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Introduction 
 
The merger of High-Throughput Experimentation (HTE) and data science presents an enormous 
opportunity to both accelerate and inspire innovations in synthetic chemistry. Contemporary HTE 
enables the rapid and efficient exploration of diverse chemical spaces and reaction conditions 
while ensuring consistent data.1–6 Similarly, developments in machine learning (ML) have enabled 
the distillation of large and complex data sets into predictive models capable of generalizing 
patterns in the data.4,7–13 Despite these advances, efforts to merge HTE with ML remains largely 
limited to a few reported datasets with limited structural diversity14–20 and corresponding trained 
models that do not extrapolate well to substrates beyond the training set.  

An important application of HTE is optimization of reaction conditions for single or multiple target 
compounds.19,21,22 While identifying reaction conditions using multi-parameter HTE is fruitful, it 
is time and resource intensive, especially in the context of medicinal chemistry campaigns for 
which large libraries of target analogues are often required. An efficient and forward–looking 
approach entails the creation of predictive reactivity models to assess reaction performance in 
silico, which would enable researchers to identify low– or high–yielding reactions thereby 
focusing time-intensive screening efforts only on targets predicted to be low yielding. Importantly, 
screening reaction conditions for low yielding targets will result in focused innovations to 
continually expand the synthetically accessible chemical space. Despite their potential impact, 
predictive models for drug–discovery relevant transformations that encompass the structural 
complexity and diversity encountered in pharmaceutical targets remain elusive. To this end, we 
embarked on a quest to build predictive models for palladium–catalyzed C–N cross–coupling, a 
workhorse reaction in medicinal chemistry, by leveraging the state–of–the–art HTE and ML 
methods.  

A survey of prior work reveals that efforts to acquire and model reaction outcome of C–N coupling 
data falls under two distinct categories, employing historical (Strategy I), or HTE (Strategy II) 
datasets. These categories have distinct strengths and weaknesses and quite divergent outcomes. 
Pd–catalyzed C–N coupling data have been extracted from historical reaction sets such as patent 
databases and Reaxys8,9,23–26 as well as Electronic Laboratory Notebooks (ELNs)27.  Yield 
prediction for historical datasets (Strategy I) results in models with relatively poor performance 
(as evidenced by low coefficient of determination (R2 ~ 0.2)) in part due to significant 
heterogeneity in the data quality which can be time consuming and often impossible to curate 
systematically. Additionally, these historical datasets might not contain the state–of–the–art HTE–
amenable conditions for library synthesis due to temporal characteristics of the reagent use in these 
datasets, as adoption of modern reagents often lags behind the current literature.25,27 It is imperative 
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that reaction ML models be generated using the most robust set of HTE amenable automation 
friendly reaction conditions to maximize applicability across a broad range pharmaceutically 
relevant chemical space. Importantly, automation amenable reaction conditions are particularly 
important when large libraries are needed at nanomole scale which can only be executed using 
robotic equipment.   

Yield–modeling efforts on the few reported HTE datasets demonstrate the potential advantage of 
Strategy II. Modeling the yield of these datasets (4K C–N couplings15, or 2K Suzuki–
Miyaura couplings in flow14) produces predictive models with R2 or AUROC > 0.9.11,15,27–34 
However, models trained on these datasets demonstrate limited ability to extrapolate beyond the 
molecules in their training sets, in part due to the minimal structural diversity in the dataset. 

Herein, we detail the first ML models for Pd-catalyzed C–N couplings using pharmaceutically 
relevant structurally diverse large data sets (~ 5000 unique products) generated using nanomole 
scale compatible chemistry. Careful consideration was given to both the diversity of the data set, 
and accurate model predictions for substrates bearing features beyond those present in the training 
set. The structural diversity in the data set was enabled by leveraging the Merck & Co., Inc 
Building Block Collection (MBBC) which comprises >22000 amines and >7000 aryl halides, 
theoretically allowing access to hundreds of millions of products. Our initial efforts focused on C–
N coupling using secondary amines thereby reducing this virtual chemical space to ~15M products 
using ~5000 aryl bromides and ~3000 secondary amines (Figure 1). 

