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Abstract

Despite its widespread use, Simplified Molecular Input Line Entry Sys-
tem (SMILES) remains underspecified. The lack of a detailed specifica-
tion encourages improvisation by software developers, complicates data
standardization efforts, and undermines extension development. Balsa, a
reformulation of SMILES, addresses these problems. A formal, machine-
readable grammar defines Balsa’s syntax. Semantics are described at
three levels of resolution: constitution; configuration; and conformation.
To estimate the compatibility of Balsa strings with SMILES software, all
differences between the two languages were enumerated. To the extent
that SMILES documentation is unambiguous, every difference was con-
sistent with Balsa being a language subset.

Introduction

Simplified Molecular Input Line Entry System (SMILES) was first described
by Weininger in 1988 [1]. As a line notation [2], SMILES represents molecules
as single line character sequences, or strings. SMILES has since been widely
adopted. Read and write functionalities are routinely supported by popu-
lar cheminformatics toolkits, including: Open Babel [3]; RDKit [4]; Chem-
istry Development Kit [5]; JChem Base [6]; the Daylight Toolkit [7]; and
OEChem TK [8]. SMILES encodings can be found in many public-facing
databases, including: PubChem [9]; ChEBI [10]; ZINC [11]; ChEMBL [12]; and
Wikipedia [13]. Raw SMILES strings have been used extensively in machine
learning applications [14]. Algorithmic selection of a single SMILES encoding
has been used for molecular identification [15, 16]. SMILES has also been ex-
tended to carry various forms of metadata, as exemplified by Jmol SMILES [17],
CurleySMILES [18], BigSMILES [19], and CXSMILES [20].

Despite the central role that SMILES plays in cheminformatics, public de-
scriptions of the language remain imprecise. A 1987 report to the US En-
vironmental Protection Agency by Weininger described a language similar to
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SMILES, but with important differences [21]. Weininger’s 1988 paper offered
an overview of the language, but omitted or only partially addressed points
crucial to correctly implementing SMILES, including: (1) stereochemical con-
figuration; (2) double bond conformation; (3) the encoding and decoding of
“aromatic” features; (4) the computation of implicit hydrogen count, especially
in the context of aromatic features; (5) syntax; (6) constraints on quantities
such as mass number and charge; and (7) enumeration of error states.

Since 1988, two authoritative sources have attempted to clarify or revise
Weininger’s original description of SMILES. A 2003 book chapter by Weininger
addressed some of the limitations of the paper [22]. The Daylight Theory Man-
ual, a website maintained by SMILES’s corporate sponsor, Daylight Chemical
Information Systems, Inc. (“Daylight”), recapitulates published material [23].
The lack of other authoritative sources describing SMILES is consistent with
Weininger’s reported disinterest in traditional scientific publication [24].

In 2007 a documentation effort that would become known as OpenSMILES
began [25]. OpenSMILES was conceived as “a non-proprietary specification
for the SMILES language.” Many of the points left open by previous SMILES
documentation efforts were addressed. Noteworthy contributions included: the
first formal grammar, later adapted to a standard parser toolchain [26]; many
refinements around stereochemistry; and the introduction of “standard form.”
Absent were detailed procedures for composing and interpreting aromatic fea-
tures, and a detailed procedure for computing implicit hydrogen count. OpenS-
MILES also left several points of syntactic and semantic ambiguity unsettled,
while introducing extensions of its own.

In 2019 IUPAC announced the SMILES+ initiative [27]. Noting the limi-
tations of existing SMILES documentation, the SMILES+ effort seeks to “es-
tablish a formalized recommended up-to-date specification of the SMILES for-
mat.” SMILES+ took as its starting point the documentation produced by
the OpenSMILES project. Efforts to extend this starting point are in progress
online through a public repository, but no formal recommendation has to date
resulted [28].

The lack of a comprehensive SMILES specification has caused several prac-
tical problems. Maintainers of SMILES implementations lack a blueprint for
working toward a common set of features and behaviors. At the same time, au-
thors of new SMILES implementations must address ambiguities on an ad hoc
basis. The diversity of implementations combined with language underspeci-
fication leaves standards bodies with a limited pool of source material upon
which to draw. Divergence at the edges of the SMILES language hampers the
development of compliance suites, amplifying the problems faced by software
teams trying to build compliant software. Finally, extensions to SMILES only
make sense in the context of a rigorously defined base language.

More broadly, this situation undermines ongoing data integrity efforts under-
way in other scientific disciplines. As an example, the FAIR Guiding Principles
identify four qualities essential for extracting maximum utility from published
scholarly data: Findability; Accessibility; Interoperability; and Reusability [29].
The lack of precision in existing SMILES documentation means that chemical
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data sets based on SMILES will suffer in all four areas.
The very notion of a SMILES standard may not be realistic at this point.

Today a dozen or more slightly different implementations are in use. None of
them can be considered a reference standard. Some have introduced extensions
not recognized by the others, contributing to language drift while compounding
the already formidable difficulties faced by implementors. Others claim SMILES
compatibility while ignoring certain aspects of the documentation that does
exist. The Daylight implementation, like some of the others, is distributed
under a commercial license that restricts use [7], and a publicly-accessible web
service operated for many years was decommissioned [30]. Although SMILES
may underpin a lot of modern chemical information exchange, the foundations
of this system are weathered and showing signs of stress.

This paper attempts to solve these problems with Balsa, a fully-specified
language designed as a subset of SMILES. The following sections present Balsa
from three perspectives: as a compact system for molecular representation;
as a text-based language; and as a specification for software capable of the
lossless conveyance of chemical structure information across organizational and
temporal boundaries.

Goals

Balsa’s main goal is to solve the molecular serialization problem. Serializa-
tion refers to the process of translating a data structure into a format that
can be transmitted over a communication channel for later reconstruction.
This allows general-purpose devices and networks to convey complex domain-
specific information. Receiver and recipient may be separated by time, space,
or both. Molecular serialization extends the concept of serialization to molecu-
lar structure. Examples of molecular serialization formats other than SMILES
include Chemical Markup Language (CML) [31], CDXML [32], and CTfile (e.g.,
“Molfile”) [33]. Figure 1 presents some simple chemical structures together with
their Balsa serializations.

A secondary goal is brevity. Molecules should be expressable using only a few
characters for each atom and either zero or one character for each bond. Brevity
benefits humans who manually encode chemical structures within interactive
line-driven interfaces such as those found in terminal sessions and notebooks.
Brevity also benefits computer handling, where the use of compact molecular
representation can improve performance when storage, bandwidth, or processor
cycles are limiting factors.

Molecular serialization schemes need to balance generality against complex-
ity. As the diversity of the molecules that can be encoded increases, so do the
rules needed to encode them and the software needed to interpret the rules. For
this reason, Balsa’s capabilities are directed at that region of chemical space
populated by small organic molecules. Although Balsa can be used to repre-
sent a variety of other kinds of molecules, doing so in general risks data loss or
corruption.
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Figure 1: Representative Balsa examples.
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Molecular Representation

Balsa’s rules can be divided into two broad categories: syntax and semantics.
Syntax defines the set of grammatically valid strings for a language, whereas
semantics determines their meaning. Balsa semantics are complex due to the
brevity of the syntax and the inherently complex nature of molecular represen-
tation.

