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ABSTRACT: 
Polymeric materials are integral components of nearly every aspect of modern life. Today, polymer 
scientists and engineers devote significant resources to the design and development of these 
materials to meet growing societal needs. However, developing cheminformatic solutions for 
polymers has been difficult since they are large stochastic molecules with hierarchical structures 
spanning multiple length scales from chemical bonds to large molecular assemblies. Here we 
present the design for a general material data model that underpins the Community Resource for 
Innovation in Polymer Technology (CRIPT) data ecosystem. Among the key challenges that the 
data model addresses are the high complexity in defining a polymer structure and the intricacies 
involved with characterizing material properties. The core design of the data model is graph-based 
which provides flexibility, robustness, and scalability to support the community-driven mission. 
This approach to structuring material data provides the key advancements that the community 
needs to bring cheminformatics to polymer science and accelerate the development of new 
materials. 
 

 
 
INTRODUCTION: 
Polymers have transformed the ways we heal, feed, clothe, shelter, and transport humanity,1–4 and 
their continual improvement remain a core scientific endeavor.5–9 Despite the advent of electronic 
publishing and electronic lab notebooks, the way we record, store, and share scientific data follows 
largely the same format as it has for many decades.10–14 The scientific community has recognized 
the need for improved data infrastructure which has led to the FAIR (findable, accessible, 
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interoperable, and reusable) guiding principles to spur knowledge discovery and innovation by 
extending the longevity and repurposing of digital research assets.15,16 The challenge of 
representing and indexing polymers has hindered the development of data infrastructure, leading 
to small and disparate data sets or uncatalogued data.17–20 As a result, most polymer data are 
scattered across millions of articles and journals in multiple non-interoperable formats.21–29 The 
inaccessibility of metadata and data leads to massive inefficiencies and missed opportunities to 
solve many of our current and future problems with a simple search.30 Overall, the challenges 
mentioned above highlight the need for information solutions that make valuable research data 
discoverable and accessible.  
 
Among the main barriers to developing information solutions for polymers is the fact that they are 
large stochastic molecules with hierarchical structures spanning multiple length scales from 
chemical bonds to large molecular assemblies (Figure 1).11,31,32 To date, there is no single 
representation that can fully define a polymeric material structure, thus making them hard to 
index.18 The stochastic nature of these chemical structures stems from the statistical chemical 
reactions that are used to produce them. This stochasticity brings about distributions in molecular 
mass, composition, and topology. A combination of structural descriptors (like a chemical 
drawing) and distribution information is therefore required to fully define the molecular structure. 
At larger length scales, microstructures develop from phenomena such as phase segregation and 
crystallization. These microstructures can be spatially ordered, disordered, or have local patches 
of order and disorder. The combination of multiple chemical descriptors and length scales of 
structure makes it extremely difficult to define these materials.  
 

 
Figure 1: Depiction of the range of data that needs to be captured for an example polymer; 

poly(styrene – block – ethylene oxide) copolymer. 
 
In practice, defining a polymeric structure and characterizing material properties is even more 
challenging as polymers have an extremely wide range of properties that often are not easily 
measured due to physical limitations (e.g., due to poor solubility).31,33 This leads to variable data 
availability, often providing only relative information or relying on theoretical models which 
require expert knowledge to put into context. In many cases, experimentally obtaining the desired 
information is impossible or intractable, and multiple partial correlative data points must be 
compiled to provide a surrogate value. Additionally, the processing history under which the 
material was made can strongly influence microstructure formation and properties. Thus, datasets 
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that do not completely capture the relevant data and metadata will be ineffective at providing 
reliable information which severely hinders scientific efforts.  
 