The sections below address the challenges and outline a workflow to build predictive models for 
this enormous chemical space through the prudent use of HTE. The generation of the large, 
pharmaceutically relevant dataset was enabled by the discovery of state–of–the–art nano–
chemistry compatible C–N coupling conditions. To the best of our knowledge, this is the first 
report that addresses the experimental considerations for generating structurally diverse HTE data 
sets through the careful, and systematic assessment of multiple aspects of data quality and their 
impact on resulting ML models.  

Results 

General considerations for the generation of large diverse datasets: As mentioned above, our 
efforts aimed to generate predictive models for the Pd–catalyzed C–N coupling of secondary 
amines. In view of the limitations of the existing datasets discussed in the introduction, this goal 
necessitated the de novo generation of diverse, pharmaceutically relevant datasets. Several 
experimental considerations were important for the generation of requisite data sets, including 1) 
the identification of appropriate nanomole scale amenable, automation friendly C–N coupling 
conditions1 that would enable the generation of large datasets, 2) selection and generation of a 
structurally diverse molecular dataset mirroring the complexity present in pharmaceuticals, and 3) 
systematic interrogation of data quality. The subsequent sections detail our workflow, addressing 
each of these considerations and their resulting impact on the predictive models.    

                                                       
1 e.g., the use of DMSO, a high boiling point solvent, compatible with nano-well materials and capable of 
solubilizing reagents 
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Identification of nanomole scale compatible pharmaceutically relevant reaction conditions:  
To date, the modelling efforts on C–N couplings generated using nanomole scale (0.l µmol) 
chemistry have employed tBuXPhos Pd G3 catalyst and P2Et as the base.17 The performance of 
these reaction conditions for Pd-catalyzed C–N coupling have been benchmarked for the coupling 
of Informer halides with piperidine at microscale (2.5 µmol).35 The Informer halides are a 
standardized set of 18 complex drug-like halides to assess the relevance of synthetic methods for 
the functionalization of pharmaceutically-relevant substrates.36,37 These studies revealed 
significant opportunity for the identification of more robust reaction conditions since only 5/18 
Informer halides were transformed to the desired products with >20% product LCAP (Liquid 
Chromatography Area Percent). Hence, in a series of preliminary studies, we aimed to identify the 
catalyst system and base that enabled the broadest scope with respect to the coupling of drug-like 
aryl halides with secondary amines. LCAP was used to assess the degree of product formation.  

 

Figure 1: Dataset Scope and overall workflow  

As shown in Figure 1, we investigated the use of 22 distinct catalysts generated through 
combinations of 12 biaryl ligands and three different generations of precatalysts (G3, G4 or G6). 
Additionally, 47 distinct bases were used for these studies. The catalysts and bases were largely 
chosen to maximize structural diversity and ensure solubility in DMSO. Theoretically, >1000 
reagent combinations exist among these catalysts and bases. Together with the >15 million 
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possible products, the total number of reactions for a full factorial evaluation of all reaction 
parameters and substrates exceeds 15 billion. As detailed below, our experimental workflow 
enabled us to identify suitable reaction conditions for the generation of large data sets using a 
subset of this vast possibility of reaction permutations. 

