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CRIPT NODES: 
The following sections break down CRIPT’s (Community Resource for Innovation in Polymer 
Technology) data model and provides discussion on all the nodes, sub-objects, and attributes. 
Nodes are the highest level in the data organization hierarchy and are the modular units used to 
construct the graph structure. Graph in this context refers to the graph data structure which consists 
of a set of vertices/nodes and edges with data being stored in nodes and relationships stored with 
edges. Fundamentally, nodes are an abstract blueprint of how data should be structured for a 
specific instance. For example, a material node provides a specific blueprint on how data 
describing water (a specific material instance) should be structured (boiling point, molecular mass, 
etc.). A key feature of these nodes is the presence of a globally unique auto-generated and 
persistent identifier, which for CRIPT is a URL (Uniform Resource Locator) as CRIPT is natively 
web-based. This unique identifier is the key piece of information that enables the graph structure 
to be built, as the presence of the unique identifier of one node in another node signifies an edge 
between those two nodes in the graph.  
 
Sub-objects are groupings of attributes that are used to build nodes; this structuring is known as 
composition in object-oriented programming. They serve two purposes:  first, they provide another 
hierarchy for organizing and grouping data. For example, the property sub-object links key, value, 
units, etc. together. On their own, each of these attributes are not conceptual distinct objects, but 
together make a concrete object. The second purpose of sub-objects is to provide multiple 
instances. For example, a material is likely to have multiple properties. Since a property is a sub-
object, the structure can be reused to uniformly format each property instances. 
 
The lowest level of the data model is attributes which are the individual pieces of information that 
are to be stored. Examples of an attribute include property key, property value, and unit of the 
value (e.g. ‘boiling temperature: 100 °C’ is decomposed into three attributes: property key: boiling 
temperature, property value: 100, unit: °C).  
 
In the following sections, each node or sub-object will be discussed, and a table of attributes will 
be provided. Attribute tables include links between CRIPT nodes, required attributes, and 
attributes that have a controlled vocabulary. Links from one node to another can be identified in 
the tables by looking at the ‘type’ column, and the values in blue signify that it links to another 
node or sub-object. The attribute tables have a column dedicated to required attributes that must 
be provided to have a valid node/sub-object. Attributes that have an official CRIPT controlled 
vocabulary are denoted in the ‘vocab’ column. The other headers in the table are ‘attribute’ which 
contains the attribute names, ‘type’ referring to data type (e.g. int, float, list, str), examples, and 
description. Attributes with a ‘list’ type enable multiple objects to be added to that attribute and 
the attribute name is made plural. In the text of the following sections, nodes and sub-objects will 
be placed in italics and attributes will be placed in ‘single quotes’. This notation will help 
differentiate between the colloquial use of the word and the same word showing up as a node in 
one context and an attribute in another.  
 
As mentioned above, several attributes have a controlled vocabulary. The controlled vocabulary is 
introduced for these attributes to avoid the same key being entered multiple different ways (for 
example, ‘boiling point’ might be entered as ‘boiling point’, ‘boiling temperature’, ‘BP’, ‘Bp’, 
‘bP’, ‘bp’) which would erode data interoperability. For more details on all the controlled 
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vocabularies see Section ‘Controlled Vocabulary, Keys and Keywords’ below.  To avoid limiting 
users from entering only keys that are supported, CRIPT does allow user-defined vocabulary to be 
entered if it begins with a ‘+’. It is anticipated that on a regular basis, the controlled vocabulary 
will be expanded to include the most common user-defined properties, and the degenerate 
representations will be unified. The ‘+’-prefix ensures that the official namespace does not have 
conflicts with user-defined vocabulary when new keys are added to the controlled vocabulary.  
 

 
Figure 1: Overview of all the connections between nodes in the CRIPT data model. Solid lines 

indicate reference between nodes. Dashed lines indicate a reference originating from a sub-object 
within one of the nodes. An arrowhead indicates a temporal relationship. Colored lines have no 

additional meaning and are only to help with visualization. 
 
Base Attributes 
Base attributes are common among all nodes. Nearly all base attributes are required, except for 
‘notes’; however, ‘name’ is the only required attribute that the user will specify. The other 
attributes are all predefined or auto-filled metadata. The ‘group’ attribute provides the key link to 
the group node for access control. The ‘public’ attribute indicates whether the node is viewable by 
the public or only the members of the owning group. The ‘locked’ attribute defines weather a node 
is still editable and will be discussed further in the collection node. The ‘notes’ attribute is a 
miscellaneous information section which accommodates any information that is not explicitly 
supported by the data model. Ideally, the use of the ‘notes’ section will have a defined structure, 
like JavaScript Object Notation (JSON), which can make it findable and interpretable in the future 
or with custom codes. This is a key design feature that allows users to add custom data structures 
within CRIPT’s predefined data model, extending CRIPT for specific uses. The ‘node’ attribute 
refers to the type of node: collection, material, process, etc. The ‘model version’ serves to keep 
track of the data model version the document was encoded in. Recording this information in the 
node allows preforming updates to the data model.  
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Table 1: Base attributes.  
attribute type example description required vocab 

url str  unique ID of the node True  
group Group  group that owns the node True  

public bool True boolean indicating whether 
the node is publicly viewable True  

locked bool True boolean indicates whether 
the node is still editable True  

name str “ATRP kinetic 
experiments” descriptive label True  

notes str  miscellaneous information, or 
custom data structure  

  

node str user type of CRIPT node True  
model_version str 0.0.1 version of data model True  

updated_by User  user that last updated the 
node True  

created_by User  user that originally created 
the node True  

updated_at datetime* 2022-02-
03T06:14:22.610253Z 

last date the node was 
modified (UTC time) True  

created_at datetime* 2022-01-
04T10:13:52.325531Z 

date it was created (UTC 
time) True  

Abbreviations: Atom Transfer Radical Polymerization (ATRP), Universal Time Coordinated 
(UTC) 

 
* Datetime is formatted as International Organization for Standardization (ISO): yyyy-mm-
ddThh:mm:ss.SSSZ string value. This applies for all future instances of datetime.  
 
