuse of material nodes. Material nodes
hypothetically could be defined globally in the database and not tied to a project. However, if a
user referenced a material node from another project and then it was deleted, then there would be
a broken material node reference leading to the loss of data integrity. Thus, to provide protection
without having every use of a material node needing to be unique, nodes are defined within a
project. This means if a material from another project or from the public repository wants to be
used/referenced in another project, it will have to be copied into the project (a link to the original
node is stored for provenance).

7

Table 2: Attribute table for the project node.
attribute type example description required vocab

‘base’ attributes (see details above)

collections list[Collection] collections that relate to
the project

materials list[Materials] materials owned by the
project

Collection Node
The collection node is a grouping of experiments or simulations. It serves as an organizational tool
similar to a folder on a computer desktop, a lab notebook, or a grouping of experiments that make
up a publication. The only required attribute is the ‘name’ (in the base attributes), and the ‘name’
needs to be unique within the parent project. A collection node links to one or more experiments
and can contain one or more inventory nodes. One key feature of the collection node is the ability
for a collection to be published with a DOI (Digital Object Identifier), ‘cript_doi’, allowing data
to be published along with manuscripts or otherwise disseminated in archival form. This DOI
serves as a permanent link that can be added to a manuscript to enable readers of the manuscript
to rapidly gain access to the data that was produced in the manuscript. Once the manuscript is
published, a reference node can be created to link the collection back to the manuscript. Upon
generation of the ‘cript_doi’ nodes will no longer be editable by setting ‘locked’ attribute in base
attributes to ‘True’.

Table 3: Attribute table for the collection node.
attribute type example description required vocab

‘base’ attributes (see details above)

project Project project the collection is
associated with

experiments list[Experiment] experiments that relate to
the collection

inventories list[Inventory] inventory owned by the
collection

cript_doi str 10.1038/1781168a0
DOI: digital object identifier
for a published collection;

CRIPT generated DOI

citations list[Citation] reference to a book, paper,
or scholarly work

Experiment Node
The experiment node is the grouping of nodes for an experiment which includes processes,
computations, computational_processes, and data nodes. In the simplest case, where an
experiment just involves characterization of a single material, the experiment node would only link
to data nodes. In a more complex case, multi-step processes can be grouped within a single
experiment node (e.g., multiblock copolymer synthesis). Users are free to structure experiment
nodes to best suit their research, including choosing the degree of granularization of experiments.
Whether a user decides to break an experiment into multiple experiment nodes or group all the
data into single experiment node does not change how the other nodes will be represented in the
data model. The required attribute for the experiment node is only the ‘name’ (in the base
attributes) which needs to be unique within the parent collection.

8

Table 4: Attribute table for the experiment node.
attribute type example description required vocab

‘base’ attributes (see details above)

collection Collection collection associated with the
experiment True

processes list[Process] process nodes associated with
this experiment

computations list[Computation] computation method nodes
associated with this experiment

computation_
processes

list[Computation
Process]

 computation process nodes
associated with this experiment

data list[Data] data nodes associated with this
experiment

funding list[str] ['OIA-
2134795'] funding source for experiment

citations list[Citation] reference to a book, paper, or
scholarly work

Inventory Node
The inventory node is a list of material nodes. It serves as an organizational tool for rapidly finding
material nodes that pertain to a collection, or project. An example of an inventory can be a
grouping of materials that were extracted from literature and curated into a group for machine
learning, or it can be a subset of chemicals that are used for a certain type of synthesis, such as
‘ATRP monomers’ or ‘RAFT chain transfer agents’ (reversible addition fragmentation chain
transfer polymerization (RAFT)). The required attribute is the ‘name’ (in the base attributes) which
must be unique within a collection.

Table 5: Attribute table for the inventory node.
attribute type example description required vocab

‘base’ attributes (see details above)

collection Collection collection associated with the
inventory True

materials list[Material] materials that you like to group
together

Material Node
The material node is a collection of the identifiers and properties of a chemical, mixture, or
substance. Examples of materials include water, brine (water + NaCl), polystyrene, polyethylene
glycol hydrogels, vulcanized polyisoprene, mcherry (protein), and mica. The required attribute is
the ‘identifiers’. The ‘identifiers’ are unique labels or descriptive information of a material such
as preferred name, abbreviations, SMILES1 (simplified molecular-input line-entry system),
BigSMILES2, chemical formula, etc. and will be discussed further in the identifier section.
Mixtures can be represented by linking to pure chemicals (material nodes) with the ‘components’
attribute, and the ratio of components can be specified in ‘properties’. Properties are qualities,
traits, or characteristics of a material, such as molecular mass, composition ratios, boiling
temperature, solubility, elastic modulus, or color. Note that all properties must be simultaneously
valid, meaning that multiple measurements of composition, or molecular mass are allowed, but
should provide information about a single material in a single state. Properties are also used to

9

associating data, structural information (such as NMR (nuclear magnetic resonance), or IR
(infrared) spectrum), or data that has yet to be analyzed to the material node. The ‘process’
attribute provides a link to the process node that produced the material. Since materials live within
a single project, it is expected that they may need to be copied from one project to another; the
‘parent_material’ attribute provides a link to the original material node. The ‘keywords’ attribute
allows users to specify words that classify the material, which seeks to make the material node
more findable. CRIPT has a list of supported keywords for monomer classification by chemical
type, as well as polymer classification by chemical type and architecture (see ‘Controlled
Vocabulary, Keys and Keywords’ for lists). If the material was generated through computation,
the ‘computation_forcefield’ is required and provides a place to specify building blocks, mappings,
solvation, and force field attributes. If the material was generated by extracting data from a
literature source, the citations can be added to each property.

Table 6: Attribute table for the material node.
attribute type example description required vocab

‘base’ attributes (see details above)

project Project project the collection is
associated with

identifiers list[Identifier] material identifiers True

components list[Material] list of components that
make up the mixture

properties list[Property] material properties

process Process process node that made
this material

parent_material Material material node that this
node was copied from

computation_
forcefield

Computation
Forcefield

 computation forcefield Cond*

keywords list[str]
[thermoplastic,
homopolymer,

linear, polyolefins]

words that classify the
material

 True

* Conditional: Required for computational materials.