The couplings of three aryl bromides, 6-bromoquinoline (Br-1), 4–bromoacetanilide (Br-2), and 
X13, with 4-phenyl piperidine (A1) were conducted using 22 Pd precatalysts (see Figure 1C for 
catalyst identities) and four bases. Informer halide X13 was intentionally included to identify 
conditions that are amenable to couplings with pharmaceutically relevant halides. This screen led 
to the prioritization of seven precatalysts for further study (Figure 2A, Step 1). These seven 
precatalysts were used in combination with 47 bases for the coupling of X2, Br-1 and Br-2 with 
4-phenylpiperidine (A1) to identify eight bases that led to the highest product LCAPs (Figure 2A, 
Step 2). To assess the robustness and generality of the 56 conditions (seven precatalysts × eight 
bases) resulting from the prioritized precatalysts and bases, the reactions of 4–phenyl piperidine 
with 18 complex aryl halides (Informer halides, X1–X18) were assessed (Figure 2A, Step 3). As 
shown in Figure 2A, three sets of conditions: CPhos Pd G4 (P12) with LiOTMS (B1) as the base, 
(tBu)PhCPhos Pd G4 (P13) with LiOTMS (B1) as the base, and tBuXPhos Pd G3, (P2) with 
LiOTMS (B1) as the base demonstrated a more general scope than conditions previously used 
(tBuXPhos Pd G3 precatalyst (P2) with P2Et as base).17  The success rates and average product 
LCAPS with the newly identified conditions (Figure 2B, entries 1-3) are the best reported to date 
for nano-scale amenable Pd-catalyzed C–N couplings. These conditions led to ~3-4-fold increase 
in the number of Informer halides leading to products with >20% LCAP versus the previous 
method using catalyst P2 with P2Et as the base. Ultimately, we utilized a single set of conditions, 
P13 and B1, for all subsequent studies.  

 

Figure 2: (A) Reaction optimization and elucidation of best conditions. (B) Product LCAPS for Figure 2A, Step 
3; see SI for structures of Informer Halides. 

 

Selection of aryl halides and amines: Having determined appropriate automation friendly 
reaction conditions set the stage to generate the requisite large HTE datasets for modeling. The 
first step toward this goal was to select a diverse array of pharmaceutically relevant aryl halides 
and amines. Of the aryl halides (>5000) and amines (>3000) that met the functional group (FG) 
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filtration criteria to eliminate FG’s with obvious reaction compatibility issues (e.g., highly reactive 
electrophiles such as acyl chlorides), 383 amines (Set A), and 366 aryl halides (Set B), were 
randomly selected as representative structures from MBBC (Figure 3C).  Furthermore, the HTE 
data used comprises a small fraction (~5000 experiments) of the full factorial of 384 amines × 384 
aryl halides space (n2 space). Generating a fully factorial dataset would require ~ 160K 
experiments, which while achievable, is prohibitively time and resource intensive with the state-
of-the-art HTE data analysis techniques. Considering this practical limitation, the ability to 
generate predictive models is highly desirable using a fraction of the n2 space, such as represented 
by our HTE data.16 

Generating a large, diverse HTE data set: The generation of the large data sets for modeling
was conducted in two parts (Part I and Part II, Figure 3A). Part I involved the coupling of 384
secondary amines (4–phenyl piperidine, the substrate used for reaction optimization + Set A) with
four aryl bromides. Since aryl halides from the Informer set were used to identify the optimal C–
N coupling conditions (Figure 2), three of the four bromides used for this experiment, X2, X3, and
X13, were also selected from that set. The fourth halide was the simplest partner aryl bromide, 6-
bromoquinoline (Br-1). 

 

Figure 3: Summary of constructed dataset. (A) Workflow for generation of structurally diverse datasets.  (B) Yield 
distributions for the generated dataset versus an isolated set of C–N coupling reactions from the Pistachio patent 
dataset. Reaction outcome = product % yield for Pistachio dataset and Product LCAP for HTE dataset.38,39 (C) Aryl 
halide chemical space visualizations: t-distributed stochastic neighbor embedding (t-SNE) plots of MBBC Pools of 
suitable amines (left) and aryl halides (right) with chosen molecules marked. The plots visualize 2048–bit, radius–
2 Morgan fingerprints of molecules in 2–D space.  