With the importance of polymers, there have been several initiatives to capture polymer materials 
data.18,22–26,28,29,34,35 Among the key technical innovations needed for success is a data model or 
blueprint for data organization. Among the simplest and most prevalent schemas for polymers has 
been the single table schema, where data is structured in a series of rows and columns.21,28,34 This 
type of schema is often implemented with polymer names as the key structural descriptor followed 
by a series of properties. In polymer science, name-based identification has limited capability in 
specifying a molecular structure, making attributing material properties to structure ambiguous. 
These types of data sets tend to be small, focused on a limited set of common commercial polymers 
and properties. The next evolution in database schemas was the migration to single-document 
schemas.18,36–38 These databases store data in ‘documents’ sometimes called objects (i.e., scripted 
data interchanging formats, typically JavaScript Object Notation (JSON), which encapsulate data 
and metadata relative to something of interest. For example, PolyDAT18 focuses its document on 
a single polymer of interest. These single document style schemas represent a significant 
improvement from table-based schemas as they introduce flexibility in what data can be stored. 
However, a major drawback is that the documents need to be organized around an object of interest 
(e.g., material or reaction of interest). Multi-document, graph, and relational styled databases have 
emerged as the next evolution in data schemas where data can be referred across documents; thus, 
reducing the duplication of data and significantly improving the provenance of data. 29,39,40 These 
data schemas allow for increased flexibility and robustness and contain many features that are 
essential for storing complex data at a large scale. Another key innovation has been the 
development of BigSMILES, which extends simplified molecular-input line-entry system 
(SMILES) a compact line chemical line notation for polymers.41 BigSMILES provides a human 
and computer interpretable structural representation that can be used as a key identifier for polymer 
data. 
 
To address the need for a scalable polymer informatics solution, this work details the Community 
Resource for Innovation in Polymer Technology (CRIPT) data model. The goal of the CRIPT is 
to develop a community-driven data ecosystem for polymer science. At the core of CRIPT is a 
general graph data model that places an emphasis on capturing the metadata and data needed to 
accurately represent the complexities of polymers material. More specifically, CRIPT’s data 
structure is designed to capture everything from small-molecule and polymer synthesis, material 
processing, material and reaction properties, material characterization, raw experimental data, and 
both atomistic and coarse-grained simulations of systems with well-defined chemistries. The data 
model focuses on providing a highly granular and descriptive design with a strong aversion to 
ambiguity while seeking to be as comprehensive as possible. CRIPT is driven by FAIR15,16 and 
open-source principles42 to support its community driven mission. The following sections will 
initially cover the design philosophy and technical aspects that drove the construction of the 
CRIPT data model. This will be followed by a high-level overview of the main nodes that make 
up the CRIPT data model and how they are linked to form the graph-based structure. A few 
examples will be provided to demonstrate how the data model operates. Finally, aspects of the 
implementation of the data model are discussed. The supporting information contains a detailed 
discussion for each node and sub-object along with additional examples. 
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RESULTS AND DISCUSSION 
Design Features/Philosophy 
CRIPT’s data structure is a graph consisting of sets of vertices/nodes, that contain the stored 
data/metadata, and edges, which store the relationships between data (Figure 2). Every node has a 
series of attributes and sub-objects. Sub-objects provide a hierarchy for organization and grouping 
data within a node and attributes are the individual pieces of information that are to be stored. The 
links between nodes (edges) are achieved with a globally unique and persistent identifier. The 
presence of the unique identifier of one node in another node signifies an edge between those two 
nodes in the graph.29,39,40  
 

 
Figure 2: High level view of the hierarchy in nodes that compose CRIPT’s graph data structure. 

 
The flexibility of CRIPT stems from the arrangement of nodes in a wide range of configurations, 
and nodes themselves can be reconfigured with the use of sub-objects. The high level of granularity 
of CRIPT can be seen in the sub-objects that enable the storage of any type of process, property, 
and data with explicit specification of context (see sub-object sections in the SI for details). For 
example, chemical properties can be explicitly attributed to a component in a mixture, or even 
more granularly, the property can be associated with a fragment of a chemical structure with atom 
indexing within BigSMILES. CRIPT reduces ambiguity by providing and directing data entry 
through an ever-growing and curated controlled vocabulary. Data validation is an additional design 
layer that has been added to minimize ambiguity by ensuring uniformity in the entered data. The 
combination of these design features set the stage for a robust and general material data model. 
 