Underpinning molecular serialization are conventions and abstractions for
molecular representation. These are divided into three broad categories:

• Constitution, the atoms present in a molecule and their bonding relation-
ships. Balsa’s extends the electron-pair bonding model with a limited
form of delocalized bonding.

• Conformation, a kind of stereoisomerism resulting from restricted rotation
about a bond. Balsa supports restricted rotation about double bonds
capable of producing alkene isomerism.

• Configuration, a kind of stereoisomerism resulting from the arrangement of
neighboring atoms in three-dimensional space. Balsa supports configura-
tions for atoms having tetrahedral symmetry attached to four neighboring
atoms.

Molecular Tree

Balsa represents molecular structure as a molecular tree (Figure 2). A tree is a
data structure comprised of a set of nodes and pairwise relationships between
them called edges. Any two nodes in a tree are connected through exactly one
path of alternating nodes and edges. As such, a tree contains no cycles and
exactly one connected component. A molecular tree is a specialized tree onto
which chemically-relevant metadata have been overlaid. A Balsa molecule is a
molecular tree having zero or more nodes and zero or more edges. The empty
molecule, devoid of atoms and bonds, is therefore allowed. There is no upper
bound on the number of nodes or edges, although limitations in hardware and
software may restrict maximum molecular size.

A related but more common concept is the molecular graph [34]. Unlike
molecule graphs, molecular trees do not support cycles or disconnected com-
ponents. This difference might appear to make molecular trees unsuitable for
molecular representation, in which both rings and aggregation play important
structural roles. However, these apparent shortcomings can be mitigated and
even harnessed.

The main advantage of trees over graphs is information density. Graphs
must accommodate cycles, a requirement fulfilled by assigning a unique iden-
tifier to each node. Each edge then references two of these identifiers. Graph
representations therefore incur the storage overhead of identifiers associated
with both nodes and edges. In contrast, a tree can be directly encoded as a set
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Figure 2: Molecular Graph vs. Molecular Tree. The bonds in a molecular graph
reference atoms indirectly through unique indexes (lower left). In contrast, a
bond in a molecular tree defines its target atom inline (lower right). This in-
creases the potential efficiency of trees over graphs for molecular representation.
To simulate ring closure, a molecular tree introduces bridge nodes (solid grey
circles).

of nested, alternating paths of nodes and edges. This simplifies representation
and eliminates the overhead of assigning and using node identifiers.

When discussing molecular trees, it’s often useful to refer to node order
(Figure 3). An order is a property of a set that allows its members to be sorted
through pairwise comparisons. Node order is the order in which the nodes of
a molecular tree are added through depth-first construction. A node added
before another node is said to “precede” it. A node added after another node
is said to “succeed” it. In this way nodes can be prioritized. The root atom,
uniquely lacking a parent, is ordered first because it precedes every other node.
Similarly, a parent always precedes its children. Finally, the first child added to
a given parent precedes all of its siblings. This relationship is transitive. If a
node precedes (or succeeds) a sibling, then so do all of its descendants.

To support cycles and disconnected components, a molecular tree decouples
connectivity from bonding (Figure 4). This means that nodes and edges don’t
generally map to atoms and bonds as they often do in molecular graphs. This
indirection enables rings and disconnections to be encoded despite the fact that
trees can contain no cycles or disconnected components.

Cycles are supported through bridges. A bridge consists of two bond-node
pairs that together represent one bond. On each side of a bridge an atom
connects to a bond, but the two atoms are not connected to each other. Instead,
each atom is succeeded by a bridge node. Unlike an atom, a bridge node has no
children and so may not serve as the root of the tree. A bridge preserves the
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Figure 3: Node Order. Nodes in a molecular tree assume the order in which
they were added through depth-first construction. Parents precede children,
and children added first preceded those added later.

Bond

Atom Atom Atom Bridge
Node

Atom Atom

Bond Gap

Figure 4: Nodes and Edge Associations. Three node/edge associations are pos-
sible within a molecular tree. A parent atom can be connected to a child atom
through a bond (left). A parent atom can also be connected to a child bridge
node through a bond (center). Finally, an atom can be connected, without
bonding, to a child atom through a gap (right).

immediate atomic environment around each atom, allowing many of the same
atomic computations possible in molecular graphs. Any bond, whether it closes
a ring or not, can be represented as a bridge.

Each bridge node serves as a proxy to a referenced atom. Should a bridge
node be present during an operation that requires an atom, the referenced atom
is used instead. Although a bridge node always succeeds its parent, the refer-
enced atom may precede or succeed that parent.

Multiple molecules are supported through gaps. A gap is an edge that defines
no bonding relationship. Gaps can be used whenever two or more disconnected
molecules need to be encoded within the same molecular tree. Specific appli-
cations include ionic bonding and non-ionic complexes. However, no bonding
relationship whatsoever is implied by the presence of a gap. In particular, the
zero-order bond interpretation is excluded [35].

Gaps and bridges decouple connectivity from bonding, but for opposite pur-
poses. Whereas a gap connects two atoms without bonding them, a bridge
creates a bond between two atoms without connecting them. These relation-
ships can complicate the analysis of connectivity and bonding. For example,
the atom succeeding a gap behaves in most situations as if it were a root. When
tallying the bonds surrounding such an atom, only children are considered. Sim-
ilar considerations apply when a gap succeeds an atom. Likewise, a bridge node
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Table 1: Primitives.

Name Description Notation Values
Option Optional value {T} None, t
List Ordered list of values [T] t0, t1, ...tn
Range Bounded integer range m..n from m to n, excluding n
Boolean Boolean value ? true, false

behaves as if it were an atom in the sense that it connects to an atom through
a bond. Nevertheless, a bridge node merely stands in for a referenced atom
found elsewhere in the tree. Bonding and connectivity analyses within molecu-
lar trees must therefore account for the possibility of connection-free bonds and
bond-free connections.

Atoms and Bonds

Within a molecular tree, atoms and bonds play complementary roles. Atoms
define nuclear particle counts, valence electron counts, and configuration. Bonds
define bonding electron counts and conformation. Constitution, configuration,
and conformation are all influenced by the individual and collective behavior of
atoms and bonds.

At the lowest level, atom and bond behavior are governed by their respective
attributes. An attribute is a key/value pair in which the key is a name composed
of a character sequence and the value is constrained by a single, immutable type.
Types can be composed, a feature supported by many programming languages.

Balsa types are composed of four primitives (Table 1). The first, Option,
represents a value of a particular type that may either be present or absent.
If not present, the special value None is used. A List is a possibly empty
ordered collection of values of the same type. The Range type represents an
integer value constrained by a lower inclusive bound (m) and an upper, exclusive
bound (n). The Boolean type assumes one of two values: true or false.

An atom is composed of seven attributes (Table 2). Default values are
applied at the time of atom creation if no other values are used. The specific
values assigned to an atom collectively define an atomic state.

The attributes element (“element”) and isotope (“isotope”) define
atomic number and mass number, respectively. Elements are selected from a
subset of those approved by IUPAC [36] (Figure 5). An atom whose element
is unknown must have an element attribute equal to None. The isotope
attribute is an optional integer value representing an atom’s nuclear mass num-
ber, defined as the sum of proton and neutron count. Setting the isotope
property to None means that the element’s isotopic composition equals natural
abundance. Otherwise, the lower bound of the value of isotope is one. This
lower limit allows for physically nonsensical states such as atoms of negative
implied neutron count (e.g., carbon-5). Implementations may reject such atomic
states as invalid.
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Table 2: Atomic Attributes.