Part II entailed the coupling of the 384 aryl halides (Set B + 18 Informer halides) with 8 secondary 
amines (A1-A8) (for amine structures see Figure 1). The amines for Part II were chosen using the 
results from Part I to maximize structural diversity and varied reactivity. Importantly, the 
chemical space covered by over half of the approved drugs intersects with the structural diversity 
of the products generated in Part I and Part II, affirming the relevance of the generated HTE data 
for applications in drug discovery (Figure S1). Furthermore, the product yield distribution from 
the HTE dataset is representative of realistic reaction performance with significant failures and 
successes versus the literature derived datasets that largely report successful reactions (Figure 3B). 
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Importantly, the inclusion of reaction failures is critical to build predictive models and identify 
opportunities for innovation to expand the accessible chemical spa 

Data Quality Interrogation: As emphasized in the literature, the availability of high quality 
systematic data is imperative for building reliable and robust predictive models.40 Hence, careful 
consideration of potential experimental sources of error was deemed important. Beyond the 
modeling context, the ability to draw conclusions and extract general principles from data depends 
on how accurately the data reflects the actual reaction performance.41 As detailed below, three 
major sources of experimental error were considered: substrate quality, analytical error, and 
experimental reproducibility.  

 

 

Figure 4: Regression and classification analyses for assessment of reaction reproducibility. Left Plot: 
reproducibility study using a subset of optimization reactions. Right plot: reproducibility study using a subset of 
the scope studies. TP = true positive; FP = false positive; TN = true negative; FN = false negative. 

Assessment of substrate quality: Due to the large number of substrates involved in this study, it 
was deemed impractical to individually confirm the identity of each aryl halide and amine. Instead, 
proxy reactions were performed. For each of the aryl halides used in Part I (Figure 3A), a Suzuki–
Miyaura coupling reaction was conducted. The presence of Suzuki–Miyaura coupling product was 
confirmed for 85% of the aryl bromides and taken to be a positive indicator of the identity of the 
aryl bromide suggesting the potential for the formation of the corresponding C–N coupling 
products. For a random subset of the amines (~113/384), an independent sample from an external 
vendor (Enamine) was acquired and the set of previously performed C–N coupling reactions in 
Part I was repeated using the new samples. Based on these studies 73% of products generated for 
this proxy study were formed in comparable LCAPs using amines from either MBBC or Enamine. 
The comparable reactivity was taken to be a positive indicator of amine quality obtained from 
MBBC.  The impact of this quality assessment of aryl halides and amines is explored further in 
the modeling section. 
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Assessment of UPLC data quality: Occasionally, overlapping peaks in the UPLC chromatograms 
resulted in the inability to accurately determine the reaction outcome.42  This was factored into the 
overall assessment of data quality and analyzed in the modeling section. 

Assessment of reaction reproducibility: Variance due to minor differences in reaction setup 
performed on different days and/or reaction plates was also studied. To assess this variance on 
each reaction plate, commonly used metrics used for evaluating ML models were calculated to 
compare reactions that were repeated across different reaction plates using regression and 
classification analysis. This analysis was done separately for a small subset of the reactions that 
were used for the optimization (Figure 2) and the scope studies (Figure 3A). Regression analysis 
entailed graphing reaction outcomes (as product LCAPs) from one reaction plate against the 
product LCAPs from the same reaction on another reaction plate. As shown in Figure 4, the 
absolute reproducibility is significantly higher for optimization reactions (left plot, r2 = 0.95) 
versus the scope studies (right plot, r2 = 0.75). This difference could be in part due to higher control 
over the reagent quality (pure by 1H NMR analysis) for the optimization studies due to smaller 
number of substrates. Additionally, the number of repeats per reaction is higher for optimization 
studies than for the scope studies which can also influence the overall r2. In contrast to the 
regression analysis, a binary classification analysis using a product LCAP threshold of 20% (> 
20% or less than 20% product LCAP) is highly consistent for all reactions that were repeated in 
different reaction plates for both optimization and scope studies. This is reflected by the zero or 
low percentage of false positives/negatives for the scope and optimization studies respectively.  
These results suggest that the classification analysis is a more robust strategy to account for 
inherent minor experimental noise than the corresponding regression study. The evaluation of the 
three sources of experimental error detailed above were employed to determine the effect of data 
quality on trained models.  