Project Node 
The project node is a grouping of collections that embody the works of a research group, a research 
thrust, or work related to a specific area. Examples of a project are ‘sustainable polyester project’ 
or ‘self-assembly behavior of bottlebrush polymers’. The only required attribute is the ‘name’ (in 
the base attributes), and the ‘name’ needs to be unique within the database. A project node links 
to one or more collections and all the material nodes used in the project. Material nodes are linked 
to the project to address issues with uniqueness and the reuse of material nodes. Material nodes 
hypothetically could be defined globally in the database and not tied to a project. However, if a 
user referenced a material node from another project and then it was deleted, then there would be 
a broken material node reference leading to the loss of data integrity. Thus, to provide protection 
without having every use of a material node needing to be unique, nodes are defined within a 
project. This means if a material from another project or from the public repository wants to be 
used/referenced in another project, it will have to be copied into the project (a link to the original 
node is stored for provenance). 
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Table 2: Attribute table for the project node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

collections list[Collection]  collections that relate to 
the project 

  

materials list[Materials]  materials owned by the 
project 

  

 
Collection Node 
The collection node is a grouping of experiments or simulations. It serves as an organizational tool 
similar to a folder on a computer desktop, a lab notebook, or a grouping of experiments that make 
up a publication. The only required attribute is the ‘name’ (in the base attributes), and the ‘name’ 
needs to be unique within the parent project. A collection node links to one or more experiments 
and can contain one or more inventory nodes. One key feature of the collection node is the ability 
for a collection to be published with a DOI (Digital Object Identifier), ‘cript_doi’, allowing data 
to be published along with manuscripts or otherwise disseminated in archival form. This DOI 
serves as a permanent link that can be added to a manuscript to enable readers of the manuscript 
to rapidly gain access to the data that was produced in the manuscript. Once the manuscript is 
published, a reference node can be created to link the collection back to the manuscript. Upon 
generation of the ‘cript_doi’ nodes will no longer be editable by setting ‘locked’ attribute in base 
attributes to ‘True’.   
 

Table 3: Attribute table for the collection node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

project Project  project the collection is 
associated with   

experiments list[Experiment]  experiments that relate to 
the collection 

  

inventories list[Inventory]  inventory owned by the 
collection 

  

cript_doi str 10.1038/1781168a0 
DOI: digital object identifier 
for a published collection; 

CRIPT generated DOI 
  

citations list[Citation]  reference to a book, paper, 
or scholarly work 

  

 
Experiment Node 
The experiment node is the grouping of nodes for an experiment which includes processes, 
computations, computational_processes, and data nodes. In the simplest case, where an 
experiment just involves characterization of a single material, the experiment node would only link 
to data nodes. In a more complex case, multi-step processes can be grouped within a single 
experiment node (e.g., multiblock copolymer synthesis). Users are free to structure experiment 
nodes to best suit their research, including choosing the degree of granularization of experiments.  
Whether a user decides to break an experiment into multiple experiment nodes or group all the 
data into single experiment node does not change how the other nodes will be represented in the 
data model. The required attribute for the experiment node is only the ‘name’ (in the base 
attributes) which needs to be unique within the parent collection.  
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Table 4: Attribute table for the experiment node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

collection Collection  collection associated with the 
experiment True  

processes list[Process]  process nodes associated with 
this experiment 

  

computations list[Computation]  computation method nodes 
associated with this experiment 

  

computation_ 
processes 

list[Computation 
Process] 

 computation process nodes 
associated with this experiment 

  

data list[Data]  data nodes associated with this 
experiment 

  

funding list[str] ['OIA-
2134795'] funding source for experiment   

citations list[Citation]  reference to a book, paper, or 
scholarly work   

 
Inventory Node 
The inventory node is a list of material nodes. It serves as an organizational tool for rapidly finding 
material nodes that pertain to a collection, or project. An example of an inventory can be a 
grouping of materials that were extracted from literature and curated into a group for machine 
learning, or it can be a subset of chemicals that are used for a certain type of synthesis, such as 
‘ATRP monomers’ or ‘RAFT chain transfer agents’ (reversible addition fragmentation chain 
transfer polymerization (RAFT)). The required attribute is the ‘name’ (in the base attributes) which 
must be unique within a collection.  
 

Table 5: Attribute table for the inventory node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

collection Collection  collection associated with the 
inventory True  

materials list[Material]  materials that you like to group 
together 

  

 
Material Node 
The material node is a collection of the identifiers and properties of a chemical, mixture, or 
substance. Examples of materials include water, brine (water + NaCl), polystyrene, polyethylene 
glycol hydrogels, vulcanized polyisoprene, mcherry (protein), and mica. The required attribute is 
the ‘identifiers’. The ‘identifiers’ are unique labels or descriptive information of a material such 
as preferred name, abbreviations, SMILES1 (simplified molecular-input line-entry system), 
BigSMILES2, chemical formula, etc. and will be discussed further in the identifier section. 
Mixtures can be represented by linking to pure chemicals (material nodes) with the ‘components’ 
attribute, and the ratio of components can be specified in ‘properties’. Properties are qualities, 
traits, or characteristics of a material, such as molecular mass, composition ratios, boiling 
temperature, solubility, elastic modulus, or color. Note that all properties must be simultaneously 
valid, meaning that multiple measurements of composition, or molecular mass are allowed, but 
should provide information about a single material in a single state. Properties are also used to 
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associating data, structural information (such as NMR (nuclear magnetic resonance), or IR 
(infrared) spectrum), or data that has yet to be analyzed to the material node. The ‘process’ 
attribute provides a link to the process node that produced the material. Since materials live within 
a single project, it is expected that they may need to be copied from one project to another; the 
‘parent_material’ attribute provides a link to the original material node. The ‘keywords’ attribute 
allows users to specify words that classify the material, which seeks to make the material node 
more findable. CRIPT has a list of supported keywords for monomer classification by chemical 
type, as well as polymer classification by chemical type and architecture (see ‘Controlled 
Vocabulary, Keys and Keywords’ for lists). If the material was generated through computation, 
the ‘computation_forcefield’ is required and provides a place to specify building blocks, mappings, 
solvation, and force field attributes. If the material was generated by extracting data from a 
literature source, the citations can be added to each property.   
 

Table 6: Attribute table for the material node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

project Project  project the collection is 
associated with   

identifiers list[Identifier]  material identifiers True  

components list[Material]  list of components that 
make up the mixture 

  

properties list[Property]  material properties   

process Process  process node that made 
this material   

parent_material Material  material node that this 
node was copied from   

computation_ 
forcefield 

Computation 
Forcefield 

 computation forcefield Cond*  

keywords list[str] 
[thermoplastic, 
homopolymer, 

linear, polyolefins] 

words that classify the 
material 

 True 

 
* Conditional: Required for computational materials.  
 
Process Node 
The process node contains a list of ingredients, quantities, and procedure information for an 
experimental material transformation (chemical and physical). Examples of a process include 
chemical reactions, separations, and extrusions. The required attributes are the ‘name’ (in the base 
attributes) and ‘type’. The process node was designed to be used in one of two ways: the first 
approach allows users to enter an entire process in a single process node, and the second approach 
allows for a series of process nodes to be chained together with each node constituting a single 
step in a larger process. This use of a process node is akin to a procedure paragraph typically found 
in a methods section of a journal article. For the second approach, where each process node is a 
step in the process, the ‘description’ attribute is an explanation of that single step, and the ‘type’ 
for that step can be more accurately defined from the available keywords (e.g., mixing, extraction, 
precipitation, drying). Chaining process nodes is done through the ‘prerequisite_processes’ 
attribute which supports multiple prerequisite processes in the case of converging processes. Note 
that ‘prerequisite_processes’ should only capture immediate prerequisites. For diverging 
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processes, an intermediate material node will be required as only linear chains of process nodes 
are supported. 
 