The features that make the CRIPT’s data model uniquely suited for polymers are the inclusion of 
process history, support for BigSMILES, and the integration of both experimental and 
computational data. Capturing process history is a critical detail as physical properties such as 
elastic modulus, toughness, transparency, etc. depend strongly on processing history. Thus the 
‘same polymer’ can have a wide range of values for a property given its processing conditions. 
Moreover, the graph architecture supports the need to link characterization data across multiple 
synthesis and processing steps to enable the definition of complex polymer architectures. CRIPT 
directly supports BigSMILES as the main structural descriptor for polymers since it is human 
readable, machine-friendly, and has full support for the wide diversity of polymer structures.41 
BigSMILES in the context of CRIPT can be viewed as defining an ensemble of possible structures 
for a stochastic polymer where the probability of observing each molecular state is specified with 
the additional properties captured by the data model (molecular mass, dispersity, etc.). The 
inclusion of BigSMILES provides an opportunity for polymer structural search as well. CRIPT’s 
data model takes the stance that both data from experiments and simulation should be supported 
at an equal level, improving cohesion of the research community and the breadth of accessible 
data.  
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The design of a data model for an entire community brings about several technical challenges 
regarding database robustness, performance, maintainability, and cost. CRIPT’s graph structure 
provides robustness by not storing the data relative to a reaction, material, or organizational 
approach. This enables a single user or multiple different users to enter data which will yield the 
same representation in the data model. One of the key performance considerations is maintaining 
fast searching as the size of the database grows, while the data model facilitates rapid graph 
traversal, indexing by node type, and other advanced database search solutions. Additionally, the 
reduction of duplicated data through referencing significantly lowers the amount of data that needs 
to be stored and searched, and persistent identifiers enable reusability. As with any data structure, 
the design will continue to evolve, and the modularity of the graph structure simplifies 
maintainability and extensibility as changes are isolated to each individual object, minimizing the 
cost of reworking/adding improvements (the growth of technical debt).  
 
CRIPT desires to be comprehensive, but it is impractical to store the large and growing amount of 
material data within CRIPT directly. To navigate this issue, CRIPT’s data model embraces 
federated data storage. Federated data storage is a more attractive alternative to one monolithic 
server, as the aggregation of all data into a single location is slow, and the database resources are 
consumed by moving large files around, making these systems much more resource intensive and 
costly.43 Support for federated data is realized in CRIPT’s data model by focusing on storing key 
values (such as property data, material identifiers, and processing information) and metadata 
relevant for discoverability (typically a uniform resource locator (URL)) within the data model 
while directing non-key information (such as raw data files) to be stored elsewhere. This enables 
users to store their data on their preferred data services (like Amazon Web Services49 or university 
servers). The federated database architecture helps to support the community and a FAIR-driven 
mission by allowing for decentralization of data.15,16  
 
Data Model  
CRIPT’s data model has two levels of structuring: nodes, which are the primary objects that make 
up the CRIPT graph structure (nodes will be written in italics), and sub-objects which are used to 
construct sub-structures within the nodes. Several of the nodes serve as organizational tools 
(project, collection, experiment, inventory), while the remaining nodes are the core nodes 
(material, process, computation, computational_process, data). Additionally, there is a reference 
node for citing external sources of data and software for citing computational tools. A short 
description and examples of the nodes are shown in Table 1. The following will provide a high-
level overview of the nodes; a full detailed explanation of both nodes and sub-objects can be found 
in the supporting information (SI). 
 

Table 1: CRIPT nodes.  
nodes short 

description examples 

organizational nodes 

project major thrust or 
research team 

sustainable 
polyurethanes 

collection grouping of 
experiments 

expanding foams, 
kinetics of ATRP 
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experiment  
grouping of 
process, data, 
computations 

synthesis of PS-b-
PB, Extrusion of PE 

inventory list of material 
nodes 

vinyl monomers, 
polyolefin library 

core nodes 

material identity and 
property data styrene 

process 
ingredients, 
quantities, and 
procedure 

anionic 
polymerization 

computation transformation 
on data 

molecular 
dynamics, image 
processing 

computational 
process virtual process simulated pyrolysis 

data 
metadata for 
raw data or 
data files 

1H NMR 

   

reference citation to 
literature 

DOI: 
10.1038/1781168a0 

software computational 
tools LAMMPS 

Abbreviations: Atom Transfer Radical 
Polymerization (ATRP), polystyrene-block-
polybutadiene (PS-b-PB), polyethylene (PE), 
Nuclear Magnetic Resonance (NMR), Large-scale 
Atomic/Molecular Massively Parallel Simulator 
(LAMMPS) 

 
The organizational nodes have a tree like structure with project being the root node that represents 
a major scientific thrust or research group. The project node links to one or more collections in 
which a collection is roughly equal to a publication or the content of a final project report. A 
collection links to one or more experiments and/or inventories. An experiment in this context refers 
to the association of data which can be either a physical experiment in the lab or a simulation. The 
inventory node is a way for users to create a list of materials. Projects, collections, experiments, 
and inventories provide organizational tools to help the users who are entering data into the 
database.  
 