Process Node
The process node contains a list of ingredients, quantities, and procedure information for an
experimental material transformation (chemical and physical). Examples of a process include
chemical reactions, separations, and extrusions. The required attributes are the ‘name’ (in the base
attributes) and ‘type’. The process node was designed to be used in one of two ways: the first
approach allows users to enter an entire process in a single process node, and the second approach
allows for a series of process nodes to be chained together with each node constituting a single
step in a larger process. This use of a process node is akin to a procedure paragraph typically found
in a methods section of a journal article. For the second approach, where each process node is a
step in the process, the ‘description’ attribute is an explanation of that single step, and the ‘type’
for that step can be more accurately defined from the available keywords (e.g., mixing, extraction,
precipitation, drying). Chaining process nodes is done through the ‘prerequisite_processes’
attribute which supports multiple prerequisite processes in the case of converging processes. Note
that ‘prerequisite_processes’ should only capture immediate prerequisites. For diverging

10

processes, an intermediate material node will be required as only linear chains of process nodes
are supported.

The ‘ingredients’ attribute links to material nodes and specifies the associated quantities (mass,
volume, pressure, and moles) for each material used in the process. Relative quantities like
equivalence, molarity, mass fraction, etc. are not stored as they can be computed from the absolute
quantities. The choice to store absolute quantities was to ensure scale of the reaction was recorded
and relative quantities can be converted in software to absolute quantities if sufficient details are
provided. If the process leads to the creation of new materials, they can be linked in the ‘product’
attribute. Materials that are discarded in the process can be specified with the ‘waste’ attribute.
‘Conditions’ are environmental variables or set process variables of the process. Examples of
‘conditions’ are duration, temperature, pressure, and stirring rate. ‘Equipment’ are physical
instruments, tools, glassware, etc. used in a process. The equipment sub-object also has a
‘condition’ attribute. With two locations to specify conditions, the ‘conditions’ attribute in the
process node is to be used for global conditions, while the ‘conditions’ attribute in the equipment
is to specify local conditions, or conditions controlled by that equipment. The ‘properties’ sub-
objects are emergent traits that characterize the process and the process results, which includes
things like reaction yield, rate constants, or activation energies. The ‘keywords’ attribute allows
users to specify words that classify the process to make it more findable. Currently supported
keywords include chemical and physical transformations (see ‘Controlled Vocabulary, Keys and
Keywords’ for lists).

Table 7: Attribute table for the process node.
attribute type example description required vocab

‘base’ attributes (see details above)
experiment Experiment experiment the

process belongs to

type str mix type of process True True
ingredients list[Ingredient] ingredients

description str
To oven-dried 20 mL glass
vial, 5 mL of styrene and 10

ml of toluene was added.

explanation of the
process

equipment list[Equipment] equipment used in the
process

products list[Material]
desired material

produced from the
process

waste list[Material] material sent to waste

prerequisite_
processes list[Process]

processes that must
be completed prior to

the start of this
process

conditions list[Condition] global process
conditions

properties list[Property] process properties

keywords list[str] words that classify the
process

 True

citations list[Citation]
reference to a book,
paper, or scholarly

work

11

Data Node
The data node contains the meta-data to describe data that is beyond a single value, i.e. n-
dimensional data. Common examples of data nodes for experimental research are NMR spectra,
stress-strain curves, and timeseries. Examples for computational research would include system
trajectories, online logged observables, or complete snapshots. The required attributes are the
‘name’ (in the base attributes), ‘type’, and ‘files’. The ‘type’ attribute specifies what the data is
(1H NMR, SEC (size exclusion chromatograph), stress-strain curve, etc.). The ‘file’ attribute links
to file objects which contain meta-data specific to the file, like file type (csv, txt, jpg), as well as
the link to the raw file. Multiple files can be attached to a single data node if the data is spread
over several files. Data is not directly stored in the data node because this would significantly slow
down searching speeds and dramatically increase the memory burden of the database. The solution
is to store the data in lower cost storage databases, and only store the link to the data in the CRIPT
database. ‘sample_preperation’ is included to capture the processing done to prepare the sample
for analysis, the equipment used to collect the data, calibration files, etc.

Table 8: Attribute table for the data node.
attribute type example description required vocab

‘base’ attributes (see details above)
experiment Experiment experiment the data belongs to

type str nmr_h1 data type keyword True True
files list[File] list of file nodes True

sample_preperation Process sample preparation

computations list[Computation] data was produced from this
computation method

computational_
process

Computational_
process data was produced from this

computation process

materials list[Material] materials with attributes
associated with the data node

processes list[Process] processes with attributes
associated with the data node

citations list[Citation] reference to a book, paper, or
scholarly work

Computation Node
The computation node describes the transformation of data or the creation of a computational data
set. Common computations for simulations are energy minimization, annealing, quenching, or
NPT/NVT (isothermal-isobaric/canonical ensemble) simulations. Common computations for
experimental data include fitting a reaction model to kinetic data to determine rate constants,
extracting a plateau modulus from a time-temperature-superposition, or calculating radius of
gyration with the Debye function from small angle scattering data. The required attributes are
‘name’ and ‘type’ which specifies the category of computation performed. The ‘input_data’
attribute specifies the data that is being transformed by the computation, which is optional for
initialization of a simulation. The ‘software_configuration’ attribute defines the software, version
and algorithm used in the computation. Note that multiple software may be defined for a single
computation. For computations of a typical simulation, conditions are the set of variables that
define the thermostatic state of a system, such as temperature, energy, number of atoms/molecules,
and pressure. Computations can also be chained together without an intermediate data via the

12

‘prerequisite_computations’ attribute. Enhanced sampling techniques that combine multiple
simulation runs into a single, overarching result, like a free-energy profile of umbrella sampling,
can be described with each simulation run as a parallel arranged set of individual computations.

Table 9: Attribute table for the computation node.
attribute type example description required vocab

‘base’ attributes (see details above)

experiment Experiment experiment the
computation belongs to

type str general molecular
dynamics simulation

category of
computation True True

input_data list[Data] input data nodes

output_data list[Data] output data nodes
software_

configurations
list[Software_
configuration] software and algorithms

used

condition list[Condition] setup information
prerequisite_
_computation Computation prior computation

method in chain

citations list[Citation] reference to a book,
paper, or scholarly work

notes str additional description of
the step

Computational_process Node
A computational_process is a simulation that processes or changes a virtual material. Examples
include simulations of chemical reactions, chain scission, cross-linking, strong shear, etc. As a
result, the computational_process node requires both ‘ingredients’ (i.e., at least one material to be
processed) and ‘input’ data (i.e., the configuration of the material under processing) as input.
Without the input material, the computational_process node is equivalent to computation. Besides
input data and material nodes, other required attributes are ‘name’ and ‘type’ which specifies the
category of computation performed. Similar to the computation node, the ‘software_configuration’
and the ‘condition’ attribute defines a set of software (with version and algorithm) and set
thermostatic variables of a system, respectively. In contrast to computation,
computational_process nodes cannot be chained together given they require both material and
data as input but only have data as output.