Attribute Description Type Default
element Elemental symbol {Element} None
isotope Mass number {1..1000} None
hydrogens Hydrogen count Implicit, 0..10 0
charge Formal charge -9..10 0
selected Selection status ? false
parity Configuration {AtomParity} None

edges
Edges directed to-
ward child nodes

[Edge] []

H He
Li Be B C N O F Ne
Na Mg

Implicit Hydrogen Counting Allowed

Selection Allowed
Al Si P S Cl Ar

K Ca Cr Mn Fe Co Ni Cu ZnSc Ti V Ga Ge As Se Br Kr
Rb Sr Mo Tc Ru Rh Pd Ag CdY Zr Nb In Sn Sb Te I Xe

Cs Ba W Re Os Ir Pt Au HgLu Hf Ta Tl Pb Bi Po At Rn
Fr Ra Lr Rf

La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb
NoMdFmEsCfBkCmAmPuNpUPaThAc

Figure 5: Elements. Available chemical elements and their allowed roles. Not all
IUPAC-approved elements are available. Hydrogen counts of atoms associated
with elements on blue background can be computed algorithmically. Atoms
associated with elements on green background can be selected.
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Table 3: AtomParity Variants.

Variant Description
Clockwise Configuration runs with node order.
Counterclockwise Configuration runs against node order.

The hydrogens attribute sets an atom’s mode of hydrogen suppression.
Hydrogen suppression replaces an atomic hydrogen of natural isotopic abun-
dance and its associated bond with an integer tally associated with the parent
atom. Even so, a suppressed hydrogen and its bond are understood to be
present. The high relative abundance and regular bonding of hydrogen atoms
makes hydrogen suppression an effective technique for increasing information
density. Two mutually-exclusive types of suppressed hydrogen are supported:
virtual hydrogen and implicit hydrogen.

A virtual hydrogen is one that appears as an integer unit contribution asso-
ciated with the parent atom. For example, methane can be represented using
five atoms and four bonds. But methane can also be represented as a single
atom whose hydrogens attribute equals four. Virtual hydrogen count defaults
to zero, and may be set to a maximum value of nine. By default, atoms use
virtual hydrogen counting.

An implicit hydrogen is similar to a virtual hydrogen in that both the hy-
drogen atom and its bond have been replaced with a tally. Unlike a virtual
hydrogen, however, this tally is not present as an attribute on the parent atom
but rather as a computation. Setting the hydrogens attribute to Implicit
activates implicit hydrogen counting. Not all atoms are eligible for this treat-
ment (see: Computing Implicit Hydrogen Count).

It is sometimes convenient to interconvert virtual and atomic hydrogens.
The transformation of an atomic hydrogen into a virtual hydrogen is called
virtualization. The reverse process is called reification.

The charge (“charge”) and selected (“selected”) attributes determine
valence electron count (see: Electron Counting). Charge refers to formal charge,
or the difference between the valence electron count of the element and the sum
of bonding and nonbonding electrons of the bound atom. By default, an atom
is assigned a charge of zero. Minimum and maximum values for charge are
-9 and +9, respectively. The selected attribute adjusts an atom’s selection
status. Selecting an atom allows it to participate in extended bonding (see:
Delocalization Subgraph).

Configuration is determined by the parity attribute (“atom parity”). The
type of this value, AtomParity is an enumeration supporting two values:
Clockwise and Counterclockwise (Table 3). The interpretation and en-
coding of atom parity will be described in detail later (see: Configuration).

The edges (“edges”) attribute is a possibly empty ordered list of edges
associated with an atom. As noted in the previous section, an edge may repre-
sent either a bond or a gap (Table 4). The mere presence of an edge does not
guarantee a bonding relationship.
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Table 4: Edge Variants.

Variant Description
Bond A bonding and connectivity relationship.
Gap A connectivity relationship only.

Table 5: Bond Attributes.

Attribute Description Type Default
order Formal bond order 1..4 1
elided Elision status ? false
direction Partial conformational

parity
{Direction} None

target An atom or bridge node Target -

Not all atomic states are valid. Implementations must ensure either the
impossibility of creating an invalid state, or an error condition in the event that
one is created. Atomic state is restricted in the following two ways:

1. If implicit hydrogen counting is used, default values of isotope, charge, and
parity must also be used. Implicit hydrogen counting is only supported
for elements in the list: B; C, N; O; P; S; F; Cl; Br; or I.

2. An atom can only be selected if its element attribute is one of: B; C; N;
O; P; or S.

A bond is composed of four attributes (Table 5). The order attribute (“or-
der”) represents the concept of formal bond order, or the number of bonding
electrons divided by two. A bond’s order may only assume the values one, two,
or three. When set to true, the boolean elided attribute (“elided”) allows a
bond to be omitted during serialization, and to participate in extended bond-
ing. The direction attribute (“direction”) is used with other information to
conformationally restrict a bond. The two allowed variants for Direction,
Up and Down (Table 6), will be described in detail later (see: Conformation).
The target attribute identifies the child node at which the bond is directed
(Table 7).

As with atomic state, not all bond states are valid. The following restrictions
apply:

1. An elided bond must have an order of one and default direction.

Table 6: Bond Direction Variants.

Variant Description
Up The target node lies above the parent.
Down The target node lies below the parent.
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Table 7: Target Variants.

Variant Description
Atom A parent and child atom are bound.
Bridge A parent atom and bridge node are bound.

2. A bond with a non-default direction must have an order of one.

The atom and bond attributes defined here will be referenced throughout
this paper as a way to connect syntax and semantics. Implementations may, of
course, use any suitable internal data model. They must, however, ensure that
the model used is consistent with the one provided here.

Electron Counting

Amolecular tree explicitly encodes the presence of protons and neutrons through
the atomic attributes element and isotope, respectively. The presence of
electrons, in contrast, is merely implied. The principles of charge and mass
conservation nevertheless require a method to determine explicit electron counts.
This is possible through electron counting.

Electron counting in Balsa is based on the well-known electron-pair bonding
model developed by Lewis and others (“Lewis model”) [37]. This model assumes
that a bond spans exactly two atoms and is associated with a nonzero, positive,
and even electron count. These electrons are drawn in equal quantities from
each atom’s set of valence electrons. A single bond draws one electron from
each atom (two total), a double bond two (four total), and a triple bond three
(six total). The electron count of an atom whose element attribute equals
None is always zero. Bonding does not change it.

Electrons are counted as follows (Figure 6). A molecular tree starts as a
single root atom. The electron count of this atom equals the difference between
proton count (atomic number) and charge. Adding a bond is a three-step pro-
cess. First, a child atom is constructed with an electron count determined in
the same way as the root atom. Next, the child atom and the bond are added to
the molecular tree. Finally, the electron counts of each atom and the bond are
updated. If parent and child are connected through a gap edge, no electrons are
deducted from either atom. Should a parent atom be bound to a child bridge
node, then the electron count of the referenced atom is not changed.