Modelling: We next used our structurally diverse datasets to build and evaluate predictive models 
using both regression and classification analysis.  The overall goal of predictive models is to 
predict reaction failures and successes with high fidelity. Literature reports suggest that models 
trained on random splits of HTE data generally perform well within the modeled datasets,11,15,27–

31 an observation that is hypothesized to be a result of hidden patterns in the dataset and bias in its 
construction.43 However, extending models to unseen structures is often difficult and limited by 
narrow substrate scopes.44 In contrast, the generation of the large diverse dataset using ~400 aryl 
halides and amines allowed us to arrange the train/validation/test split in various ways to 
systematically interrogate the out–of–scope (OOS) extrapolative performance of the models using 
regression and classification models. In addition to the commonly used random splits (Figure 4A, 
left), two different paradigms for dividing the data were defined to probe the ability of models to 
extrapolate to new molecules. The first splitting strategy, the “dimensionality reduction split” 
(DRS), is designed to reduce the dimensionality of the space from squared order (O(n2)) to linear 
order (O(n)) (Figure 5A, middle). In this scenario, the training set contains the reactions of a small 
set of amines against all 384 aryl halides, and vice versa, ensuring that at least one reaction of each 
substrate (amine and aryl halide) in the dataset is present in the training data.  The test set probes 
the ability of the model to predict in the n2 space. Specifically, the model predicts the reaction 
performance of products for which both the aryl halide and the amine components have been seen 
by the model but not in the combination present in the test set (See SI for details). Notably, if the 
modeling using a DRS is successful, this would imply that predictions for 6×106 aryl halide and 
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amine combinations could be achieved by ~2 orders of magnitude smaller training sets (~104 
reactions) significantly reducing the experimental demands. The importance of dimensionality 
reduction to reduce experimental demands has also been previously stated in the context of 
assessing the scope and limitations of four different HTE amenable C–N coupling methods.15  

 

 

Figure 5: (A) Splitting strategies. Hypothetical training data in light blue. O(n) = linear order, i.e., few amines 
against many halides and few halides against many amines. O(n2) = squared order, i.e., products generated using a 
full factorial combination of all halides and amines. The HTE data generated in this manuscript has linear order 
O(n). (B) Regression Model Outcomes.  R2s for a selected set of regression models are shown across five (Random, 
DRS, ArX OOS, Amine OOS, and Both OOS) splits.  The results are reported as a N–fold cross validation, where 
N=10 when possible. Top: Model performances (R2) for different Morgan Fingerprint (MFP) lengths. (C) The 
impact of data quality on a random forest model for all splits. The explicit construction of the quality levels is 
discussed in the SI. 1The results are reported as an 8–fold cross validation, see SI for complete details. 

The second modelling strategy is based on a stratified split, where the training, validation, and test 
sets are designed to have separate sets of amines and aryl bromides. Figure 5A depicts this space 
as a square divided into four quadrants (rightmost square). In this scenario, the training set is 
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similar to the DRS split but fulfills the requisite criteria for the stratified splits (Amine OOS, ArX 
OOS and both OOS). Specifically, the training data is contained in one quadrant with an associated 
set of aryl halides and amines and there are three distinct options for the test set. The two quadrants 
that share one edge with the training data (Amine OOS and ArX OOS) are considered partially out 
of scope, as the model will have one coupling partner in its training data (e.g., ArX for Amine 
OOS), but not the other. For example, if a model can be trained to be predictive in the Amine OOS 
region, then training data for a fully predictive model would not need to cover all amines and a 
reduced number would need to be experimentally evaluated. This is especially important 
considering that specific molecules can be expensive, unavailable, or otherwise have properties 
that result in analytical barriers to facile data collection. The final quadrant (Both OOS) contains 
the datapoints where neither coupling partner has been seen by the model, which evaluates the 
model’s ability to fully extrapolate to unseen amine and aryl bromide chemical space. 