The computation_forcefield of a simulation is associated with a material. As a consequence, if the
forcefield changes or gets refined via a computational procedure (density functional theory,
iterative Boltzmann inversion for coarse-graining etc.) this forcefield changing step must be
described as a computational_process and a new material node with a different
computation_forcefield needs to be created.

13

Table 10: Attribute table for the computational_process node.
attribute type example description required vocab

‘base’ attributes (see details above)

experiment Experiment
experiment the

computational_process
belongs to

type str general molecular
dynamics simulation

category of
computation True True

input_data list[Data] input data nodes True
output_data list[Data] output data nodes
ingredients list[Ingredient] ingredients True
software_

configurations
list[Software_
configuration] software and

algorithms used

condition list[Condition] setup information

properties list[Property] computation process
properties

citations list[Citation]
reference to a book,
paper, or scholarly

work

notes str additional description
of the step

Reference Node
The reference node contains the metadata for a literature publication, book, or anything external
to CRIPT. The reference node does not contain the base attributes and is meant to always be public
and static to allow globally link data to the reference. The reference node is always used inside the
citation sub-object to enable users to specify the context of the reference (see citation sub-object
for more details). The required attributes are the ‘title’ and ‘type’. The ‘type’, and unique identifiers
like DOI (digital object identifier) are highly recommended.

Table 11: Attribute table for the reference node.
attribute type example description required vocab

url str CRIPT’s unique ID of the node True
type str journal_article type of literature True True
title str 'Living' Polymers title of publication True

authors list[str] Michael Szwarc list of authors
journal str Nature journal of the publication

publisher str Springer publisher of publication
year int 1956 year of publication

volume int 178 volume of publication
issue int 0 issue of publication
pages list[int] [1168, 1169] page range of publication

doi str 10.1038/1781168a0 DOI: digital object identifier Cond.*

issn str 1476-4687 ISSN: international standard
serial number Cond.*

arxiv_id str 1501 arXiv identifier
pmid int ######## PMID: PubMed ID

website str https://www.nature.com/artic
les/1781168a0

website where the publication
can be accessed

* Conditional: Required depending on the ‘type’. Example: journal articles require DOI.

14

15

Software Node
The software node contains metadata for a computation tool, code, programing language, or
software package. Similar to the reference node, the software node does not contain the base
attributes and is meant to always be public and static. The required attributes are ‘name’ and
‘version’, while ‘source’ is optional. For in-house, unpublished code ‘version’ can be filled with a
version control handle like a git-hash or a text like “unpublished”.

Table 12: Attribute table for the software node.
attribute type example description required vocab

url str CRIPT’s unique ID of the node True
name str LAMMPS type of literature True

version str v3.1 software version True
source str lammps.org source of software

Abbreviations: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

16

SUB-OBJECTS:

Figure 2: High-level overview of the sub-objects highlighting the hierarchy between nodes and

sub-objects.

Identifier
Identifiers are a sub-object for the material node and are unique labels or descriptive information
for a material. Examples of identifiers include preferred name, alternative names, SMILES1,
BigSMILES2, chemical formula, chemical formula of repeat unit, PubChem cid3 (compound ID
number (cid)), and InChI4 (International Chemical Identifier). Users are encouraged to provide
unambiguous identifiers whenever possible to ensure that data is appropriately to attributed to
specific materials. Identifiers are a key-value pair, with ‘key’ specifying the type of identifier and
‘value’ being the content.

Table 13: Attributes table for the identifier sub-object.
attribute type example description required vocab

key str names key for
identifier True True

value Any
['styrene',

'ethenylbenzene',
'vinylbenzene']

value True

Property
Properties are qualities or traits of a material or process. They are part of the material node (e.g.,
melting temperature, molecular mass), process node (e.g., conversion, rate constants) and
computational_process node (e.g., total energy, bond length, hydration number). The required
attributes are the ‘key’ and ‘type’. The ‘key’ attribute specifies what the property is (e.g., melting
temperature). The ‘type’ attribute specifies what the meaning of the value is, such as ‘value’ which

17

represents a single point measurement, or ‘min’, ‘max’, ‘mean’ can be specified for multipoint
measurements (more discussion about this below). The ‘value’ and ‘unit’ attributes are
conditionally required, meaning that they are required depending on the ‘key’ attribute.
‘Uncertainty’ must use the same units as the ‘value’ attribute, if applicable. The ‘conditions’
attribute allows the user to specify any environmental variables or system descriptors that are
relevant to the property. The ‘method’ attribute specifies the analytical instrument or
computational origins of the property. The property sub-object provides links to the data node or
computational node that produced the value to provide provenance of the property. The ‘citation’
attribute provides a link to the source of the property if it came from a literature reference. The
‘notes’ attribute is present to capture other data not explicitly captured by the data model. One
common use of ‘notes’ for properties is to place the definition for any custom property ‘keys’.

To specify more precisely the chemical or molecular structure to which the property refers to, the
‘components’, ‘components_relative’, and ‘structure’ attributes can be used. The ‘components’
attribute allow the user to specify the material nodes of a mixture to which a property refers to.
The common use of ‘components’ is for specifying the composition or ratio between components
in a mixture. In the case of a ratio, one or more materials can be specified in ‘components’ for the
left side of the ratio, one or more materials can be specified in ‘components_relative’ for the right
side of the ratio, and the ratio is specified in value. The ‘structure’ attribute provides an orthogonal
method to specify what chemical structural feature the properties are attributed to by specifying
atom mappings in the SMILES and BigSMILES string. Atom mapping is done within the SMILES
and BigSMILES strings with brackets and an integer index separated by a colon, [element: index].
For absolute quantities index 1 should be used. For ratio or relative based properties, index: 1
corresponds to the molecular fragment that the property is ‘about’, and index 2 is the molecular
fragment that the property is ‘relative to’.