Whereas negative bond order is disallowed by definition, Balsa places no
restrictions on hypervalence. Hypervalence occurs when an atom undergoes
enough bonding operations to leave it with a negative implied valence electron
count. Consider lithium, which possesses one valence electron. Formation of one
single bond leaves lithium with zero implied valence electrons. Application of a
second bond formation leaves lithium with a zero charge and an implied valence
electron count of -1. Such an arrangement may be physically meaningless, but
Balsa explicitly supports it. Software using Balsa may or may not reject such
species on semantic grounds.
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Figure 7: Delocalization-induced molecular equality (DIME). Two chemically
equivalent molecular representations differ only due to delocalization.

Delocalization Subgraph

A molecular representation based solely on the Lewis model can yield arti-
facts resulting from delocalization induced molecular equality (DIME, Figure 7).
DIME results from limitations of the Lewis model causing two representations
to encode what would be considered the same molecule. When the two forms
differ only in double bond placement, the terms “resonance” or “aromaticity”
are sometimes used. These terms are avoided here due to their ambiguity [38,
39].

The main problem with DIME is its interference with canonicalization, or
the selection of a single molecular representation among many alternatives. The
presence of multiple equivalent molecular forms differing only in electron delo-
calization complicates the formulation of selection rules and invariants, which
must be adapted to account for the artificial asymmetry.

To eliminate DIME and thereby streamline canonicalization, each molecular
tree is augmented with a delocalization subgraph (DS). A DS is a possibly empty
node-induced subgraph over a molecular tree. The membership of a DS will
typically be drawn from the set of atoms and bonds that participate in DIME
within a given molecular tree.

Membership of a DS is determined as follows. An atom is added to the DS
by setting its selected attribute to true through a process called selection.
As noted previously (see: Atoms and Bonds), only some atomic states are com-
patible with selection. A bond is added to the DS if both of the atoms it spans
are selected and the bond itself is elided. This allows arbitrary bonds between
selected atoms to be excluded from the DS by ensuring they are not elided. A
bond to a bridge node will be added to the DS only if both the parent and the
referenced atom are selected.

A non-empty DS must possess a perfect matching (Figure 8). A matching
is a subgraph in which no two edges share a common node. Equivalently, a
matching is a subgraph in which all nodes have degree one. A perfect matching
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Figure 8: Perfect Matching. A matching is a subgraph in which all nodes have
degree one. A perfect matching contains all of the nodes of its parent. Nodes and
edges of a matching are noted with black circles and hashed lines, respectively.
The five-membered cycle on the left has no perfect matching. Such graphs are
not valid delocalization subgraphs. The six-membered cycle on the right has a
perfect matching, and would be a valid delocalization subgraph. Either graph or
tree representation can be used to construct a perfect matching, but published
algorithms use graphs.

includes every node present in the parent graph. Every atom added to a DS
must therefore become part of its perfect matching.

A filled DS can be emptied through a two-step process of deselection (Fig-
ure 9). First, a perfect matching over the DS is found. Next, the elided bond
corresponding to each matched edge is replaced by a double bond. Because the
presence of a filled DS implies a perfect matching over it, kekulization always
succeeds. A widely-used algorithm for matching, the Edmunds “blossom algo-
rithm,” has a time complexity of O(|E||V |2), where |E| is the number of edges
and |V | is the number of nodes [40]. Although more efficient algorithms are
known, they are either much more difficult to implement or lack generality.

The opposite operation can be accomplished with a selection algorithm. A
selection algorithm selects two or more atoms, thereby adding them to the DS.
The only requirement for a selection algorithm is that the resulting DS must
have a perfect matching. Depending on the application, other criteria may be
applied. For example, a selection algorithm may restrict candidate atoms to
those found in cycles. Electron-counting techniques may also be introduced to
approximate the chemical concept of “aromaticity.” Elision of the single bonds
to be added to the DS completes the process.

Selection is nothing more than an alternative to explicit bond order encoding.
No other properties whatsoever are conferred to selected atoms. The members of
a DS may be assigned the labels “aromatic,” “antiaromatic,” “non-aromatic,” or
any number of other designations by downstream applications. Two encodings
differing only in the presence of a DS should be considered equivalent. Balsa
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Deselection

Selection

Figure 9: Deselection and Selection. Deselection unsets the atomic selected flag
(open circle) with simultaneous promotion of matching bonds. Selection sets the
atomic selected flag (closed circle) with simultaneous demotion of intervening
single and double bonds to elided bonds.

imposes no rules around whether or not a selectable atom must be selected,
although users may do so voluntarily.

Valence and Subvalence

To support implicit hydrogen counting, Balsa uses the concept of valence. Va-
lence is a non-negative integer tally computed as the sum of bond orders at a
given atom. Single and elided bonds contribute one to the tally, double bonds
two, and triple bonds three. Each virtual hydrogen contributes one. For ex-
ample, the valence of a methyl carbon having three virtual hydrogens and a
hydrogen neighbor is four. The valence of an acetaldehyde oxygen atom is two.
And so on.

Some elements are associated with one or more default valences (Table 8). A
default valence is the number of hydrogens that can be attached to an isolated,
fully-saturated atom using the corresponding element. For example, the default
valence for a carbon-bearing atom is 4. This means that a fully saturated atom
of carbon will have four hydrogens. Likewise, a fully-saturated atom of oxygen
will have two hydrogens. Some elements such as nitrogen are associated with
multiple default valences. In these cases, multiple saturated forms are possible.
For example, nitrogen has the default valences three and five. Both ammonia
(NH3) and nitrogen pentahydride (NH5) are therefore fully saturated forms of
nitrogen according to Table 8.

Given an atom whose element has one or more default valences, subvalence
can be computed (Algorithm 1). Subvalence is the number of hydrogens that
can be added to an atom without exceeding the lowest possible default valence.
If no suitable default valence exists, then subvalence equals zero. The algorithm
begins by computing the atom’s valence. Next, the ordered list of default va-
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Table 8: Default Valences.

Element Valences
B 3
C 4
N 3,5
O 2
F 1
P 3,5
S 2,4,6
Cl 1
Br 1
I 1

lences of the atom’s element is found. For each default valence, the difference
between it and the valence is compute. If this differences is positive, it is re-
turned as the subvalence. Otherwise, the next default valence is considered.
If no suitable default valence is found, zero is returned. The subvalence of an
atom whose element has no default valences (i.e., no listing in Table 8) is zero.
For example, an iron atom always has a subvalence of zero, regardless of its
bonding.

input : An atom a with one or more default valences
output: The subvalence of a
begin

v ← Valence(a);
T ← DefaultValences(a);
for t ∈ T do

d← t− v;
if d >= 0 then

return d;
end

end
return 0;

end
Algorithm 1: Computing subvalence.

For a representative subvalence computation, consider an isolated nitrogen
atom without virtual hydrogens. The atom’s bond order sum is zero. Its default
valences are 3 and 5. The difference between the atom’s bond order sum and
the first default valence is found to be three (3− 0). Therefore, the subvalence
of this atom is three.