The organizational graph is independent of the core graph structure, with only unidirectional 
referencing coming from the organization nodes to the core nodes. Structuring the data in this way 
makes the core data graph invariant to how users organize data in collection and experiment nodes. 
Specifically, a project node is linked to material nodes, and an experiment node is linked to 
process, data, computation, and computational_process nodes. Materials are only associated with 
a single project node, and those materials can only be used within that project to avoid issues of 
data integrity. For example, if a user referenced a material node from another project and then the 
material was deleted, this would create a broken reference leading to the loss of data integrity. 
Thus, the reuse of materials from other projects requires copying material nodes into the current 
project. Process, data, computation, and computational_process nodes all link to a single 
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experiment. Overall, this allows users to organize the process, data, computation, or 
computational_process as they see fit without changing how the data is stored in the database. 
These design choices seek to minimize the unexpected loss of data integrity without creating a 
large user or infrastructure burden.  
 
The core graph structure is highly variable depending on the experiment; however, all 
experimental graphs start with defining a material node or set of material nodes. A material is a 
collection of the identifiers and properties of a chemical, mixture, or substance. For example, in a 
typical chemical synthesis (Figure 3), the set of materials that are first defined are the ingredients 
for a process node (e.g., chemical reaction). The process node contains details about quantities, 
procedure, process conditions, equipment, etc. for a material transformation. A process node may 
also represent physical transformations (e.g., extrusion) or sample preparation for characterization. 
An alternating pattern of material and process nodes serves as the backbone of the experimental 
graph with data or computation nodes attached to the materials and processes. Data nodes provide 
links to sample preparation and to raw or processed experimental data like from nuclear magnetic 
resonance (NMR), size-exclusion chromatography (SEC), or differential scanning calorimetry 
(DSC). Computation stores information related to the creation or transformation of data. In the 
example, the computation node stores the steps used to calculate material properties derived from 
the raw data. Multi-step chemical processes, including non-linear diverging and converging 
processes, are also naturally captured in the core graph structure (see examples ‘Diblock 
Bottlebrush Synthesis’ and ‘Chemical Reaction with Aliquots’ in SI).  
 

 
Figure 3: Example of a typical core graph for physical experiments. This example highlights a 
chemical synthesis (first process node) to produce a polymer material followed by an extrusion 
process (second process node). Raw data is recorded at multiple stages of the experiment, and 

computations are used to convert the scanning electron microscopy (SEM) images into material 
properties. The arrows between the nodes in the chemical graph show the temporal relationship 
between the nodes, and the edges without arrow heads imply a ‘related to’ relationship. Solid 

lines indicate references that appear directly in the node, where dotted lines indicate references 
that appear through sub-objects. 

 
For computational experiments, a typical graph starts with a computation (Figure 4) to capture the 
initialization of the computational system and information regarding the set of procedures related 
to building the molecular structure, initialization of the simulation box, etc. The initial computation 
node will produce data nodes that store the configuration of a virtual material. In the example, the 
initialization computation node produces the configuration file for the unequilibrated state of a 
polymer. Data nodes are then passed into further computations to transform the virtual material 
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between configurations (e.g., from non-equilibrated state to an equilibrated state). This pattern of 
alternating computations and data nodes is a core motif of the simulation graphs. From a virtual 
material configuration (data node), properties can be calculated (computation node) and attributed 
to a polymer (material node). The production of the material node places simulated material 
properties in the same position as experimentally determined material properties. The 
computational_process node is used to capture simulated reactions or physical transformations on 
virtual materials. The computational_process node requires both a material node and the 
corresponding configuration file (data node) as the ingredients of the process and will produce a 
new post-processing configuration file (data node). This new virtual material configuration will 
lead to a new material node as properties are extracted.  
 

 
Figure 4: Example of a typical core graph for computational experiments. This example 
highlights the creation of a polymer system that undergoes a chemical reaction. Material 

properties are computed for the two materials: pre-chemical reaction and post-chemical reaction.  
 