Figure 5B reports modeling results for the random, DRS and the stratified split strategies described 
above. We first pursued regression approaches to predict product LCAP directly as a continuous, 
numerical value.  Models investigated included linear regression derivatives (Ridge), decision tree-
based models (Random Forest), and multilayer perceptrons (MLPs). Two different classes of 
featurization were investigated, Morgan fingerprints and quantum-mechanical (QM) features. The 
QM features were calculated using a trained ML model.45 A full description of the calculation of 
QM features and results for the one–hot encoded baseline are provided in the SI. In general, MLP 
and random forest models afford comparable results. Interestingly, however, regression models 
for Amine OOS split are superior with random forest methods. Consistent with previous 
work11,15,27–31, random splitting of the data yields better models than any OOS scaffold splitting 
(Amine OOS, ArX OOS, Both OOS, Figure 4B, top). The performance of all three OOS cases for 
the stratified split was significantly inferior to the DRS strategy indicating that the model has a 
limited ability to extrapolate beyond molecules in its training set. In addition, models trained on 
the DRS reach R2s that are identical or better than the random splitting, which supports the 
hypothesis that DRS is an appropriate dataset generation strategy.  

We also explored the effect of quality, or implicitly, noise, on the dataset (Figure 5C). As described 
above three sources of experimental noise were systematically evaluated: substrate quality, 
UPLC/MS data quality, and reaction reproducibility. Data quality levels were manually assigned 
from 1 (lowest) to 8 (highest) as described in the SI. At every quality level, reaction outcomes that 
exceeded a threshold for experimental noise were systematically removed. For example, the lowest 
quality dataset (quality 1) consisted of all generated data whereas the highest quality dataset 
(quality 8) consisted of only reactions that were devoid of any identified experimental noise. The 
resulting analysis showed comparable R2 regardless of the data quality suggesting modest impact 
of the experimental noise on model training. This is consistent with a previous study of a HTE 
dataset of C–N coupling reactions that demonstrated minimal impact on model training by 
introduction of simulated noise to experimental data.12,40 These results suggest that models using 
HTE data sets are largely unimpacted by minor experimental noise, thereby obviating the necessity 
for time intensive assessment of data quality for future efforts.2 Instead, the time and resources 
should be expended on enhancing the diversity of the dataset. 

                                                       
2 Studies of noise in historical reaction sets suggest that de–noising historical data does have a significant impact on 
model outcomes.40,47 
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Figure  6: Classification Results. (A)  precision@5, and precision@10% are given for two different classifiers for 
a number of different parameters. Results are shown for two input types (MFP and MFP + QM). The baseline 
positive rate in the test set of specific splits can vary 1-2%.  Precision@5 and Precision@10% metrics are given in 
the table. The values are given as averages across the N-fold validation, with the margin of error in parentheses 
(standard deviation/ √# samples). The color gradient represents the difference between each value and its relevant 
baseline positive rate.  (B) Accuracies for high confidence (highest class > 0.9, denoted as (+) or lowest class >= 
0.9, denoted as (-)) are graphed in a bar chart across two splits and 5 models. The remaining model predictions are 
considered ambiguous because the confidence is less than 0.9 for highest or lowest class (denoted as (?)). Highest 

Overall goal and Impact

B.