18

Table 14: Attribute table for the property sub-object.
attribute type example description required vocab

key str modulus_shear type of property True True
type str min type of value stored True True
value Any 1.23 value or quantity Cond*
unit str gram unit for value Cond*

uncertainty Any 0.1 uncertainty of value
uncertainty_

type str standard_deviation type of uncertainty True

components list[Material] material that the property
relates to**

components_
relative list[Material] material that the property

relative to**

structure str
{[][$][C:1][C:1][$],
[$][C:2][C:2]([C:2])
[$][]}

specific chemical structure
associate with the property

with atom mappings**

method str sec approach or source of
property data

 True

sample_prep
aration Process sample preparation

conditions list[Condition] conditions under which the
property was measured

data list[Data] data nodes

computations list[Computation] computation method that
produced property

citations list[Citation] reference to a book,
paper, or scholarly work

notes str
miscellaneous information,

or custom data structure
(e.g.; JSON)

* Conditional: most properties will require a ‘value’ and ‘unit’; however, there are a few properties
like ‘associated’ and ‘structure’ which are used only to link to data nodes and do not have a ‘value’
or ‘unit’.

** Components and atom mapping examples:

To specify the ratio of the two monomers in a random co-polymer with atom mapping the [atom:1]
will be applied to the first monomer, and [atom:2] will be applied to the second monomer.

{
 "key": "conc_molar_ratio",
 "type": "value",
 "value": 0.20,
 "unit": "",
 "structure": "{[][$][C:1][C:1][$],[$][C:2][C:2]([C:2])[$][]}"
}

This should be interpreted as a ratio of 0.20 [$]CC[$] : 1 [$]CC(C)[$].

19

To specify a mixture of a small molecule and polymer with atom mapping the [atom:1] will be
applied to the small molecule, and [atom:2] will be applied to the polymer.

{
 "key": "conc_molar_ratio",
 "type": "value",
 "value": 0.20,
 "unit": "",
 "structure": "[O:1][C:1](=[O:1])[C:1]([C:1])[O:1].{[][>][C:2](=[O:2])[C:2]([C:2])[O:2][<][]}",
}

This should be interpreted as a ratio of 0.20 OC(=O)C(C)O : 1 {[][>]C(=O)C(C)O[<][]}.

To specify the ratio of a small molecule and polymer in a mixture, the ‘components’ and
‘components_relative’ attributes can be used. First specify, the small molecule (material node) in
‘components’ and then specify the polymer in ‘conditions’. This is specifying the molar ratio (0.2
lactic acid) : (1 poly(lactic acid)).

{
 "key": "conc_molar_ratio",
 "type": "value",
 "value": 0.20,
 "unit": "",
 "components": ["URL for lactic acid material node"],
 "components_relative”: [“URL for poly(lactic acid) material node”]
}

Mixture of a block co-polymer and homo-polymer from the first block, specifying the ratio of the
two monomers.

{
 "key": "conc_molar_ratio",
 "type": "value",
 "value": 0.20,
 "unit": "",
 "structure": "{[][$][C:1][C:1][$][]}.{[][$][C:1][C:1][$][>]}{[<][$][C:2][C:2]([C:2])[$][]}",
}

This should be interpreted as a ratio of 0.20 [$]CC[$] : 1 [$]CC(C)[$].

Condition
Conditions are environmental variables, equipment settings, states of the system, or influencing
factors. Examples of conditions for physical experiments include temperature, pressure, stirring
rate, and for computations conditions include box dimensions, integration time step, ensemble,
thermostat parameters, etc. Conditions are found in the process, computation and
computational_process nodes and in the property and equipment sub-objects. The required
attributes for conditions are the ‘key’ which specifies what type of condition it is, ‘type’ which is
the information you want to specify (such as: ‘value’, ‘min’, ‘max’, ‘mean’), and ‘value’. The
‘material’ attribute is used when the value needs to link to a material node, for example when

20

specifying the atmosphere being nitrogen. The condition sub-object provides links to the data node
to allow users to attach the associated raw data. For computation and computation_process nodes
the condition should specify the complete statistical ensemble, e.g., for a simulation in the grand-
canonical ensemble (μVT) the chemical potential μ, simulation volume V, and temperature T
should be specified as a condition. The realization details of the ensemble (e.g., thermostat) for the
simulation can be specified via the algorithm attributes in computation nodes.

The ‘measurement_id’ and ‘set_id’ attributes provide the ability to link together conditions that
are related. The ‘measurement_id is used to link conditions that are descriptive of the same state.
For example, the measurement of temperature and pressure of a system at a single time point can
be linked with the same ‘measurement_id’. The ‘set_id’ links together conditions across a set or
series, with all the points belonging to a specific series all having the same index. A common
example is a timeseries where each point in the timeseries would have the same index. The writing
of individual time points directly into the database with this mechanism is recommended for under
ten datapoints, after which the series should be moved into the data node and min, max and mean
values can be reported and grouped with the same ‘set_id’. This minimizes the size of the data
stored directly in the database, while keeping key features of the series available for searching and
quick referencing.

Table 15: Attribute table for the condition object.
attribute type example description required vocab

key str temp type of condition True True

type str min
type of value stored, 'value' is just
the number, 'min', 'max', 'avg', etc.

for series
True True

descriptor str upper temperature
probe freeform description for condition

value Any 1.23 value or quantity True
unit str gram unit for value

uncertainty Any 0.1 uncertainty of value
uncertainty_

type str std type of uncertainty True

material list[Material] material that the condition relates
to

set_id int 0 ID of set (used to link
measurements in as series)

measurement
_id int 0

ID for a single measurement (used
to link multiple condition at a single

instance)

data list[Data] detailed data associated with the
condition

21

Ingredient
Ingredients are links to material nodes with the associated quantities. Ingredients are found both
in the process and computational_process node. The required attributes are the ‘material’ reference
and at least one of the ‘quantities’ (mass, volume, pressure, mole) must be defined.

Table 16: Attribute table for the ingredient object.
attribute type example description required vocab
material Material material True

quantities list[Quantity] quantities True

keyword str catalyst keyword for
ingredient

 True

Quantity
Quantities are the amount of material involved in a process. They are used in the ingredients sub-
object. All the attributes are required.