The ‘ingredients’ attribute links to material nodes and specifies the associated quantities (mass, 
volume, pressure, and moles) for each material used in the process. Relative quantities like 
equivalence, molarity, mass fraction, etc. are not stored as they can be computed from the absolute 
quantities. The choice to store absolute quantities was to ensure scale of the reaction was recorded 
and relative quantities can be converted in software to absolute quantities if sufficient details are 
provided. If the process leads to the creation of new materials, they can be linked in the ‘product’ 
attribute. Materials that are discarded in the process can be specified with the ‘waste’ attribute. 
‘Conditions’ are environmental variables or set process variables of the process. Examples of 
‘conditions’ are duration, temperature, pressure, and stirring rate. ‘Equipment’ are physical 
instruments, tools, glassware, etc. used in a process. The equipment sub-object also has a 
‘condition’ attribute. With two locations to specify conditions, the ‘conditions’ attribute in the 
process node is to be used for global conditions, while the ‘conditions’ attribute in the equipment 
is to specify local conditions, or conditions controlled by that equipment. The ‘properties’ sub-
objects are emergent traits that characterize the process and the process results, which includes 
things like reaction yield, rate constants, or activation energies. The ‘keywords’ attribute allows 
users to specify words that classify the process to make it more findable. Currently supported 
keywords include chemical and physical transformations (see ‘Controlled Vocabulary, Keys and 
Keywords’ for lists).  
 

Table 7: Attribute table for the process node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 
experiment Experiment  experiment the 

process belongs to   

type str mix type of process True True 
ingredients list[Ingredient]  ingredients   

description str 
To oven-dried 20 mL glass 
vial, 5 mL of styrene and 10 

ml of toluene was added. 

explanation of the 
process 

  

equipment list[Equipment]  equipment used in the 
process 

  

products list[Material]  
desired material 

produced from the 
process 

  

waste list[Material]  material sent to waste   

prerequisite_
processes list[Process]  

processes that must 
be completed prior to 

the start of this 
process 

  

conditions  list[Condition]  global process 
conditions 

  

properties list[Property]  process properties   

keywords list[str]  words that classify the 
process 

 True 

citations list[Citation]  
reference to a book, 
paper, or scholarly 

work 
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Data Node 
The data node contains the meta-data to describe data that is beyond a single value, i.e. n-
dimensional data. Common examples of data nodes for experimental research are NMR spectra, 
stress-strain curves, and timeseries. Examples for computational research would include system 
trajectories, online logged observables, or complete snapshots. The required attributes are the 
‘name’ (in the base attributes), ‘type’, and ‘files’. The ‘type’ attribute specifies what the data is 
(1H NMR, SEC (size exclusion chromatograph), stress-strain curve, etc.). The ‘file’ attribute links 
to file objects which contain meta-data specific to the file, like file type (csv, txt, jpg), as well as 
the link to the raw file. Multiple files can be attached to a single data node if the data is spread 
over several files. Data is not directly stored in the data node because this would significantly slow 
down searching speeds and dramatically increase the memory burden of the database. The solution 
is to store the data in lower cost storage databases, and only store the link to the data in the CRIPT 
database. ‘sample_preperation’ is included to capture the processing done to prepare the sample 
for analysis, the equipment used to collect the data, calibration files, etc.  
 

Table 8: Attribute table for the data node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 
experiment Experiment  experiment the data belongs to   

type str nmr_h1 data type keyword True True 
files list[File]  list of file nodes True  

sample_preperation Process  sample preparation    

computations list[Computation]  data was produced from this 
computation method 

  

computational_ 
process 

Computational_ 
process  data was produced from this 

computation process 
  

materials list[Material]  materials with attributes 
associated with the data node 

  

processes list[Process]  processes with attributes 
associated with the data node 

  

citations list[Citation]  reference to a book, paper, or 
scholarly work   

 
Computation Node 
The computation node describes the transformation of data or the creation of a computational data 
set. Common computations for simulations are energy minimization, annealing, quenching, or 
NPT/NVT (isothermal-isobaric/canonical ensemble) simulations. Common computations for 
experimental data include fitting a reaction model to kinetic data to determine rate constants, 
extracting a plateau modulus from a time-temperature-superposition, or calculating radius of 
gyration with the Debye function from small angle scattering data. The required attributes are 
‘name’ and ‘type’ which specifies the category of computation performed. The ‘input_data’ 
attribute specifies the data that is being transformed by the computation, which is optional for 
initialization of a simulation. The ‘software_configuration’ attribute defines the software, version 
and algorithm used in the computation. Note that multiple software may be defined for a single 
computation. For computations of a typical simulation, conditions are the set of variables that 
define the thermostatic state of a system, such as temperature, energy, number of atoms/molecules, 
and pressure. Computations can also be chained together without an intermediate data via the 
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‘prerequisite_computations’ attribute. Enhanced sampling techniques that combine multiple 
simulation runs into a single, overarching result, like a free-energy profile of umbrella sampling, 
can be described with each simulation run as a parallel arranged set of individual computations.  
 

Table 9: Attribute table for the computation node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

experiment Experiment  experiment the 
computation belongs to   

type str general molecular 
dynamics simulation 

category of 
computation True True 

input_data list[Data]  input data nodes   

output_data list[Data]  output data nodes   
software_ 

configurations 
list[Software_ 
configuration]  software and algorithms 

used   

condition list[Condition]  setup information   
prerequisite_ 
_computation Computation  prior computation 

method in chain   

citations list[Citation]  reference to a book, 
paper, or scholarly work   

notes str  additional description of 
the step   

 
Computational_process Node 
A computational_process is a simulation that processes or changes a virtual material. Examples 
include simulations of chemical reactions, chain scission, cross-linking, strong shear, etc. As a 
result, the computational_process node requires both ‘ingredients’ (i.e., at least one material to be 
processed) and ‘input’ data (i.e., the configuration of the material under processing) as input. 
Without the input material, the computational_process node is equivalent to computation. Besides 
input data and material nodes, other required attributes are ‘name’ and ‘type’ which specifies the 
category of computation performed. Similar to the computation node, the ‘software_configuration’ 
and the ‘condition’ attribute defines a set of software (with version and algorithm) and set 
thermostatic variables of a system, respectively. In contrast to computation, 
computational_process nodes cannot be chained together given they require both material and 
data as input but only have data as output.  
 
The computation_forcefield of a simulation is associated with a material. As a consequence, if the 
forcefield changes or gets refined via a computational procedure (density functional theory, 
iterative Boltzmann inversion for coarse-graining etc.) this forcefield changing step must be 
described as a computational_process and a new material node with a different 
computation_forcefield needs to be created. 
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Table 10: Attribute table for the computational_process node. 
attribute type example description required vocab 

‘base’ attributes (see details above) 

experiment Experiment  
experiment the 

computational_process 
belongs to 

  

type str general molecular 
dynamics simulation 

category of 
computation True True 

input_data list[Data]  input data nodes True  
output_data list[Data]  output data nodes   
ingredients list[Ingredient]  ingredients True  
software_ 

configurations 
list[Software_ 
configuration]  software and 

algorithms used   

condition list[Condition]  setup information   

properties list[Property]  computation process 
properties   

citations list[Citation]  
reference to a book, 
paper, or scholarly 

work 
  

notes str  additional description 
of the step   

 
Reference Node 
The reference node contains the metadata for a literature publication, book, or anything external 
to CRIPT. The reference node does not contain the base attributes and is meant to always be public 
and static to allow globally link data to the reference. The reference node is always used inside the 
citation sub-object to enable users to specify the context of the reference (see citation sub-object 
for more details). The required attributes are the ‘title’ and ‘type’. The ‘type’, and unique identifiers 
like DOI (digital object identifier) are highly recommended.  
 