Data Model Examples 
To illustrate the data model, an example graph centered around the organizational nodes is 
provided (Figure 5). Every new research effort involves creating a project node, in this case ‘block 
copolymer library’. The first part of the project may involve collecting literature information about 
how to synthesize the targeted block copolymer. During this process, information about the 
monomers can be recorded in material nodes and collected into an inventory, ‘vinyl monomers’ 
for use in experiments. As the project progresses, kinetic experiments were performed to determine 
the optimal reaction conditions to produce the targeted materials. This set of kinetic experiments 
is grouped into their own collection, ‘ATRP kinetics’. Following successful determination of the 
optimal reaction conditions, the targeted library block copolymers can be made and grouped into 
their own collection, ‘diblock synthesis’. This example highlights a simple graph for the 
organizational nodes as there are likely to be many more collections and experiments. 
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Figure 5: Example graph for the organizational nodes applied to the synthesis of a block 

copolymer library. The creation of the library involves literature research, kinetics experiments, 
and then the synthesis of the diblock library. Abbreviations: poly(methyl methacrylate)-block-

polystyrene (PMMA-b-PS). 
 
For an example graph of a chemical synthesis, the anionic polymerization of styrene with sec-butyl 
lithium (secBuLi) in a mixture of tetrahydrofuran (THF) and toluene is illustrated in Figure 6.44 
The chemical synthesis graph is grouped into a single experiment node. When defining a new 
experiment for a chemical process, it is recommended to start with the ingredient material nodes, 
followed by a process node, product material node, and finishing with the characterization data 
nodes. To define the first ingredient in this example, a material node for styrene is created by 
adding identifiers such as SMILES strings, and chemical names. Material properties, like density 
and molecular mass, etc. are also added to aid with calculating reagent amounts. Mixtures such as 
secBuLi in toluene can be represented by making the two pure material nodes (‘secBuLi’ and 
‘Toluene’) followed by making a third material node which is a mixture of the two. With all the 
ingredients defined, the process node for the anionic polymerization is defined by specifying the 
quantity of each ingredient, experimental procedure, conditions (reaction time, temperature), and 
reaction properties (yield). In addition to experimental data, this example was inspired by a 
literature reference, which can be linked directly to the process node through a reference node. 
With the process defined, the product material node ‘Polystyrene’ can now be created by 
specifying the identity with BigSMILES and a chemical name. Property data such as number 
average molecular mass and dispersity can be added and the raw data for both the 1H NMR and 
size exclusion chromatography (SEC) analysis can be attached through the creation of data nodes. 
In this case, the combination of a BigSMILES string and the molecular mass data from SEC 
provide a full definition of the polymer structure. 
 

 
Figure 6: Graph for the chemical synthesis of polystyrene made by the secBuLi initiated anionic 

polymerization of styrene.  
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A graph illustrating the investigation of the self-assembling behavior of a block copolymer in thin 
films (Figure 7) shows the applicability of the data model to polymer characterization. The block 
copolymer of interest was obtained from a vendor; thus, it was initially characterized with SEC 
and NMR prior to use. To prepare for the investigation, atomically smooth silicon wafers were 
cleaned with a plasma treatment and will serve as the substrate for the block copolymer assembly. 
The first processing approach was to dissolve the block copolymer in acetone and perform a blade 
coating process. This sample was characterized by AFM (atomic force microscopy) and GISAXS 
(grazing-incidence small angle x-ray scattering) to determine the microstructure phase and domain 
spacing. This same sample was then thermally annealed and re-characterized with the same 
techniques. Following these studies, another film was produced from the original block copolymer 
sample by dissolving the sample in chlorobenzene and spin coating the solution onto the silicon 
wafer. The same characterization techniques were once again performed.    
 

 
Figure 7: Graph for the characterization of block copolymer films with AFM and GISAXS 

produced through various processing techniques. 
 
Computational characterization of bulk amorphous polyethylene via molecular dynamics 
simulations is illustrated in Figure 8.45 The simulations are conducted using the LAMMPS 
software with an input file generated by packing polymer chains in a simulation box. After an 
equilibration procedure with a series of steps to relax, quench, and anneal the system, the radius 
of gyration, persistence length, and thermal conductivity of the equilibrated polyethylene are 
measured. For the thermal conductivity measurement an additional heat transfer simulation is 
required. 
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Figure 8: Graph for the thermal conductivity analysis of polyethylene using LAMMPS. 

 
The following example depicts a graph for the extraction of polyolefin material properties from 
literature for machine learning (Figure 9). The extracted data can be directly stored in the properties 
section of the material nodes and then the material nodes can be organized into sub-data sets with 
the use of inventories. The entire data set can be organized into a single collection. Citations back 
to the literature source can be made on a data point basis with the use of reference nodes. 
 