Table 17: Attribute table for the quantity object.
attribute type example description required vocab

key str mass type of quantity True True
value Any 1.23 amount of material True
unit str gram unit for quantity True

uncertainty Any 0.1 uncertainty of value
uncertainty_type str std type of uncertainty True

Equipment
Equipment are physical instruments, tools, glassware, etc. used in a process. Settings, or
environmental variables controlled by the equipment can be specified with the ‘conditions’
attribute. Equipment specification, configuration, and calibration files can be attached to the
equipment sub-object with the use of a File.

Table 18: Attribute table for the ingredient object.
attribute type example description required vocab

key str hot plate material True True

description str Hot plate with silicon
oil bath with stir bar

additional details about the
equipment

conditions list[Condition] conditions under which the
property was measured

files list[File]
list of file nodes to link to
calibration or equipment
specification documents

citations list[Citation] reference to a book,
paper, or scholarly work

22

Computation_forcefield
Computational materials require additional information to define the material’s identity.
Specifically, this includes the solvation (implicit or explicit), the forcefield (to describe the
interactions or dynamics) and the building blocks that are used to relate the chemistry to the
forcefield. For example, polystyrene simulated using different force fields, such as CHARMM
(chemistry at Harvard macromolecular mechanics), GROMOS (Groningen molecular simulation),
and MARTINI (a general-purpose coarse-grained force field by University of Groningen) or Dry-
MARTINI will yield different properties.

If the simulations are performed with a standard forcefield, like OPLS-AA (optimized potentials
for liquid simulations- all atom model), CHARMM, or GROMOS, this can be specified with the
‘key’. Users are highly encouraged to specify the source of the standard forcefield in ‘source’. For
example, when using the GROMOS forcefield shipped with a GROMACS (Groningen machine
for chemical simulations) installation, specify the GROMACS installation and version number to
improve reproducibility. For modified or non-standard forcefields, it is highly recommended to
include a detailed description in ‘description’ and upload the exact input files that describe the
forcefield and its parameters with the data. For example, obtaining OPLS-AA parameters via the
LigParGen tool produces an forcefield input file, which should be attached as a data node.

The ‘key_building_block’ attribute specifies the level of description the simulation uses, for
example all-atom simulations or united atom descriptions. Explicitly setting this attribute allows
for fast searching of similar entries in the databank. The ‘coarse_grained_mapping’ attribute can
be used to detail how chemical structures are mapped onto the simulation object like beads i.e.,
MARTINI mapping. This becomes especially important if the simulation describes the material
with a coarse-grained model where multiple atoms are combined into interaction beads. The
‘implicit_solvent’ description is explicitly listed for searchability. If an explicit solvent is used, it
should be included as a material with corresponding computation_forcefield. Otherwise, the use
of implicit solvents needs to be specified in the ‘implicit_solvent’ attribute. Previously published
forcefields should be referenced via the ‘citation’ attribute.

Table 19: Attribute table for the computation_forcefield sub-object.
attribute type example description required vocab

key str CHARMM27 type of forcefield True True
building
_block str atom type of building block True True

coarse_grained
_mapping str SC3 beads in MARTINI

forcefield atom to beads mapping

implicit_solvent str water Name of implicit solvent
source str package in GROMACS source of forcefield

description str
OPLS forcefield with

partial charges calculated
via the LBCC algorithm

description of the forcefield
and any modifications that

have been added

data Data details of mapping schema
and forcefield parameters

citation list[Citation] reference to a book, paper,
or scholarly work

Abbreviations: special apolar bead to model rings (SC3), local bond - charge correction (LBCC)

23

Software_configuration
The software_configuration sub-object includes software and the set of algorithms to execute
computation or computational_process. The required attribute is ‘software’. The ‘algorithm’
attribute can be used to specify specifically what methods and parameters are used to setup the
software.

Table 20: Attribute table for the software_configuration sub-object.
keys type example description required vocab

software Software software used True
algorithms list[Algorithm] algorithms used

notes str miscellaneous information, or
custom data structure (e.g.; JSON)

citation list[Citation] reference to a book, paper, or
scholarly work

Abbreviations: JavaScript Object Notation (JSON)

Algorithm
Algorithm consists of parameter and condition details used in the computation and
computational_process. This includes, but is not limited to:

1) algorithms of cell_initate ‘key’ to pack coils of polymer and other ingredient to simulation box

with ‘types’ like amorphous cell module in Material Studio, RIS (rotational isomeric state
model), SARW (self-avoiding random walk) on lattice;

2) algorithms of ‘thermostat’ or ‘barostat’ key to maintain constant temperature or pressure with
‘type’ like Nose-Hoover, Berendsen, Lagevin, Anderson;

3) algorithms of ‘neighbor_list’ key to define/update localized domain of building blocks with
‘type’ like Verlet or linked list;

4) algorithms of ‘integration’ key to integrate the motion of building blocks and their non-bonded
interactions with ‘type’ like Leap-frog scheme of Verlet, particle mesh Ewald sum;

5) algorithms of ‘bond_constraint’ key to constrain the fast-vibrating bonds, usually for bonds
with hydrogen atoms with ‘type’ like SHAKE (lagrange multiplier-based algorithm for shaking
bond constraints between rigid molecules), RATTLE (algorithm extended from SHAKE via
velocity integration).

To specify the ‘type’ of thermos_barostat, the ‘key’ (e.g., Nose-Hoover) and the associated
parameter (i.e., damping_time) can be listed. For user-defined ‘key’ and ‘type’, links to the
corresponding data node is also available. A full list of supported attributes for setup with the
associated descriptions are given below.

24

Table 21: Attribute table for the algorithm sub-object.
keys type example description required vocab

key str ensemble, thermo-
barostat

system configuration,
algorithms used in a

computation
True True

type str NPT for ensemble, Nose-
Hoover for thermostat

specific type of
configuration, algorithm True

parameter list[Parameter] setup associated
parameters

citation list[Citation] reference to a book,
paper, or scholarly work

Abbreviations: isothermal-isobaric (NPT)

Parameter
A parameter is an input value to an algorithm. For typical computations, the difference between
parameter and condition lies in whether it changes the thermodynamic state of the simulated
system: Variables that are part of defining a thermodynamic state should be defined as a condition
in a parent node. Therefore, ‘number’ and ‘volume’ need to be listed as conditions while
‘boundaries’ and ‘origin’ are parameters of ensemble size. Note that ‘number’ represents the count
of ‘building_block’ (attribute in computation_forcefield) in the ensemble. ‘Origin’ and
‘boundaries’ are defined with ‘keys’ of Cartesian, cylindrical, spherical, etc.: The ‘value’ of origin
is a three-number list [o1,o2,o3]. While for boundaries, its ‘value’ is a nine-number list
[b11,b12,b13, b21,b22,b23, b31,b32,b33] containing three vectors, b11,b12,b13 and b21,b22,b23
as well as b31,b32,b33, each define the plane of a boundary.