Table 11: Attribute table for the reference node. 
attribute type example description required vocab 

url str  CRIPT’s unique ID of the node True  
type str journal_article  type of literature True True 
title str 'Living' Polymers title of publication True  

authors list[str] Michael Szwarc list of authors   
journal str Nature journal of the publication   

publisher str Springer publisher of publication   
year int 1956 year of publication   

volume int 178 volume of publication   
issue int 0 issue of publication   
pages list[int] [1168, 1169] page range of publication   

doi str 10.1038/1781168a0 DOI: digital object identifier Cond.*  

issn str 1476-4687 ISSN: international standard 
serial number Cond.*  

arxiv_id str 1501 arXiv identifier   
pmid int ######## PMID: PubMed ID   

website str https://www.nature.com/artic
les/1781168a0 

website where the publication 
can be accessed 

  

 
* Conditional: Required depending on the ‘type’. Example: journal articles require DOI.   
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Software Node 
The software node contains metadata for a computation tool, code, programing language, or 
software package. Similar to the reference node, the software node does not contain the base 
attributes and is meant to always be public and static. The required attributes are ‘name’ and 
‘version’, while ‘source’ is optional. For in-house, unpublished code ‘version’ can be filled with a 
version control handle like a git-hash or a text like “unpublished”.  
 

Table 12: Attribute table for the software node.  
attribute type example description required vocab 

url str  CRIPT’s unique ID of the node True  
name str LAMMPS  type of literature True  

version str v3.1 software version True  
source str lammps.org source of software   

Abbreviations: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 
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SUB-OBJECTS: 

 
Figure 2: High-level overview of the sub-objects highlighting the hierarchy between nodes and 

sub-objects.  
 
Identifier 
Identifiers are a sub-object for the material node and are unique labels or descriptive information 
for a material. Examples of identifiers include preferred name, alternative names, SMILES1, 
BigSMILES2, chemical formula, chemical formula of repeat unit, PubChem cid3 (compound ID 
number (cid)), and InChI4 (International Chemical Identifier). Users are encouraged to provide 
unambiguous identifiers whenever possible to ensure that data is appropriately to attributed to 
specific materials. Identifiers are a key-value pair, with ‘key’ specifying the type of identifier and 
‘value’ being the content. 
 

Table 13:  Attributes table for the identifier sub-object. 
attribute type example description required vocab 

key str names key for 
identifier True True 

value Any 
['styrene', 

'ethenylbenzene', 
'vinylbenzene'] 

value True  

 
Property 
Properties are qualities or traits of a material or process. They are part of the material node (e.g., 
melting temperature, molecular mass), process node (e.g., conversion, rate constants) and 
computational_process node (e.g., total energy, bond length, hydration number). The required 
attributes are the ‘key’ and ‘type’. The ‘key’ attribute specifies what the property is (e.g., melting 
temperature). The ‘type’ attribute specifies what the meaning of the value is, such as ‘value’ which 
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represents a single point measurement, or ‘min’, ‘max’, ‘mean’ can be specified for multipoint 
measurements (more discussion about this below). The ‘value’ and ‘unit’ attributes are 
conditionally required, meaning that they are required depending on the ‘key’ attribute. 
‘Uncertainty’ must use the same units as the ‘value’ attribute, if applicable. The ‘conditions’ 
attribute allows the user to specify any environmental variables or system descriptors that are 
relevant to the property. The ‘method’ attribute specifies the analytical instrument or 
computational origins of the property. The property sub-object provides links to the data node or 
computational node that produced the value to provide provenance of the property. The ‘citation’ 
attribute provides a link to the source of the property if it came from a literature reference. The 
‘notes’ attribute is present to capture other data not explicitly captured by the data model. One 
common use of ‘notes’ for properties is to place the definition for any custom property ‘keys’.  
 
To specify more precisely the chemical or molecular structure to which the property refers to, the 
‘components’, ‘components_relative’, and ‘structure’ attributes can be used. The ‘components’ 
attribute allow the user to specify the material nodes of a mixture to which a property refers to. 
The common use of ‘components’ is for specifying the composition or ratio between components 
in a mixture. In the case of a ratio, one or more materials can be specified in ‘components’ for the 
left side of the ratio, one or more materials can be specified in ‘components_relative’ for the right 
side of the ratio, and the ratio is specified in value. The ‘structure’ attribute provides an orthogonal 
method to specify what chemical structural feature the properties are attributed to by specifying 
atom mappings in the SMILES and BigSMILES string. Atom mapping is done within the SMILES 
and BigSMILES strings with brackets and an integer index separated by a colon, [element: index]. 
For absolute quantities index 1 should be used. For ratio or relative based properties, index: 1 
corresponds to the molecular fragment that the property is ‘about’, and index 2 is the molecular 
fragment that the property is ‘relative to’. 
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Table 14: Attribute table for the property sub-object. 
attribute type example description required vocab 

key str modulus_shear type of property True True 
type str min type of value stored True True 
value Any 1.23 value or quantity Cond*  
unit str gram unit for value Cond*  

uncertainty Any 0.1 uncertainty of value   
uncertainty_ 

type str standard_deviation type of uncertainty  True 

components list[Material]  material that the property 
relates to** 

  

components_
relative list[Material]  material that the property 

relative to**   

structure str 
{[][$][C:1][C:1][$], 
[$][C:2][C:2]([C:2]) 
[$][]} 

specific chemical structure 
associate with the property 

with atom mappings**  
  

method str sec approach or source of 
property data 

 True 

sample_prep
aration Process  sample preparation   

conditions list[Condition]  conditions under which the 
property was measured 

  

data list[Data]  data nodes   

computations  list[Computation]  computation method that 
produced property 

  

citations list[Citation]  reference to a book, 
paper, or scholarly work 

  

notes str  
miscellaneous information, 

or custom data structure 
(e.g.; JSON) 

  

 
* Conditional: most properties will require a ‘value’ and ‘unit’; however, there are a few properties 
like ‘associated’ and ‘structure’ which are used only to link to data nodes and do not have a ‘value’ 
or ‘unit’.  
 
** Components and atom mapping examples:  
 
To specify the ratio of the two monomers in a random co-polymer with atom mapping the [atom:1] 
will be applied to the first monomer, and [atom:2] will be applied to the second monomer. 
 