 
Figure 9: Graph for the creation of a machine learning dataset for the prediction of a material 
properties (the property data is stored in the material node) of linear and branched polyolefins. 

Abbreviations: ultra-high molecular weight polyethylene (UHMWPE), low density polyethylene 
(LDPE) 

 
Implementation  
To put the data model into practice, a Python46 software development kit (SDK) has been 
implemented and made available for download50. The purpose of the Python SDK is to streamline 
the use of the data model, as manually writing data into the data model would be complex, time 
consuming, and error-prone. The coding style of the Python SDK follows an object-oriented 
approach where CRIPT nodes and sub-objects are Python Classes, and composition (where a Class 
instance has one or more other Classes as variables) is used to construct nodes from sub-objects. 
To handle the referencing between nodes, globally unique and persistent identifiers are 
autogenerated for each node and used to provide bridges between nodes. In CRIPT the persistent 
identifiers are URLs as CRIPT is natively web-based (and representational state transfer (REST) 
compatible), although the use of URLs is not a requirement. Each node can be serialized for storage 
in any desired format (typically JSON) and transferred across various hardware, software, 
databases, and programming languages.  
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The Python SDK provides the opportunity to incorporate various tools to increase data integrity 
while minimizing the time to enter data. To increase data integrity, data validation layers are 
included. The first layer is a simple data type check; for example, if the attribute is expected to be 
a number, the Python SDK will validate that the user is providing a number. In the case where 
attributes have keys, validation against the officially supported vocabulary is performed. For data 
that is a quantity (value + unit), the unit dimensionality (e.g., a temperature must have a 
temperature unit) and value range (e.g., density cannot be negative) will be checked. A few more 
advanced validations are also present, such as the canonicalization of chemical formulas into Hill 
system order.47 This form of validation helps to ensure the uniformity in data and facilitates rapid 
searching. The Python SDK is written in such a way that additional validation methods can be 
smoothly added as the software evolves. 
 
To extend the data model for implementation into a full software ecosystem, two additional nodes 
are included in the data model, user and group, whose purpose is to provide access control to data. 
A user node is created when an individual joins the CRIPT ecosystem and stores their user 
information. Among one of the key user attributes is ORCID (open researcher and contributor ID) 
ID which provides a unique and persistent digital identifier back to a specific person.48 This serves 
to ensure that all contributions to the database are appropriately attributed to the individual. 
Additionally, the ORCID ID can be used for login through the ORCID API (application 
programming interface). A group is an organization of multiple users, and a user can be part of 
multiple groups. The group node is where access control/ownership for all data lies, and the group 
node will point to all other nodes in the CRIPT data model. The decision to make groups the owner 
of data was motivated by users tending to change jobs, research groups, and organizations 
throughout their careers, and data is typically owned by the organization and not the individual. In 
the simplest case, group and project will have a one-to-one relationship; and the one-to-one 
relationship will only be broken when more granular access control is needed (see SI example 
‘Across Control Within Projects’). The inclusion of these nodes serves to provide a key feature 
needed to link to user directories common in large organizations. For data that is desired to be 
shared with the whole community, the ‘public’ attribute can be set to true to enable the data’s 
inclusion in the public search. 
 
CONCLUSION 
This work defines a new graph data model that underpins the CRIPT digital ecosystem. The data 
model is designed to support data and metadata for polymers from both physical experiments, and 
both atomistic and coarse-grained simulations of systems with well-defined chemistries. The graph 
data structure provides flexibility as well as granularity in the data it represents. The connections 
in the graph provide an intuitive model for the typical material research workflow and allow for 
high-level information to be swiftly gleaned. Considerations were placed on designing the CRIPT 
data model to (1) scale for big data while maintaining efficient searching and (2) reduce duplicated 
data which significantly lowers the amount of data that needs to be stored. This graph-based 
approach to modeling material data provides the key advancements that the community needs to 
bring cheminformatics to polymers. Overall, having well-structured data will lead to new 
innovations and enable the rapid sharing of data and innovations across the scientific community. 
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SUPPORTING INFORMATION 
The main supporting information contains a detailed discussion for each node, sub-object, and 
additional examples. A second supporting information contains the full data model representation 
for example found in Figure 6. 
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