Table 22: Attributes table for the parameter sub-object.
attribute type example description required vocab

key str key for
identifier True True

value Any value True

unit str unit for
parameter

Citation
The citation sub-object provides a link to papers, books, or other scholarly work and allows users
to specify in what way the work relates to that data. More specifically, users can specify that the
data was directly extracted from, inspired by, derived from, etc. the reference. Citations can be
found in the collection, process, data, computation, computational_process nodes and in the
property, computation_forcefield, equipment, software_configuration, and algorithm sub-objects.

Table 23: Attributes table for the citation sub-object.
attribute type example description required vocab

type str derived_from key for identifier True True
reference str reference to a book,

paper, or scholarly work True

25

CRIPT SUPPORTING NODES
For CRIPT’s data structure to function properly in a software application the addition of a few
additional nodes is needed to provide access control and access to external data storage. The
inclusion of the user and group nodes provides access control, and file provides a link to external
data storage.

User Node
The user node represents any researcher or individual who interacts with the CRIPT platform. It
serves two main purposes: it plays a core role in permissions (access control), and it provides a
traceable link to the individual who has contributed or edited data within the database. The required
attributes are the ‘username’, ‘email’ and ‘orcid’. The ORCID ID (open researcher and contributor
ID) provides a unique and persistent digital identifier which can be used for login through the
ORCID API (application programming interface).5 The user node links to one or more groups that
user is a member of.

Table 24: Attribute table for the user node.
attribute type example description required vocab

url str unique ID of the node True
username str john_doe User’s name True

email str user@cript.com email of the user True
orcid str 0000-0000-0000-0000 ORCID ID of the user True

groups list[Group] groups you belong to

updated_at datetime* 2022-06-
04T08:24:12.311266Z

last date the node was
modified (UTC time) True

created_at datetime* 2022-02-
03T06:14:22.610253Z

date it was created (UTC
time) True

* Datetime is formatted as International Organization for Standardization (ISO): yyyy-mm-
ddThh:mm:ss.SSSZ string value. This applies for all future instances of datetime.

Group Node
The group node represents a grouping of users collaborating on a common project. It serves as the
main permission control node and has ownership of data. Groups are the owners of data as most
research groups have changing membership, and the data is typically owned by the organization
and not the individuals. The required attributes are the ‘name’, ‘admins’, and ‘users’. The ‘name’
attribute is required to be unique in the database to avoid confusions of multiple groups having the
same name. By default, the user creating the group will become the ‘admin’ of the group and will
also be added to the ‘users’ list. The ‘admins’ role is used by the permission control software to
specify which users can add or delete other users to the group. Multiple ‘admins’ are allowed. All
members of a group node will be able to view, edit, add, and delete data within the group. Given
that permissions happen through the group node, all other nodes (except user, reference, and
software) will link to the group node to establish the ownership relation.

26

Table 25: Attribute table for the group node.
attribute type example description required vocab

url str unique ID of the node True

name str CRIPT development
team descriptive label True

notes str
miscellaneous

information, or custom
data structure

admins list[User] group administrators True
users list[User] group members True

updated_by User user that last updated
the node True

created_by User user that originally
created the node True

updated_at datetime 2022-02-
04T08:24:12.311266Z

last date the node was
modified (UTC time) True

created_at datetime 2022-02-
03T06:11:21.610253Z

date it was created
(UTC time) True

File
The File object contains the meta-data and link to a single raw data file, as raw data files are not
directly stored in the database. The required attributes are the ‘source’, ‘type’, and ‘name’. The
‘source’ is a link to the data file and will typically be an URL (uniform resource locator), but it
could also be a file location if the data is being stored on a local server. The ‘type’ attribute
specifies whether the file is data, a calibration file, configuration file, etc. The ‘data_dictionary’
attribute allows users to specify more specific meta-data about what is contained in the file, such
as column and row headers with units. Ideally, the use of the ‘data_dictionary’ section will have a
defined structure, like JSON, which can make it findable and interpretable with custom codes.

Table 26: Attributes table for the File object.
attribute type example description required vocab

‘base’ attributes (see details above)
source str url link to file True
type str data type of file True True

extension str .csv extension

data_dictionary str set of information describing the
contents, format, and structure of a file

To provide an explicit example of a ‘data_dictionary’ template, a trajectory export for
computational data is provided. The trajectory export provides details for parsing and analyzing
these large raw data files, such as evolving configurational and trajectory-related information.
Attributes supported in this template include ‘num_frame’ (i.e., total number of frames dumped to
the file node) ‘dt_frame’ (i.e., simulation time interval between two frames), ‘dt_sim’ (i.e.,
simulation time step), ‘boundaries’ and ‘origin’ of simulation box (duplicate these conditions here
with the raw data as the storage of information might be centralized).

27

Table 27: Data dictionary template for computational trajectories.
keys type description example required vocab

num_frame int total number of frames dumped to
the file node 100

dt_frame float simulation time interval between two
frames 0.01

dt_frame_unit str unit of time interval between two
frames ps

dt_sim float simulation time step 0.1
dt_sim_unit str unit of simulation time step

boundaries list[float]
nine element box matrix

[e11,e12,e13, e21,e22,e23,
e31,e32,e33]

[5,0,0,
0,5,0,

0,0,20]

origin list[float] origin of box [o1,o2,o3] [0,0,0]

28

GRAPH EXAMPLES:
Solid lines indicate reference between nodes.
Dashed lines indicate a reference originating from a sub-object within one of the nodes.
An arrowhead indicates a temporal relationship.
Colored lines have no additional meaning and are only to help with visualization.

Simple Chemical Reaction
The following is a generic CRIPT graph for a chemical reaction shown three ways to highlight
distinct aspects. The top graph highlights the interconnection between the organizational nodes
with the rest of the graph. The middle graph shows just the main graph. The bottom graph shows
a graph where the process node is broken into multiple steps.