The carbonyl carbon atom of acetaldehyde illustrates the effects of substi-
tution and multiple bonding. Bond order sum is three (2 + 1). From Table 8,
default valence is four. Subtracting bond order sum from default valence yields
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one (4− 3), which is returned as the atom’s subvalence.
The phosphorous atom in phosphorous acid (H3PO3) illustrates the use of

Algorithm 1 for atoms having multiple target valences. Bond order sum is four
(2+1+1). The first default valence is 3, but subtracting valence from that value
yields a negative number (3− 4). Continuing to the next default valence, five, a
difference of 1 is obtained. Therefore, the subvalence of the phosphorous-bearing
atom is reported as one.

The valence of some atoms exceeds the largest default valence. In these
cases, subvalence is reported as zero. Consider sodium perchlorate (NaClO4).
The chlorine atom has a bond order sum of seven (2+2+2+1). From Table 8,
the only default valence for chlorine is one. Subtracting seven yields a negative
number (-6). Therefore, the subvalence is reported as zero.

Computing Implicit Hydrogen Count

An atom whose hydrogens attribute equals Implicit signals that its hy-
drogens must be counted algorithmically. The exact algorithm depends on the
value of the atoms’s selected attribute (Figure 10).

For an unselected atom, implicit hydrogen count equals subvalence. For
example, an oxygen atom with one single bond has an implicit hydrogen count
of one because subvalence is one (2 − 1). Similarly, an oxygen atom with two
singly-bonded neighbors has an implicit hydrogen count of zero (2− 2).

For a selected atom, implicit hydrogen count equals subvalence minus one.
This subtraction accounts for the extra valence implied by the atom’s member-
ship in the delocalization subgraph. Consider a selected carbon atom in benzene
with a hydrogens attribute of Implicit. Subvalence equals two (4− 2), so
implicit hydrogen count equals one (2−1). Likewise, the subvalence of a selected
nitrogen atom in pyridine equals one (3− 2) so implicit hydrogen count equals
zero (1− 1). Stated differently, the calculation ensures that an atom’s implicit
hydrogen count is identical before and after deselection.

If the subvalence of a selected atom equals zero, then an implicit hydrogen
count of zero is reported. The meaning of such an atomic state may seem
suspect because an atom without a free valence can not perform the required
promotion of an elided bond during deselection. As will be explained in detail
later (Pruning), this situation can arise for reasons of convenience or tradition.
Returning zero avoids miscalculation of the implicit hydrogen count.

An atom’s implicit hydrogen count may or may not correlate with chemi-
cal intuition or experimental data. Consider the phosphorous-bearing atom of
hypophosphorous acid (HOP(O)H2). We might expect the implicit hydrogen
count to equal the experimentally-determined hydrogen count (2). However,
the subvalence for the phosphorous atom is found to be three (2 + 1). The
implicit hydrogen count is therefore zero (3− 3) rather than the expected two.
To represent this atom and other like it, virtual hydrogens must be used.
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NDefaults: [4]
Valence: 1+1=2
Subvalence: 4-2=2
Implicit H: 2

Defaults: [4]
Valence: 1+1=2
Subvalence: 4-2=2
Implicit H: 2-1=1

Defaults: [3,5]
Valence: 1+1+1+1=4
Subvalence: 5-4=1
Implicit H: 1

Defaults: [3,5]
Valence: 2+1+1=4
Subvalence: 5-4=1
Implicit H: 1

Figure 10: Implicit hydrogen count. The number of hydrogens is computed al-
gorithmically. For unselected atoms (top left, top right, bottom right), implicit
hydrogen count equals subvalence. For selected atoms (bottom left), implicit
hydrogen count equals subvalence minus one. The hydrogen count for an atom
whose element lacks at least one default valence can not be determined algo-
rithmically.

Conformation

Restricted rotation about a bond leads to conformational isomers (“conform-
ers”). When the bond in question is a double bond, two conformers result.
These can be distinguished through partial parity bonds (PPBs). As the name
implies, a PPB encodes some of the parity information characterizing a confor-
mationally restricted double bond. Reconstruction of the full parity requires
the double bond itself and at least one flanking PPB at each terminal.

A PPB is designated by setting its direction attribute to a non-default
variant (Up or Down). The names of these variants refer to a two-dimensional
geometrical model in which a parent atom and its child are placed along a
vertical axis. If the child lies above the parent, the Up variant is used. If the
child lies below the parent, the Down variant is used.

The parity of a double bond is determined by the relative direction of the
PPBs neighboring it (Figure 11). First, the parent atom is identified. This
atom has the lowest order in the assembly, meaning that it was added first to
the molecular tree. The parent is placed on a vertical axis. Bonds from the
parent atom are then iterated. If a PPB is found, its child atom is placed above
the parent for a direction of Up or below the parent for a direction of Down. The
child’s bonds are then iterated in order. Should an additional PPB be found, its
direction must match that of the bond between parent and child. Otherwise an
error must be reported. An error must also be reported if more than two PPBs
are present. If a double bond is found, its target, a grandchild, is placed to
the right of the parent. The bonds of the grandchild are then iterated in order.
The target of the first PPB, a great-grandchild, is placed as before, above the
grandchild if the direction is Up, or below if the direction is Down. If a second
PPB is present, it must have a direction opposite the first. Otherwise an error
must be reported.

The placement of parent, child, grandchild, and great-grandchild will yield
one of two parities (Figure 12). For convenience and to avoid confusion, these
parities are given the labels syn (vertical lines both lie above or below the double
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Figure 11: Partial parity bond (PPB). Double bond conformational parity is
distributed over at least three bonds. A minimal assembly contains a double
bond, two flanking PPBs (marked with upward- or downward-facing arrows),
and associated nodes (top). To determine 2D orientation, parent and child are
arranged on a vertical axis with parent above child for a bond direction of Down,
and child above parent for a bond direction of Up (bottom-left). A complete
diagram places parent, child, grandchild and great-grandchild (bottom right).

bond) and anti (vertical lines lie on opposite sides of the double bond).
To illustrate, consider the placement for (E )-2-butene. The parent atom, a

methyl group, is placed on a vertical axis. Bonds are iterated and a PPB with a
direction of Down is found. The child attached to the bond is therefore placed
below the parent. Iterating the child’s bonds reveals one bond of order two.
The atom attached to it is placed to the right of the previous child. Bonds are
again iterated, revealing a PPB whose direction is Down. The atom attached to
this bond is then placed below its parent. The completed diagram reveals the
anti conformation.

The same procedure works in reverse when encoding the direction at-
tribute (Figure 13). 2-butene having the syn conformation is modeled using a
diagram whose left- and right-hand sides point downward and upward, respec-
tively. The parent atom, a primary carbon, is identified. It is bonded to one
neighbor through a PPB. To match the diagram, a direction of Down is assigned.
The child atom is attached to its own child through a double bond. Finally,
the grandchild is attached to its own child through a PPB whose direction is
consistent with the diagram. A direction of Up is therefore assigned.

Spreading conformational parity over more than one bond in this way means
that several error states are possible (Figure 14):

• Overspecification. Two children are forced into the same direction along
an axis.

• Underspecification. A required PPB is missing.
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Figure 12: Partial Parity Bond Placement. Two unique modes of PPB place-
ment are syn and anti (left and right, respectively). Within each mode is an
equivalent pair of PPB pairs.

cis-2-butene syn template assignment

parent

child grandchild

great-grandchild

Figure 13: Assigning partial parity bonds to cis-2-butene.
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Overspecified Underspecified Mis-specified Under- and over-
specified

Figure 14: PPB error states. Because conformational descriptions are defined
over three or more bonds, a variety of error states are possible.