{ 
  "key": "conc_molar_ratio", 
  "type": "value", 
  "value": 0.20, 
  "unit": "", 
  "structure": "{[][$][C:1][C:1][$],[$][C:2][C:2]([C:2])[$][]}" 
} 
 

This should be interpreted as a ratio of 0.20 [$]CC[$] : 1 [$]CC(C)[$].  
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To specify a mixture of a small molecule and polymer with atom mapping the [atom:1] will be 
applied to the small molecule, and [atom:2] will be applied to the polymer. 
 

{ 
  "key": "conc_molar_ratio", 
  "type": "value", 
  "value": 0.20, 
  "unit": "", 
  "structure": "[O:1][C:1](=[O:1])[C:1]([C:1])[O:1].{[][>][C:2](=[O:2])[C:2]([C:2])[O:2][<][]}", 
} 
 

This should be interpreted as a ratio of 0.20 OC(=O)C(C)O : 1 {[][>]C(=O)C(C)O[<][]}.  
 
 
To specify the ratio of a small molecule and polymer in a mixture, the ‘components’ and 
‘components_relative’ attributes can be used.  First specify, the small molecule (material node) in 
‘components’ and then specify the polymer in ‘conditions’. This is specifying the molar ratio (0.2 
lactic acid) : (1 poly(lactic acid)).   
 

{ 
  "key": "conc_molar_ratio", 
  "type": "value", 
  "value": 0.20, 
  "unit": "", 
  "components": ["URL for lactic acid material node"], 
  "components_relative”: [“URL for poly(lactic acid) material node”] 
} 

 
 
Mixture of a block co-polymer and homo-polymer from the first block, specifying the ratio of the 
two monomers. 
 

{ 
  "key": "conc_molar_ratio", 
  "type": "value", 
  "value": 0.20, 
  "unit": "", 
  "structure": "{[][$][C:1][C:1][$][]}.{[][$][C:1][C:1][$][>]}{[<][$][C:2][C:2]([C:2])[$][]}", 
} 

This should be interpreted as a ratio of 0.20 [$]CC[$] : 1 [$]CC(C)[$].  
 
Condition 
Conditions are environmental variables, equipment settings, states of the system, or influencing 
factors. Examples of conditions for physical experiments include temperature, pressure, stirring 
rate, and for computations conditions include box dimensions, integration time step, ensemble, 
thermostat parameters, etc. Conditions are found in the process, computation and 
computational_process nodes and in the property and equipment sub-objects. The required 
attributes for conditions are the ‘key’ which specifies what type of condition it is, ‘type’ which is 
the information you want to specify (such as: ‘value’, ‘min’, ‘max’, ‘mean’), and ‘value’. The 
‘material’ attribute is used when the value needs to link to a material node, for example when 
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specifying the atmosphere being nitrogen. The condition sub-object provides links to the data node 
to allow users to attach the associated raw data. For computation and computation_process nodes 
the condition should specify the complete statistical ensemble, e.g., for a simulation in the grand-
canonical ensemble (μVT) the chemical potential μ, simulation volume V, and temperature T 
should be specified as a condition. The realization details of the ensemble (e.g., thermostat) for the 
simulation can be specified via the algorithm attributes in computation nodes. 
 
The ‘measurement_id’ and ‘set_id’ attributes provide the ability to link together conditions that 
are related. The ‘measurement_id is used to link conditions that are descriptive of the same state. 
For example, the measurement of temperature and pressure of a system at a single time point can 
be linked with the same ‘measurement_id’. The ‘set_id’ links together conditions across a set or 
series, with all the points belonging to a specific series all having the same index. A common 
example is a timeseries where each point in the timeseries would have the same index. The writing 
of individual time points directly into the database with this mechanism is recommended for under 
ten datapoints, after which the series should be moved into the data node and min, max and mean 
values can be reported and grouped with the same ‘set_id’. This minimizes the size of the data 
stored directly in the database, while keeping key features of the series available for searching and 
quick referencing.  
 

Table 15: Attribute table for the condition object. 
attribute type example description required vocab 

key str temp type of condition True True 

type str min 
type of value stored, 'value' is just 
the number, 'min', 'max', 'avg', etc. 

for series 
True True 

descriptor str upper temperature 
probe freeform description for condition   

value Any 1.23 value or quantity True  
unit str gram unit for value   

uncertainty Any 0.1 uncertainty of value   
uncertainty_ 

type str std type of uncertainty  True 

material list[Material]  material that the condition relates 
to   

set_id int 0 ID of set (used to link 
measurements in as series) 

  

measurement 
_id int 0 

ID for a single measurement (used 
to link multiple condition at a single 

instance) 
  

data list[Data]  detailed data associated with the 
condition   
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Ingredient 
Ingredients are links to material nodes with the associated quantities. Ingredients are found both 
in the process and computational_process node. The required attributes are the ‘material’ reference 
and at least one of the ‘quantities’ (mass, volume, pressure, mole) must be defined. 
 

Table 16: Attribute table for the ingredient object. 
attribute type example description required vocab 
material Material  material True  

quantities list[Quantity]  quantities True  

keyword str catalyst keyword for 
ingredient 

 True 

 
Quantity 
Quantities are the amount of material involved in a process. They are used in the ingredients sub-
object. All the attributes are required. 
 

Table 17: Attribute table for the quantity object. 
attribute type example description required vocab 

key str mass type of quantity True True 
value Any 1.23 amount of material True  
unit str gram unit for quantity True  

uncertainty Any 0.1 uncertainty of value   
uncertainty_type str std type of uncertainty  True 

 
Equipment 
Equipment are physical instruments, tools, glassware, etc. used in a process. Settings, or 
environmental variables controlled by the equipment can be specified with the ‘conditions’ 
attribute. Equipment specification, configuration, and calibration files can be attached to the 
equipment sub-object with the use of a File. 
 

Table 18: Attribute table for the ingredient object. 
attribute type example description required vocab 

key str hot plate material True True 

description str Hot plate with silicon 
oil bath with stir bar 

additional details about the 
equipment   

conditions list[Condition]  conditions under which the 
property was measured   

files list[File]  
list of file nodes to link to 
calibration or equipment 
specification documents 

  

citations list[Citation]  reference to a book, 
paper, or scholarly work   
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Computation_forcefield 
Computational materials require additional information to define the material’s identity. 
Specifically, this includes the solvation (implicit or explicit), the forcefield (to describe the 
interactions or dynamics) and the building blocks that are used to relate the chemistry to the 
forcefield. For example, polystyrene simulated using different force fields, such as CHARMM 
(chemistry at Harvard macromolecular mechanics), GROMOS (Groningen molecular simulation), 
and MARTINI (a general-purpose coarse-grained force field by University of Groningen) or Dry-
MARTINI will yield different properties.  
 
If the simulations are performed with a standard forcefield, like OPLS-AA (optimized potentials 
for liquid simulations- all atom model), CHARMM, or GROMOS, this can be specified with the 
‘key’. Users are highly encouraged to specify the source of the standard forcefield in ‘source’. For 
example, when using the GROMOS forcefield shipped with a GROMACS (Groningen machine 
for chemical simulations) installation, specify the GROMACS installation and version number to 
improve reproducibility. For modified or non-standard forcefields, it is highly recommended to 
include a detailed description in ‘description’ and upload the exact input files that describe the 
forcefield and its parameters with the data. For example, obtaining OPLS-AA parameters via the 
LigParGen tool produces an forcefield input file, which should be attached as a data node. 
 