29

Diblock Copolymer Synthesis
The following depicts the graph for a diblock copolymer synthesis through sequential addition of
monomers. Sequential addition refers to the synthesis for the first block (block A) followed by the
growth of the second block (block B) directly off the first block. It is possible to condense the
entire synthesis into a single process node; however, if characterization data is taken on the
intermediate block A, then it is preferred to separate the process into two steps (as shown).

Reaction Kinetics
The following depicts the graph for a reaction kinetic analysis to determine the activation energy.
This involves performing the reaction multiple times with different reaction temperatures (the
conditions in the process node will be different). This example highlights how material nodes can
be reused.

30

Diblock Bottlebrush Synthesis
The following depicts the graph for the synthesis of a diblock bottlebrush created by a graft-
through sequential addition of macromonomers. This highlights a converging synthetic route
where separate syntheses are merging. Note that the convergence happens through the process
node.

Chemical Reaction with Aliquots
The following depicts a chemical reaction where 2 aliquots were taken from a reaction, worked
up, and characterized. This is an example of a diverging graph in which the process node
(representing the chemical reaction) had to be split into 3 separate process nodes (labeled
‘reaction’) separated by material nodes (red bordered nodes). These intermediate nodes can be
sparse in data and with only a single identifier needing to be specified. The splitting of the process
node and the intermediate material nodes is needed to enable the user to specify the quantities of
aliquot taken, the quantity of the reaction mixture that continues reacting, and at what time the
aliquot was taken.

31

Multi-Step Chemical Reaction (Library Generation)
The following depicts the graph for a common approach to making a library of materials through
two reactions. An example of this graph would be the synthesis of 3 diblock copolymers, in which
the first block is the same, and the second block is made with different monomers or have different
chain lengths (this is what is depicted below, as the second layer of process nodes use the same
material nodes). The red border indicates an intermediate material node.

Material from Literature
The following depicts graphs for materials that are generated from reference literature. Raw data
is attached with the use of a data node.

32

Characterization of Material
The following depicts a small graph for an experiment that solely involves the characterization of
a material.

Involved Material Characterization
The following depicts a detailed graph for the characterization of a polymer with explicit reporting
of the computational methods used to transform the raw data into the reported material properties.
Abbreviations: small angle x-ray scattering (SAXS), radius of gyration (Rg), glass transition
temperature (Tg), melting temperature (Tm), number average molecular mass (Mn), dispersity (Ð),
molecular weight (MW), differential scanning calorimetry (DSC).

Block Copolymer Phase Behavior Annealing Study
The following depicts a graph for a study into the self-assembling behavior of a block copolymer
in thin films and the effects of annealing. The block copolymer of interest was obtained from a
vendor; thus, it was initially characterized prior to use. The various processing approaches were
applied to samples of the block copolymer and similar characterization was performed on each of
the formed films. Abbreviations: atomic force microscopy (AFM)

33

Extrusion and Characterization
The following depicts a graph for the formation of a composite material via an extrusion process.
Following the synthesis, characterization of the produced material is performed.

Computation to Produce Molecular Trajectories
The following depicts graphs of using molecular dynamics simulations to obtain the
conformational information of poly(2,2’-dioxybiphenyl-phosphazene) in neat as well as in
tetrahydrofuran (THF).6 The simulations are carried out by DL-POLY (a general purpose parallel
molecular dynamics simulation package by Daresbury Lab) with the input file placing a single
oligomer in vacuum or THF solvent. A series of steps involving energy minimization, annealing,
relaxation, etc. are used to produce the equilibrated molecular trajectory files by monitoring the
evolution of system energy as well as density.

34

Computation to Simulate Reaction
The following graph depicts the molecular dynamics simulations which use ReaxFF (reactive force
field) to investigate the thermal decomposition products of polydimethylsiloxane.7 The
simulations start with the quantum level calculations (density functional theory (DFT)), where a
customized forcefield is generated for the initialization of ReaxFF (hybrid quantum and molecular
dynamics simulation tool). After NVT based equilibration, the system and the corresponding
material are subjected to simulated degradation. The reaction mechanism and population of
degraded species are recorded and associated with a newly created material called “degraded
polydimethylsiloxane”.

35

Computation to Generate Atomistic Forcefield
The following graph depicts the creation of atomistic forcefield for peptoids based on a modified
CHARMM22 forcefield, with key parameters tuned to match quantum mechanical calculations.8
Ab initio is first used to scan the energy profile with respect to the dihedral of the peptoid. The
resulting data leads to the modification of standard CHARMM22 forcefield parameters and is
further used to initialize the simulations of the dipeptoid in water. After equilibration, the system
configuration undergoes umbrella sampling with the histogram analyzed by WHAM (Weighted
Histogram Analysis Method) to determine the cis-/trans- free energy landscape.

36

Computation to Estimate Kinetic Rates
The following graph depicts the use of different levels of quantum theories to estimate the reaction
kinetics for free radical initiated grafting to polyolefins.9 The initial guesses of computations are
determined from the optimized molecular geometries of reactants and transition structure under
lower level of DFT (B3LYP). Further optimization of the molecular geometries is performed under
a fine-tuned DFT functional form by M06-2X. The resulting geometries are used for energy
calculations executed by higher level of CCSDT (coupled cluster method with single double and
perturbative triple). Finally, the kinetics were determined using Arkane (automated reaction
kinetics and network exploration by Green’s Lab at MIT) software by combining information from
both optimized molecular geometry and energy files.

Collaboration Across Collections
A key design feature of the data model was to enable a single or multiple users to contribute to a
project how they like while still maintaining the same representation. The top graph below depicts

37

a collaboration of multiple people were all the users contribute through a single collection and
single experiment. Alternatively, the bottom graph shows the same graph where the users
contribute through their own research collection and experiment. Note that the core graph remains
the same between the two examples.

Collaboration Across Projects (With Common Users)
For groups wanting to collaborate, the data owned by one group can be copied to another group
by a user that is a member of both. Copying was chosen over referencing nodes across groups to
avoid issues of data integrity. For example, if a user referenced a material node from another group

38

and then it was deleted, then there would be a broken material node reference leading to the loss
of data integrity. (Material nodes with red outline represent the same material)

Collaboration Across Projects (Without Common Users)
For groups wanting to collaborate without having a user in common, the data owned by one
group/project will need to be made public so that a second group can view it and copy it into their
own group/project. The copied material node can be made public viewable or set to private.