Figure 15: Error state exceptions. Conjugated dienes sharing a common PPB
can lead to exceptional cases. The direction of the rightmost bond does not
need to be set.

• Misspecification. A PPB is used between atoms, neither of which connects
to a double bond.

An error must be reported should any of these states be encountered. Note
that it is possible for a conformation to be both overspecified on one side of a
double bond and underspecified on the other.

An exception to the underspecification rule applies in the case of conjugated
polyenes (Figure 15). Here, a PPB may run from parent to child without one
running from grandchild to great-grandchild. No error is reported in such a case
and the conformation of the terminal double bond remains undefined.

A different kind of problem arises in the case of 2,4,6-octatriene, where the
conformations of both outer double bonds are set but the conformation of the
interior double bond is unknown (Figure 16) [41]. The use of PPBs along carbon-
carbon bonds artifactually sets the inner double bond conformation. In this case
the problem can be solved by reifying the hydrogens attached to the interior
double bond, then directing PPBs along the resulting carbon-hydrogen bonds.
This is, however, not a general solution. It will fail, for example, in the case of
a nitrogen-nitrogen bond due to the lack of reifiable hydrogens.

The presence of a bridge node within a PPB complicates the assignment of
direction (Figure 17). A bridge node has no children and therefore can never
be a parent. At the same time, a bond always points from parent to child. This
means that a bridged PPB yields a pair of bonds with opposite directions. The
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Figure 16: Artifactual bond conformation. Placing PPBs along carbon-carbon
bonds sets the interior double bond’s conformation artifactually to anti (left).
This problem can be addressed by hydrogen reification followed by partial parity
assignment to the newly-available carbon-hydrogen bonds (right).

Figure 17: Bridged PPB Bond. A bridge across a PPB yields two bonds of
opposite direction (right).

first (or ”left”) bond, has the direction that would result from a direct bond to
an atomic child. The second (or ”right”) bond has the opposite direction.

Cyclic conjugated polyenes present special challenges to the use of PPBs, as
exemplified by cyclooctatetraene (Figure 18). Although the (syn, syn, syn, syn)
conformation is expressable using PPBs located along carbon-carbon axes only,
the (syn, syn, syn, anti) conformation is not. This problem arises because the
conformation for two different double bonds is set by the same PPB.

Configuration

Balsa limits configuration to the special case of an atom with exactly four sub-
stituents placed at the vertices of a tetrahedron. Here, “substituent” means an
atomic neighbor or virtual hydrogen. Lone electron pairs are not substituents.

The configuration about an atom can be specified through its parity at-
tribute. This attribute, together with a general convention, determine the rel-
ative three-dimensional positioning of substituents about a central atom (Fig-
ure 19). First, the parent of the central atom is identified. Then the frame of
reference is shifted by sighting down the bond from the central atom’s parent
to the central atom. An equilateral triangle is then inscribed about the central
atom. The bonds from the central atom are then iterated in order. If the parity
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Figure 18: Cyclooctatetraene. The all-(syn) conformation is expressable (left),
but the (syn,syn,syn,anti) conformation is not (right). Although the local con-
formations for the latter are all valid, the global conformation introduces a
conflict, the direction marked in red.
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Figure 19: Atom parity. Four substituents surround a central atom with non-
default atom parity (cyan). Sighting from the parent to the central atom, its
children (a, b, and c) follow either a clockwise or counterclockwise pattern when
iterated in order.

H
a ab b

r r

[H]

Figure 20: Atom parity with one virtual hydrogen. The central atom (cyan) has
a virtual hydrogen (left). In this case, the virtual hydrogen assumes the role of
root atom (right). The former root atom (r) then assumes the role of the first
child, and analysis continues as before.

of the central atom equals Clockwise, children placed around the triangle in
clockwise order. Otherwise the children are placed in counterclockwise order.

The convention is modified for atoms bearing one virtual hydrogen and three
atomic substituents (Figure 20). The implied bond to the virtual hydrogen is
considered to precede all other children.

One additional modification applies to a central atom without a parent. The
frame of reference is shifted by sighting along the bond from the first child to
the central atom. The remaining children are then placed around the triangle in
either counterclockwise or clockwise order as before. If the central atom bears
a virtual hydrogen, it is considered to be the first child.

A central atom whose parity attribute assumes a non-default value must
have either four bonds if no virtual hydrogens are present, or three bonds if
one virtual hydrogen is present. Some topologies might appear to be similar
enough that the parity attribute can be used, but they all must be reported as
errors (Figure 21). Examples include the central atom of allenes and other odd
cumulenes, and the sulfur atom of sulfoxides where the lone pair is misconstrued
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Figure 21: Invalid uses of atom parity. Only configuration about tetrasubsti-
tuted, tetrahedral atoms is supported. The marked atoms (cyan background)
lack four substituents, tetrahedral geometry, or both. Assigning a non-default
atom parity to any of them would be an error.

as a substituent.
Configurational descriptors may be assigned without regard to bond order.

In other words, single, double, triple, and PPBs can all be present. The only
requirement that must be satisfied by a central atom is an atomic neighbor
count of four, or three when a virtual hydrogen is present.

It is sometimes useful to manipulate a configuration in a way that preserves
the relative three-dimensional positioning of neighbor atoms. This process is
called transformation. Five operations suffice to transform any configuration
into any other (Figure 22):

• Virtualize. Replaces an atomic first hydrogen child with a virtual hydro-
gen.

• Reify. Replaces a virtual hydrogen with an atomic hydrogen first child.

• Swap Children. Exchanges any two children while simultaneously toggling
the configurational descriptor.

• Slide Down. Sets the parent node as the first child. Disabled if virtual
hydrogen is present.

• Slide Up. Sets the parent of a parentless node as the first child. Disabled
if virtual hydrogen is present.

Not all tetracoordinate atoms will be stereocenters. A stereocenter is an
atom whose “ligand permutation produces stereoisomers,” as defined by Mislow
and Siegel [42]. The presence of four bonds around a central atom is therefore a
necessary, but insufficient condition to form a stereocenter. Molecular topology
can result in permutation that does not yield stereoisomers. The assignment of
non-default parities to such atoms should therefore be avoided.

Special handling is required for undefined stereocenters. A stereocenter is
undefined if it lacks a parity. Undefined stereocenters indicate that no informa-
tion about a central atom’s configuration is known. Either a single configuration
or a configurational mixture is present. This interpretation is consistent with
the one used by Molfile format [33].
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Figure 22: Configurational Transformations.

Syntax

A Balsa string is a sequence of zero or more characters belonging to the US-
ASCII set (Figure 9). The internal structure of a string reflects a depth-first
traversal of the corresponding molecular graph. As such, the syntax supports all
of the features of a molecular tree, including branches, cycles, and disconnected
components.