The ‘key_building_block’ attribute specifies the level of description the simulation uses, for 
example all-atom simulations or united atom descriptions. Explicitly setting this attribute allows 
for fast searching of similar entries in the databank. The ‘coarse_grained_mapping’ attribute can 
be used to detail how chemical structures are mapped onto the simulation object like beads i.e., 
MARTINI mapping. This becomes especially important if the simulation describes the material 
with a coarse-grained model where multiple atoms are combined into interaction beads. The 
‘implicit_solvent’ description is explicitly listed for searchability. If an explicit solvent is used, it 
should be included as a material with corresponding computation_forcefield. Otherwise, the use 
of implicit solvents needs to be specified in the ‘implicit_solvent’ attribute. Previously published 
forcefields should be referenced via the ‘citation’ attribute.  
 

Table 19: Attribute table for the computation_forcefield sub-object.  
attribute type example description required vocab 

key str CHARMM27 type of forcefield True True 
building 
_block str atom type of building block True True 

coarse_grained 
_mapping str SC3 beads in MARTINI 

forcefield atom to beads mapping   

implicit_solvent str water Name of implicit solvent   
source str package in GROMACS source of forcefield   

description str 
OPLS forcefield with 

partial charges calculated 
via the LBCC algorithm 

description of the forcefield 
and any modifications that 

have been added 
  

data Data  details of mapping schema 
and forcefield parameters 

  

citation list[Citation]  reference to a book, paper, 
or scholarly work 

  

Abbreviations: special apolar bead to model rings (SC3), local bond - charge correction (LBCC) 
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Software_configuration 
The software_configuration sub-object includes software and the set of algorithms to execute 
computation or computational_process. The required attribute is ‘software’. The ‘algorithm’ 
attribute can be used to specify specifically what methods and parameters are used to setup the 
software. 
 

Table 20: Attribute table for the software_configuration sub-object.  
keys type example description required vocab 

software Software  software used True  
algorithms  list[Algorithm]  algorithms used    

notes str  miscellaneous information, or 
custom data structure (e.g.; JSON) 

  

citation list[Citation]  reference to a book, paper, or 
scholarly work 

  

Abbreviations: JavaScript Object Notation (JSON) 
 
Algorithm 
Algorithm consists of parameter and condition details used in the computation and 
computational_process. This includes, but is not limited to: 
  
1) algorithms of cell_initate ‘key’ to pack coils of polymer and other ingredient to simulation box 

with ‘types’ like amorphous cell module in Material Studio, RIS (rotational isomeric state 
model), SARW (self-avoiding random walk) on lattice;  

2) algorithms of ‘thermostat’ or ‘barostat’ key to maintain constant temperature or pressure with 
‘type’ like Nose-Hoover, Berendsen, Lagevin, Anderson; 

3) algorithms of ‘neighbor_list’ key to define/update localized domain of building blocks with 
‘type’ like Verlet or linked list; 

4) algorithms of ‘integration’ key to integrate the motion of building blocks and their non-bonded 
interactions with ‘type’ like Leap-frog scheme of Verlet, particle mesh Ewald sum; 

5) algorithms of ‘bond_constraint’ key to constrain the fast-vibrating bonds, usually for bonds 
with hydrogen atoms with ‘type’ like SHAKE (lagrange multiplier-based algorithm for shaking 
bond constraints between rigid molecules), RATTLE (algorithm extended from SHAKE via 
velocity integration).  

 
To specify the ‘type’ of thermos_barostat, the ‘key’ (e.g., Nose-Hoover) and the associated 
parameter (i.e., damping_time) can be listed. For user-defined ‘key’ and ‘type’, links to the 
corresponding data node is also available. A full list of supported attributes for setup with the 
associated descriptions are given below. 
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Table 21: Attribute table for the algorithm sub-object.  
keys type example description required vocab 

key str ensemble, thermo-
barostat 

system configuration, 
algorithms used in a 

computation 
True True 

type str NPT for ensemble, Nose-
Hoover for thermostat 

specific type of 
configuration, algorithm True  

parameter list[Parameter]  setup associated 
parameters 

  

citation list[Citation]  reference to a book, 
paper, or scholarly work 

  

Abbreviations: isothermal-isobaric (NPT) 
 
Parameter 
A parameter is an input value to an algorithm. For typical computations, the difference between 
parameter and condition lies in whether it changes the thermodynamic state of the simulated 
system: Variables that are part of defining a thermodynamic state should be defined as a condition 
in a parent node. Therefore, ‘number’ and ‘volume’ need to be listed as conditions while 
‘boundaries’ and ‘origin’ are parameters of ensemble size. Note that ‘number’ represents the count 
of ‘building_block’ (attribute in computation_forcefield) in the ensemble. ‘Origin’ and 
‘boundaries’ are defined with ‘keys’ of Cartesian, cylindrical, spherical, etc.: The ‘value’ of origin 
is a three-number list [o1,o2,o3]. While for boundaries, its ‘value’ is a nine-number list 
[b11,b12,b13, b21,b22,b23, b31,b32,b33] containing three vectors,  b11,b12,b13 and b21,b22,b23 
as well as b31,b32,b33, each define the plane of a boundary.   
 

Table 22:  Attributes table for the parameter sub-object. 
attribute type example description required vocab 

key str  key for 
identifier True True 

value Any  value True  

unit str  unit for 
parameter   

 
Citation 
The citation sub-object provides a link to papers, books, or other scholarly work and allows users 
to specify in what way the work relates to that data. More specifically, users can specify that the 
data was directly extracted from, inspired by, derived from, etc. the reference. Citations can be 
found in the collection, process, data, computation, computational_process nodes and in the 
property, computation_forcefield, equipment, software_configuration, and algorithm sub-objects.   
 

Table 23:  Attributes table for the citation sub-object. 
attribute type example description required vocab 

type str derived_from key for identifier True True 
reference str  reference to a book, 

paper, or scholarly work True  
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CRIPT SUPPORTING NODES 
For CRIPT’s data structure to function properly in a software application the addition of a few 
additional nodes is needed to provide access control and access to external data storage. The 
inclusion of the user and group nodes provides access control, and file provides a link to external 
data storage.  
 
User Node 
The user node represents any researcher or individual who interacts with the CRIPT platform. It 
serves two main purposes:  it plays a core role in permissions (access control), and it provides a 
traceable link to the individual who has contributed or edited data within the database. The required 
attributes are the ‘username’, ‘email’ and ‘orcid’. The ORCID ID (open researcher and contributor 
ID) provides a unique and persistent digital identifier which can be used for login through the 
ORCID API (application programming interface).5 The user node links to one or more groups that 
user is a member of. 
 