39

Access Control Within Projects
For a project wanting to have multiple levels of access control, multiple groups can be created that
only have ownership of part of the project. Then users can be assigned to the appropriate groups.
For example, users that should have full access to all the data can be assigned to all the groups.
While users, who should have partial access will only be assigned to a single group.

40

41

SUB-OBJECT EXAMPLES
The following contains visual depictions of individual nodes and the sub-object structure within
the node.

Material Node
The following material node is for polystyrene produced by an anionic polymerization with
molecular mass data from both NMR and SEC, and characterization of the glass temperature.

42

The following material node is for a polystyrene-poly(methyl methacrylate) diblock copolymer
made via sequential addition anionic polymerization with molecular mass and composition
specified.

43

The following material node is for poly(3-butylthiophene-2,5-diyl) produced via a Kumada
coupling with molecular mass and optical properties. With the optical properties, two different
peaks and peak widths (as full-width-half-max: fwhm) were extracted and specified as properties.

44

The following material node is for a mixture of lactic acid and poly(lactic acid) (PLA).

45

The following material node is for poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) micelles in
water. Abbreviation: dynamic light scattering (DLS)

46

The following material node is for a isotactic polypropylene generated from computations.

47

Process Node
The following process node is for the anionic polymerization of styrene. Throughout the process,
the temperature was monitored every 15 minutes. Upon completion of the reaction, the yield of
polymer was reported, and the conversion of styrene was calculated from NMR data. Abbreviation:
secbutyl lithium (secBuLi)

48

CONTROLLED VOCABULARY, KEYS AND KEYWORDS
A full list of key words can be found at: https://criptapp.org/keys/

In general, ‘snake case’ styling is used. This refers to the name formalism where each space is
replaced by an underscore ‘_’ character, and everything is written in lowercase.

Nodes:

• Material  keywords
• Process  type
• Process  keywords
• Data  type
• Computation  type
• Computational_process  type
• Reference  type

Sub-objects:

• Identifier  key
• Property  key

o Material
o Process
o Computational_process

• Property  type
• Property  uncertainty_type
• Property  method
• Condition  key
• Condition  type (same as Property  type)
• Condition  uncertainty_type (same as Property  uncertainty_type)
• Ingredient  keyword
• Quantity  key
• Quantity  uncertainty_type (same as Property  uncertainty_type)
• Equipment  key
• Computational_forcefield  key
• Computational_forcefield  building_block
• Algorithm  key
• Parameter  key
• Citation  type

Supporting Nodes

• File  type

https://criptapp.org/keys/

49

REFERENCE
(1) Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to

Methodology and Encoding Rules. J Chem Inf Model 1988, 28 (1), 31–36.
https://doi.org/10.1021/ci00057a005.

(2) Lin, T.-S.; Coley, C. W.; Mochigase, H.; Beech, H. K.; Wang, W.; Wang, Z.; Woods, E.;
Craig, S. L.; Johnson, J. A.; Kalow, J. A.; Jensen, K. F.; Olsen, B. D. BigSMILES: A
Structurally-Based Line Notation for Describing Macromolecules. ACS Cent Sci 2019, 5
(9), 1523–1531. https://doi.org/10.1021/acscentsci.9b00476.

(3) National Institutes of Health. PubChem. https://pubchem.ncbi.nlm.nih.gov/ (accessed 2022-
01-01).

(4) Heller, S. InChI – the Worldwide Chemical Structure Standard. J Cheminform 2014, 6 (S1),
P4. https://doi.org/10.1186/1758-2946-6-S1-P4.

(5) ORCID. ORCID. https://orcid.org/ (accessed 2021-12-31).
(6) Laguna, M. T. R.; Tarazona, M. P.; Carriedo, G. A.; García Alonso, F. J.; Fidalgo, J. I.;

Saiz, E. Thermal Degradation and Solution Properties of Poly(2,2‘-Dioxybiphenyl
Phosphazene). Macromolecules 2002, 35 (19), 7505–7515.
https://doi.org/10.1021/MA020588P.

(7) Chenoweth, K.; Cheung, S.; van Duin, A. C. T.; Goddard, W. A.; Kober, E. M. Simulations
on the Thermal Decomposition of a Poly(Dimethylsiloxane) Polymer Using the ReaxFF
Reactive Force Field. J Am Chem Soc 2005, 127 (19), 7192–7202.
https://doi.org/10.1021/JA050980T/SUPPL_FILE/JA050980TSI20050324_061942.PDF.

(8) Mirijanian, D. T.; Mannige, R. v; Zuckermann, R. N.; Whitelam, S. Development and Use
of an Atomistic CHARMM-Based Forcefield for Peptoid Simulation.
https://doi.org/10.1002/jcc.23478.

(9) Zou, W.; Tupper, A.; Rebello, N. J.; Ranasinghe, D. S.; Green, W. H.; Couch, C.; Olsen, B.
D. Multiscale Modeling and Characterization of Radical-Initiated Modification of Molten
Polyolefins. Macromolecules 2022, 55 (14), 5901–5915.
https://doi.org/10.1021/ACS.MACROMOL.2C00202.

	CRIPT Nodes:
	Base Attributes
	Project Node
	Collection Node
	Experiment Node
	Inventory Node
	Material Node
	Process Node
	Data Node
	Computation Node
	Computational_process Node
	Reference Node
	Software Node

	Sub-objects:
	Identifier
	Property
	Condition
	Ingredient
	Quantity
	Equipment
	Computation_forcefield
	Software_configuration
	Algorithm
	Parameter
	Citation

	CRIPT Supporting Nodes
	User Node
	Group Node
	File

	Graph examples:
	Simple Chemical Reaction
	Diblock Copolymer Synthesis
	Reaction Kinetics
	Diblock Bottlebrush Synthesis
	Chemical Reaction with Aliquots
	Multi-Step Chemical Reaction (Library Generation)
	Material from Literature
	Characterization of Material
	Involved Material Characterization
	Block Copolymer Phase Behavior Annealing Study
	Extrusion and Characterization
	Computation to Produce Molecular Trajectories
	Computation to Simulate Reaction
	Computation to Generate Atomistic Forcefield
	Computation to Estimate Kinetic Rates
	Collaboration Across Collections
	Collaboration Across Projects (With Common Users)
	Collaboration Across Projects (Without Common Users)
	Access Control Within Projects

	Sub-Object Examples
	Material Node
	Process Node

	Controlled Vocabulary, Keys and Keywords
	Reference