Model Type
Product 
LCAP 

Threshold
Fingerprint

Baseline 
Positive 

Rate

random 
precision 

@5

random 
precision 
@10%

DRS 
precision 

@5

DRS 
precision 
@10%

ArX OOS 
precision 

@5

ArX OOS 
precision 
@10%

Amine 
OOS 

precision 
@5

Amine 
OOS 

precision 
@10%

Both OOS 
precision 

@5

Both OOS 
precision 
@10%

Pytorch MLP 
Model

0%
MFP

54% 94(4)% 91(1)% 77(6)% 75(6)% 88(4)% 85(2)% 80(4)% 83(2)% 80(7)% 78(9)%
10% 40% 94(2)% 90(1)% 87(4)% 95(3)% 92(4)% 86(3)% 60(9)% 71(5)% 62(5)% 41(7)%
20% 33% 96(2)% 95(1)% 90(3)% 100(0)% 92(5)% 88(4)% 62(9)% 70(8)% 50(10)% 58(11)%
0%

MFP + QM 
Fingerprints

54% 90(4)% 93(1)% 87(4)% 90(6)% 86(5)% 86(3)% 82(8)% 81(3)% 65(7)% 65(7)%
10% 40% 90(4)% 93(1)% 85(5)% 91(5)% 90(4)% 85(3)% 70(9)% 74(5)% 70(7)% 70(9)%
20% 33% 94(4)% 94(1)% 92(3)% 91(5)% 86(6)% 84(5)% 64(9)% 67(7)% 57(6)% 58(5)%

Random 
Forest Model

0%
MFP + QM 
Fingerprints

54% 98(1)% 96(0)% 95(3)% 100(0)% 94(2)% 82(3)% 88(4)% 85(2)% 75(5)% 68(7)%
10% 40% 94(2)% 94(1)% 92(3)% 100(0)% 80(8)% 77(5)% 88(7)% 85(5)% 52(9)% 58(7)%
20% 33% 88(5)% 90(2)% 100(0)% 100(0)% 80(7)% 74(4)% 90(5)% 84(5)% 57(8)% 58(11)%

A.

>= 20% actual product LCAP (-) Negative reaction outcome predicted
(?) Ambiguous prediction
(+) Positive reaction outcome predicted

M
LP

 m
o

de
ls

R
F

 m
od

el
s

< 20% actual product LCAP 

C.



  11

class: >20% product LCAP and lowest class: <20% product LCAP. The numbers on the bars are the absolute 
number of products. (C) Illustration of a hypothetical propsective application of ML models. The symbols (+), (-) 
and (?) have the same definitions as for Figure 6B. 

 
Categorical Modeling of Reaction Space: As illustrated in Figure 4 above, binary classification 
using a product LCAP threshold is more robust to experimental noise than regression analysis. 
Hence, we next modelled the dataset by treating the LCAP as a categorical variable split into two 
groups according to a product LCAP threshold value (0, 10% or 20% product LCAP, Figure 6A). 
Importantly, the resulting binary classification task enables the identification of sufficiently 
productive reactions (> 10% or 20% product LCAP) for medicinal chemistry campaigns.46 Each 
model was evaluated based on its ability to recommend hits  (reactions with a product LCAP of 
>= 0, 10 or 20%). The corresponding metric is precision@N, which is calculated by using the 
model to recommend N reactions it predicts to be hits and then evaluating the percentage of those 
reactions that are classified correctly in the desired product LCAP bin. For example, the 
precision@10% for the random split is 95% using the MLP classifier for 20% product LCAP 
threshold implicating that 95% of the top 10% recommended hits are actually formed with >20% 
product LCAP. Table 2 shows the precision@N performances (precision@5 or precision@10%) 
of multi-layer perceptron (MLP) and random forest models for all splitting strategies (See SI for 
other metrics). In addition, the baseline positive rate for all LCAP thresholds is also shown. The 
baseline positive rate reflects the percentage of data points in the test set that exceed the chosen 
LCAP threshold. While the MLP and random forest classifiers, in general afford comparable 
results, the model predictivity for Amine OOS split is in general higher using the random forest 
models. Moreover, supplementing the Morgan fingerprint (MFP with 1024 input length) with a 
QM fingerprint does not yield significant enhancement of precision@N in most cases.  The highest 
calculated precision@10% for >20% product LCAP threshold exceeds the baseline PR by ~3–fold 
for random, DRS, ArX OOS and Amine OOS splits (numbers in bold, Figure 6A). This 
precision@10%:PR of ~3 could enhance the percentage of recommended hits (product LCAP > 
20%) by up to 200% which is the maximum achievable enrichment.  Excitingly, even when both 
the aryl halide and the amine are not part of the training set (Both OOS), the MLP classifier has a 
precision@10% accuracy exceeding the baseline by a factor of 1.75 for >20% product LCAP 
threshold thereby exemplifying the models’ ability to extrapolate beyond the molecules contained 
in the training set. For completely new substrates (Both OOS), this improvement in the 
precision@10% accuracy could increase the percent of successful C–N couplings by ~75%. 
 