Table 24: Attribute table for the user node. 
attribute type example description required vocab 

url str  unique ID of the node True  
username str john_doe User’s name True  

email str user@cript.com email of the user True  
orcid str 0000-0000-0000-0000 ORCID ID of the user True  

groups list[Group]  groups you belong to   

updated_at datetime* 2022-06-
04T08:24:12.311266Z 

last date the node was 
modified (UTC time) True  

created_at datetime* 2022-02-
03T06:14:22.610253Z 

date it was created (UTC 
time) True  

 
* Datetime is formatted as International Organization for Standardization (ISO): yyyy-mm-
ddThh:mm:ss.SSSZ string value. This applies for all future instances of datetime.  
 
Group Node 
The group node represents a grouping of users collaborating on a common project. It serves as the 
main permission control node and has ownership of data. Groups are the owners of data as most 
research groups have changing membership, and the data is typically owned by the organization 
and not the individuals. The required attributes are the ‘name’, ‘admins’, and ‘users’. The ‘name’ 
attribute is required to be unique in the database to avoid confusions of multiple groups having the 
same name. By default, the user creating the group will become the ‘admin’ of the group and will 
also be added to the ‘users’ list. The ‘admins’ role is used by the permission control software to 
specify which users can add or delete other users to the group. Multiple ‘admins’ are allowed. All 
members of a group node will be able to view, edit, add, and delete data within the group.  Given 
that permissions happen through the group node, all other nodes (except user, reference, and 
software) will link to the group node to establish the ownership relation.  
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Table 25: Attribute table for the group node. 
attribute type example description required vocab 

url str  unique ID of the node True  

name str CRIPT development 
team descriptive label True  

notes str  
miscellaneous 

information, or custom 
data structure  

  

admins list[User]  group administrators True  
users list[User]  group members True  

updated_by User  user that last updated 
the node True  

created_by User  user that originally 
created the node True  

updated_at datetime 2022-02-
04T08:24:12.311266Z 

last date the node was 
modified (UTC time) True  

created_at datetime 2022-02-
03T06:11:21.610253Z 

date it was created 
(UTC time) True  

 
File 
The File object contains the meta-data and link to a single raw data file, as raw data files are not 
directly stored in the database. The required attributes are the ‘source’, ‘type’, and ‘name’. The 
‘source’ is a link to the data file and will typically be an URL (uniform resource locator), but it 
could also be a file location if the data is being stored on a local server. The ‘type’ attribute 
specifies whether the file is data, a calibration file, configuration file, etc. The ‘data_dictionary’ 
attribute allows users to specify more specific meta-data about what is contained in the file, such 
as column and row headers with units. Ideally, the use of the ‘data_dictionary’ section will have a 
defined structure, like JSON, which can make it findable and interpretable with custom codes. 
   

Table 26:  Attributes table for the File object. 
attribute type example description required vocab 

‘base’ attributes (see details above) 
source str url link to file True  
type str data type of file True True 

extension str .csv extension   

data_dictionary str  set of information describing the 
contents, format, and structure of a file 

  

 
To provide an explicit example of a ‘data_dictionary’ template, a trajectory export for 
computational data is provided. The trajectory export provides details for parsing and analyzing 
these large raw data files, such as evolving configurational and trajectory-related information. 
Attributes supported in this template include ‘num_frame’ (i.e., total number of frames dumped to 
the file node) ‘dt_frame’ (i.e., simulation time interval between two frames), ‘dt_sim’ (i.e., 
simulation time step), ‘boundaries’ and ‘origin’ of simulation box (duplicate these conditions here 
with the raw data as the storage of information might be centralized).  
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Table 27: Data dictionary template for computational trajectories.  
keys type description example required vocab 

num_frame int total number of frames dumped to 
the file node 100   

dt_frame float simulation time interval between two 
frames 0.01   

dt_frame_unit str unit of time interval between two 
frames ps   

dt_sim float simulation time step 0.1   
dt_sim_unit str unit of simulation time step    

boundaries list[float] 
nine element box matrix 

[e11,e12,e13, e21,e22,e23, 
e31,e32,e33] 

[5,0,0, 
0,5,0, 

0,0,20] 
  

origin list[float] origin of box [o1,o2,o3] [0,0,0]   
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GRAPH EXAMPLES: 
Solid lines indicate reference between nodes.  
Dashed lines indicate a reference originating from a sub-object within one of the nodes.  
An arrowhead indicates a temporal relationship.  
Colored lines have no additional meaning and are only to help with visualization.  
 
Simple Chemical Reaction 
The following is a generic CRIPT graph for a chemical reaction shown three ways to highlight 
distinct aspects. The top graph highlights the interconnection between the organizational nodes 
with the rest of the graph. The middle graph shows just the main graph. The bottom graph shows 
a graph where the process node is broken into multiple steps.  
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Diblock Copolymer Synthesis 
The following depicts the graph for a diblock copolymer synthesis through sequential addition of 
monomers. Sequential addition refers to the synthesis for the first block (block A) followed by the 
growth of the second block (block B) directly off the first block. It is possible to condense the 
entire synthesis into a single process node; however, if characterization data is taken on the 
intermediate block A, then it is preferred to separate the process into two steps (as shown).  
 

 
 
Reaction Kinetics 
The following depicts the graph for a reaction kinetic analysis to determine the activation energy. 
This involves performing the reaction multiple times with different reaction temperatures (the 
conditions in the process node will be different). This example highlights how material nodes can 
be reused. 
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Diblock Bottlebrush Synthesis 
The following depicts the graph for the synthesis of a diblock bottlebrush created by a graft-
through sequential addition of macromonomers. This highlights a converging synthetic route 
where separate syntheses are merging. Note that the convergence happens through the process 
node. 
 

 
 
Chemical Reaction with Aliquots  
The following depicts a chemical reaction where 2 aliquots were taken from a reaction, worked 
up, and characterized. This is an example of a diverging graph in which the process node 
(representing the chemical reaction) had to be split into 3 separate process nodes (labeled 
‘reaction’) separated by material nodes (red bordered nodes). These intermediate nodes can be 
sparse in data and with only a single identifier needing to be specified. The splitting of the process 
node and the intermediate material nodes is needed to enable the user to specify the quantities of 
aliquot taken, the quantity of the reaction mixture that continues reacting, and at what time the 
aliquot was taken.  
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Multi-Step Chemical Reaction (Library Generation) 
The following depicts the graph for a common approach to making a library of materials through 
two reactions. An example of this graph would be the synthesis of 3 diblock copolymers, in which 
the first block is the same, and the second block is made with different monomers or have different 
chain lengths (this is what is depicted below, as the second layer of process nodes use the same 
material nodes).  The red border indicates an intermediate material node. 
 

 
 
Material from Literature 
The following depicts graphs for materials that are generated from reference literature. Raw data 
is attached with the use of a data node. 
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Characterization of Material 
The following depicts a small graph for an experiment that solely involves the characterization of 
a material.  

 

 
 

Involved Material Characterization 
The following depicts a detailed graph for the characterization of a polymer with explicit reporting 
of the computational methods used to transform the raw data into the reported material properties. 
Abbreviations: small angle x-ray scattering (SAXS), radius of gyration (Rg), glass transition 
temperature (Tg), melting temperature (Tm), number average molecular mass (Mn), dispersity (Ð), 
molecular weight (MW), differential scanning calorimetry (DSC).  