Grammar

Strings conform to an LL(1) grammar [43]. An LL(1) grammar is a context-
free grammar whose strings can be parsed one character at a time from left to
right with at most one character of lookahead. Additionally, LL(1) grammars
expand the leftmost non-terminal first. These features make LL(1) grammars
such as the one used by Balsa a good fit for manually-written recursive descent
parsers. LL(1) grammars can also be used as a basis for auto-generated parsers
through packages such as Bison [44] and ANTLR [45]. The full grammar for
Balsa strings is available as a text file in this paper’s Supporting Material.

Balsa’s formal grammar is presented as a series of production rules (“pro-
ductions”). A production defines a transformation allowed under the grammar.
These transformations collectively define the set of valid Balsa strings. Pro-
ductions can be used in the forward direction, when writing a string, or in the
reverse direction, when reading a string.

A production is composed of two kinds of elements: terminals and non-
terminals. A terminal is a character literal (e.g., “A”). A non-terminal is a
reference to another production. This reference occurs through a name, which
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Table 9: Balsa’s US-ASCII Derived Character Set.

Code Character Code Character Code Character
35 # 67 C 92 \
37 % 68 D 93 ]
40 ( 69 E 97 a
41 ) 70 F 98 b
42 * 71 G 99 c
43 + 72 H 100 d
45 - 73 I 101 e
46 . 75 K 102 f
47 / 76 L 103 g
48 0 77 M 104 h
49 1 78 N 105 i
50 2 79 O 107 k
51 3 80 P 108 l
52 4 82 R 109 m
53 5 83 S 110 n
54 6 84 T 111 o
55 7 85 U 112 p
56 8 86 V 114 r
57 9 87 W 115 s
61 = 88 X 116 t
64 @ 89 Y 117 u
65 A 90 Z 121 y
66 B 91 [
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appears to the left of a separator (::=) in a production. To the right of a
separator appear the allowed terminals and non-terminals for the production.

Consider a hypothetical language composed of variable-length sequences of
the lowercase letter “a”. Such a language could be cast as the following two
productions:

text ::= a*
a ::= "a"

The quantifier (*) indicates that a text in this language consists of a sequence
of zero or more instances of the production <a>. This production in turn
is defined as a lowercase letter (“a”). Therefore, valid texts in this language
include the empty string, “a”, “aa”, and “aaaaaa” to name a few.

Atom

Atoms carry most of the information in a string. The atom non-terminal can
be encoded using one of four productions.

atom ::= star | shortcut | selection | bracket

The first production, star (“star atom”), is comprised of one terminal value,
the asterisk character (*). This “star atom” represents an atom in which every
attribute assumes its default value.

star ::= "*"

The next atomic production, shortcut, is a non-terminal selected from the
list: “B”; “C”; “N”; “O”; “P”; “S”; “F”; “Cl”; “Br”; and “I.” An atom encoded
in this way (“shortcut atom”) receives the corresponding symbol as the value for
the element attribute. All other attributes retain their default values, except
hydrogens, which is set to Implicit.

shortcut ::= "B" "r"? | "C" "l"? | "N" | "O" | "P"
| "S" | "F" | "I"

The third atomic production, selection (“selection”), is a non-terminal
selected from the list: “b”; “c”; “n”; “o”; “p”; and “s.” An atom encoded in
this way (“selected shortcut atom”) assigns the corresponding capitalized atom
symbol to the element attribute, sets the selected attribute to true, and
sets the hydrogens attribute to Implicit. All other atomic attributes retain
their default values.

selection ::= "b" | "c" | "n" | "o" | "p" | "s"

The fourth and most complex atomic production is bracket (“bracket
atom”). Bracket atom can set any atomic attribute. This atomic production
must be used for any atom whose parity, isotope, or charge attributes
assume non-default values, or whose hydrogens attributes equals anything
other than Implicit. Attributes not set within the bracket production rule
will leave the corresponding atomic values in their default states.
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bracket ::= "[" isotope? symbol parity?
virtual_hydrogen? charge? "]"

The value of a bracket atom’s isotope attribute is determined by the op-
tional isotope non-terminal. It consists of between one and three digits en-
coding the integers 1-999. Leading zeros (e.g., “007”) are disallowed.

isotope ::= nonzero digit? digit?

The values of a bracket atom’s element and selected attributes are
determined by the symbol production (“symbol”). Three non-terminal variants
are supported. These three variants influence the element and selected
attributes in different ways. The star variant leaves both attributes as their
default values. The element variant assigns the element attribute to the
corresponding value while leaving the selected attribute as its default value.
The selection non-terminal sets the element attribute to the corresponding
element and the selected attribute to true. For example, the selection
sequence “p” would assign the atomic element and selected attribute to P
and true, respectively.

symbol ::= star | element | selection

Given the large number of variants within the element non-terminal, the
following production only defines the first several. For a complete list of variants,
see the full grammar in the Supporting Material.

element ::= "A" ( "c" | "g" | "l" | "m" | "r" | "s"
| "t" | "u" )
| "B" ( "a" | "e" | "h" | "i" | "k" | "r" )?
/* etc. */

The parity attribute of a bracket atom is determined by the parity
non-terminal. Allowed values are “@” and “@@,” corresponding to the values
Counterclockwise and Clockwise, respectively. A simple mnemonic cor-
relates the counterclockwise swirl of the at sign with counterclockwise rotation.

parity ::= "@" "@"?

The hydrogens attribute of a bracket atom is controlled by the
virtual hydrogen non-terminal. It is comprised of the terminal “H” followed
by an optional nonzero non-terminal. A digit appearing after the “H” terminal
sets hydrogens to the corresponding virtual hydrogen count. If no digit is
present, hydrogens is set to one. The virtual hydrogen count is set to zero by
omitting the virtual hydrogen non-terminal.

virtual_hydrogen ::= "H" nonzero?

The charge production sets the charge attribute of a bracket atom. This
non-terminal begins with either the plus or minus terminals (“+” and “-” respec-
tively) and ends with an optional nonzero non-terminal that sets the charge
multiplicity. A plus terminal (“+”) followed by anything other than a nonzero
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digit sets the charge attribute to one. Likewise, a minus terminal (“-”) fol-
lowed by any character other than a nonzero digit sets the charge attribute
to minus one. Charge values of zero are obtained by omitting the charge
production.

charge ::= ( "+" | "-" ) nonzero?

Values not defined within a bracket production leave the atomic attributes
of the atom built from it in as their default values. For example, the bracket se-
quence “[C@H+]” lacks the isotope non-terminal so the value of the isotope
attribute will remain None. Similarly, the bracket sequence “[13CH+]” lacks the
parity non-terminal, so the corresponding parity attribute remains None.

Sequence

Children are added to an atom through the sequence non-terminal (“se-
quence”). A sequence starts with a required atom non-terminal. If an allowed
non-terminal does not follow, the corresponding atom will have no children.
Allowed non-terminals will be one of: union; branch; or gap.

sequence ::= atom ( union | branch | gap )*

The union non-terminal consists of an optional bond non-terminal followed
by a mandatory non-terminal selected from bridge or sequence. If either of
these latter non-terminals are detected but bond is not, the resulting bond is
elided.

union ::= bond? ( bridge | sequence )

The bond non-terminal supports five variants (“-,” “=,” “#,” “/,” and
“\”). The first three (“-,” “=,” and “#”) set the order attribute of a bond
to one, two, or three, respectively. The last two terminals (“/” and “\”) set
the order attribute to 1 while also setting the direction attribute to Up or
Down, respectively.

bond ::= "-" | "=" | "#" | "/" | "\"

A sequence can contain a union, which in turn can contain a sequence. This is
an example of recursion, albeit transitive. Although left-recursion is disallowed
in LL(1) grammars, right recursion of the kind in sequence is allowed. Right
recursion also occurs within the union and branch non-terminals.