While the metrics detailed in Figure 6A above can be used to enrich for successful reactions, they 
provide no information on the overall predictivity of the models. Specifically, the precision@N 
metric does not provide information on whether a given C–N coupling reaction will yield the 
product above the desired LCAP threshold. As such, an important metric for predicting the library 
success rates is model accuracy which is defined as the percentage of accurate predictions for the 
test set products being in the desired LCAP bin. To this end, Figure 6B shows the model accuracy 
for all splits using the MLP and Random Forest classifiers. Consistent with the regression 
modelling results detailed above, the accuracy of product LCAP classification is higher for random 
split and DRS versus the OOS splits. Using MLP models, 81–96% of the products in the test set 
can be binned above (+) or below 20% LCAP (-) with high confidence (>0.9) depending on the 
splitting strategy. The accuracy of this binning increases with increasing model accuracy. In 
general, random forest models are significantly inferior than the corresponding MLP models for 
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binning products as most products fall within the ambiguous category (?). The data depicted in 
Figure 6B is particularly important for prospective applications for which reaction condition 
screening efforts will largely be devoted for products predicted to form with <20% LCAP (Figure 
6C).  
 
Conclusion and Outlook. To summarize, this manuscript details the first ML models for C–N 
couplings using large structurally diverse pharmaceutically relevant datasets generated using 
nanomole scale HTE. The dataset generation was enabled by the identification and use of novel 
nanomole scale compatible automation friendly C–N coupling reaction conditions. The structural 
diversity in the dataset was achieved by leveraging MBBC. The large dataset enabled the 
systematic evaluation of model performance using five different data splitting strategies. These 
five splits were carefully designed to evaluate the model’s ability to extrapolate beyond the 
substrates in the training set. Regression analysis generally led to low to modest R2’s which can 
be likely improved using active learning strategies. Classification models were also built with a 
lens toward application to medicinal chemistry campaigns. The precision@N accuracy exceeded 
the baseline PR by 25-67% depending on the splitting strategy. These results would manifest as 
significant enrichment of successful C–N couplings using the hits recommended by the models. In 
addition, the accuracy of the best models for each of the five splits ranged between 70-87% 
suggesting excellent overall predictivity of the models even for completely unseen substrates. 
Furthermore, the models enable reasonable to excellent binning of the products below or above 
20% LCAP. In a prospective application, this would enable in silico identification of reaction 
performance with high fidelity thereby focusing the time–consuming screening efforts on low–
yielding targets. Importantly, systematic investigation of the data quality showed that minor 
experimental noise does not significantly influence the model performances. Hence, the time 
intensive data quality evaluation studies might not be required in future efforts.  Ultimately, this 
manuscript lays the groundwork for building predictive models for structurally diverse HTE 
derived datasets. Such efforts have enormous potential to accelerate and enhance resource 
efficiency of drug discovery efforts. Furthermore, the ML models will serve as a mechanism to 
identify synthetic chemistry innovation opportunities by predicting the dark space of chemical 
reactions. 
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