 

 
 
Block Copolymer Phase Behavior Annealing Study 
The following depicts a graph for a study into the self-assembling behavior of a block copolymer 
in thin films and the effects of annealing. The block copolymer of interest was obtained from a 
vendor; thus, it was initially characterized prior to use. The various processing approaches were 
applied to samples of the block copolymer and similar characterization was performed on each of 
the formed films. Abbreviations: atomic force microscopy (AFM) 
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Extrusion and Characterization  
The following depicts a graph for the formation of a composite material via an extrusion process. 
Following the synthesis, characterization of the produced material is performed. 
 

 
 

Computation to Produce Molecular Trajectories 
The following depicts graphs of using molecular dynamics simulations to obtain the 
conformational information of poly(2,2’-dioxybiphenyl-phosphazene) in neat as well as in 
tetrahydrofuran (THF).6 The simulations are carried out by DL-POLY (a general purpose parallel 
molecular dynamics simulation package by Daresbury Lab) with the input file placing a single 
oligomer in vacuum or THF solvent. A series of steps involving energy minimization, annealing, 
relaxation, etc. are used to produce the equilibrated molecular trajectory files by monitoring the 
evolution of system energy as well as density.  
 



34 
 

 
 

 
 
Computation to Simulate Reaction 
The following graph depicts the molecular dynamics simulations which use ReaxFF (reactive force 
field) to investigate the thermal decomposition products of polydimethylsiloxane.7 The 
simulations start with the quantum level calculations (density functional theory (DFT)), where a 
customized forcefield is generated for the initialization of ReaxFF (hybrid quantum and molecular 
dynamics simulation tool). After NVT based equilibration, the system and the corresponding 
material are subjected to simulated degradation. The reaction mechanism and population of 
degraded species are recorded and associated with a newly created material called “degraded 
polydimethylsiloxane”.   
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Computation to Generate Atomistic Forcefield 
The following graph depicts the creation of atomistic forcefield for peptoids based on a modified 
CHARMM22 forcefield, with key parameters tuned to match quantum mechanical calculations.8 
Ab initio is first used to scan the energy profile with respect to the dihedral of the peptoid. The 
resulting data leads to the modification of standard CHARMM22 forcefield parameters and is 
further used to initialize the simulations of the dipeptoid in water. After equilibration, the system 
configuration undergoes umbrella sampling with the histogram analyzed by WHAM (Weighted 
Histogram Analysis Method) to determine the cis-/trans- free energy landscape. 
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Computation to Estimate Kinetic Rates 
The following graph depicts the use of different levels of quantum theories to estimate the reaction 
kinetics for free radical initiated grafting to polyolefins.9 The initial guesses of computations are 
determined from the optimized molecular geometries of reactants and transition structure under 
lower level of DFT (B3LYP). Further optimization of the molecular geometries is performed under 
a fine-tuned DFT functional form by M06-2X. The resulting geometries are used for energy 
calculations executed by higher level of CCSDT (coupled cluster method with single double and 
perturbative triple). Finally, the kinetics were determined using Arkane (automated reaction 
kinetics and network exploration by Green’s Lab at MIT) software by combining information from 
both optimized molecular geometry and energy files.  
      

 
 
 
 
 
 
 
 
 
 
Collaboration Across Collections 
A key design feature of the data model was to enable a single or multiple users to contribute to a 
project how they like while still maintaining the same representation. The top graph below depicts 
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a collaboration of multiple people were all the users contribute through a single collection and 
single experiment. Alternatively, the bottom graph shows the same graph where the users 
contribute through their own research collection and experiment. Note that the core graph remains 
the same between the two examples.  
 

 
 

 
 
 
Collaboration Across Projects (With Common Users) 
For groups wanting to collaborate, the data owned by one group can be copied to another group 
by a user that is a member of both. Copying was chosen over referencing nodes across groups to 
avoid issues of data integrity. For example, if a user referenced a material node from another group 
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and then it was deleted, then there would be a broken material node reference leading to the loss 
of data integrity. (Material nodes with red outline represent the same material) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Collaboration Across Projects (Without Common Users) 
For groups wanting to collaborate without having a user in common, the data owned by one 
group/project will need to be made public so that a second group can view it and copy it into their 
own group/project. The copied material node can be made public viewable or set to private.    
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Access Control Within Projects  
For a project wanting to have multiple levels of access control, multiple groups can be created that 
only have ownership of part of the project. Then users can be assigned to the appropriate groups. 
For example, users that should have full access to all the data can be assigned to all the groups. 
While users, who should have partial access will only be assigned to a single group.  
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SUB-OBJECT EXAMPLES 
The following contains visual depictions of individual nodes and the sub-object structure within 
the node. 
 
Material Node 
The following material node is for polystyrene produced by an anionic polymerization with 
molecular mass data from both NMR and SEC, and characterization of the glass temperature.  
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The following material node is for a polystyrene-poly(methyl methacrylate) diblock copolymer 
made via sequential addition anionic polymerization with molecular mass and composition 
specified.  
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The following material node is for poly(3-butylthiophene-2,5-diyl) produced via a Kumada 
coupling with molecular mass and optical properties. With the optical properties, two different 
peaks and peak widths (as full-width-half-max: fwhm) were extracted and specified as properties.  
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The following material node is for a mixture of lactic acid and poly(lactic acid) (PLA). 
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The following material node is for poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) micelles in 
water. Abbreviation: dynamic light scattering (DLS) 
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The following material node is for a isotactic polypropylene generated from computations. 
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Process Node 
The following process node is for the anionic polymerization of styrene. Throughout the process, 
the temperature was monitored every 15 minutes. Upon completion of the reaction, the yield of 
polymer was reported, and the conversion of styrene was calculated from NMR data. Abbreviation: 
secbutyl lithium (secBuLi) 
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CONTROLLED VOCABULARY, KEYS AND KEYWORDS 
A full list of key words can be found at: https://criptapp.org/keys/  
 
In general, ‘snake case’ styling is used. This refers to the name formalism where each space is 
replaced by an underscore ‘_’ character, and everything is written in lowercase. 
 
Nodes: 

• Material  keywords 
• Process  type 
• Process  keywords 
• Data  type 
• Computation  type 
• Computational_process  type 
• Reference  type 

 
Sub-objects: 

• Identifier  key 
• Property  key 

o Material 
o Process 
o Computational_process 

• Property  type 
• Property  uncertainty_type 
• Property  method 
• Condition  key 
• Condition  type (same as Property  type) 
• Condition  uncertainty_type (same as Property  uncertainty_type) 
• Ingredient  keyword 
• Quantity  key 
• Quantity  uncertainty_type (same as Property  uncertainty_type) 
• Equipment  key  
• Computational_forcefield  key 
• Computational_forcefield  building_block 
• Algorithm  key 
• Parameter  key 
• Citation  type 

 
Supporting Nodes 

• File  type 
 

  

https://criptapp.org/keys/
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