The bridge non-terminal (“bridge”) can take two forms. A nonzero non-
terminal can be used, enabling single-digit bridge indexes in the range one
through nine, inclusive. Double-digit bridge indexes, supporting the values ten
through 99 inclusive, are available by prepending the percent character (%).
For the latter variant, leading zeros are disallowed, meaning that the sequence
“%07” must generate an error.

bridge ::= nonzero | "%" nonzero digit
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As noted previously, the purpose of a bridge is to create a bond without
creating a connection within the molecular tree (see: Molecular Tree). A bridge
will most commonly be used to encode a ring-closure bond, but can be used
anywhere within a string. The only requirement is that a bridge must be paired
with another bridge having the same index. To prevent overflow, a bridge index
may be reused.

An alternative to union within a sequence is the branch non-terminal
(“branch”). Like union, branch joins a parent and child node. Wrapped by
opening and closing parenthesis terminals (“(” and “)” respectively), branch
encodes a sequence that may or may not be bonded to its parent. Bonding
occurs if the bond non-terminal is included. Alternatively, the sequence will
not be bonded if the dot non-terminal (“.”) appears. If neither bond nor gap
are present, parent and child are connected through an elided bond.

branch ::= "(" ( dot | bond )? sequence ")"

The third option for adding atoms within a sequence is the gap non-terminal
(“gap”). A gap consists of a dot production followed by a sequence produc-
tion. The gap non-terminal serves the same purpose as it does within a branch:
to enable connection within a molecular tree without creating a bonding rela-
tionship.

gap ::= dot sequence

Having defined sequence, it’s now possible to define a string as an optional
sequence. In other words, a Balsa string is either empty or contains a sequence.
A string without a sequence encodes a molecular tree having zero nodes and
zero edges.

String ::= sequence?

Implementation

Although Balsa is a simple language at its core, a number of factors can com-
plicate implementation. Some points may be apparent from the description of
syntax and semantics, but others may not be visible at such close range. As an
aid to software quality, the following section addresses common issues that arise
during the development of software to read and/or write Balsa strings.

Reading Strings

The goal of a Balsa reader is to transform a string input into a data structure
output consistent with the string’s content. The output data structure can take
many forms. For example, a reader can merely validate a string by returning
a boolean type. A more sophisticated reader can return a molecular graph
capturing all atom and bond attributes and connectivity relationships.

Balsa strings are read one character at a time starting at the leftmost char-
acter and finishing at the rightmost character. The first character sets an initial
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Table 10: Stack and hub for reading the string “C(N*)O”.

Step Character Action Hub Stack
1 “C” create atom C
2 “(” push hub to stack C C
3 “N” create, connect atom N C
4 “*” create, connect atom * C
5 “)” pop atom, update hub C
6 “O” create, connect atom O

reader state, and each subsequent character causes a state transition. The cu-
mulative application of these state transitions yields the data structure to be
returned.

Readers that capture atom-atom connectivity will typically maintain a ref-
erence to a hub. A hub is an atom to which the next node will be connected.
On reading the first complete atom non-terminal, the corresponding atom is
constructed and set as the hub. Subsequently processing a complete union,
branch, or gap non-terminal triggers three changes: (1) a child node is con-
structed; (2) the child is connected to the current hub, unless a dot non-terminal
intervenes; and (3) the hub is replaced with the child node if it is an atom.

The presence of a branch adds some nuances over a union. The leading
open parenthesis terminal (“(”) signifies that the current hub will later be re-
exposed. This operation can be supported by a stack (Table 10). A stack is
a data structure that allows items to be added individually (“pushed”) and
removed (“popped”) in the reverse order of addition. At the start of a branch,
the current hub is pushed to the stack. At the end of the branch, the stack is
popped and its top value is assigned as the new hub.

Bridge bonds must be tested for compatibility (Figure 23), a task complicated
by the presence of PPBs. A three-part test can be used:

1. An elided bond is compatible with any other bond.

2. A bond with a non-default direction is only compatible with an elided
bond or a bond of opposite direction.

3. A bond with default direction is only compatible with an elided bond or
a bond of identical order and default direction.

These tests can be implemented using a 100-element array. The first occur-
rence of a bridge causes the bridge bond’s attributes to be copied to the array
at the bridge index. The second occurrence of a bridge causes the entry to be
removed. The attributes stored in the entry are then compared with those of
the current bridge bond. If the two sets of attributes are incompatible, an error
is reported.

An elided bond is compatible with any other bond (Rule 1). Unless both
bridge bonds are elided, however, the presence of compatible but unmatched
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Figure 23: Bridge bond compatibility. Two bonds with the types indicated
along the row and column headings are either compatible (green check marks)
or incompatible (red X).

bridge bonds could interfere with atom-centered computations. One solution
is to set the attributes of the elided bridge bond explicitly. The array used
for compatibility testing can be re-used to set the attributes of an unmatched
bridge bond pair.

Readers must not assume that a dot (the period terminal, “.”) implies the
presence of disconnected components. This assumption is most likely to arise in
the context of ad-hoc parsers using regular expressions, string matching, and the
like. For example, the connected molecular graph for propane can be encoded
using the string “C1C.C1”.

A reader must assume that any input string can contain errors, and take
appropriate steps to report them. The most useful errors will report a specific
cause. Some will also report one or more cursor indexes. The most common
mandatory errors are:

1. Invalid character (position). An unexpected character was encountered.
A list of acceptable characters is helpful, but not required.

2. Unexpected end-of-line. Input ended unexpectedly.

3. Unbalanced bridge (position). A bridge with a given index appears an
odd number of times.

4. Incompatible bridge bonds (position, position). The bonds to a pair of
cuts are incompatible.

5. Delocalization subgraph lacks perfect matching. Before reporting this
error, steps to remove unnecessarily selected atoms should be taken as
described in the next section.

6. Partial parity bond not allowed (position). Neither terminal of a PPB
possesses a double bond. Strings such as “C/C” and “C\C” contain iso-
lated PPBs, which are invalid. A reader encountering such strings must
report an error.
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Figure 24: Gratuitous selection. Heteroatoms are selected needlessly because
subvalence is zero in every case. Atoms selected gratuitously must be pruned
before processing the DS.

A reader may also report optional errors, including:

1. Impossible isotope. A negative implied mass number results from the
atom (e.g., “[2C]”).

2. Impossible valence. The valence at an atom is impossibly high (e.g.,
“C(C)(C)(C)(C)C”).

3. Impossible charge. An atom’s charge gives it an apparent negative electron
count (e.g., “[C+7]”).

Pruning

As noted previously, a delocalization subgraph is invalid if it lacks a perfect
matching. The one exception is when a selected atom and its associated bonds
can be deleted from the delocalization subgraph through pruning. Pruning un-
sets the selected attribute of a selected atom, removing it and its edges from
the delocalization subgraph, without corresponding promotion of any attached
bonds.

An atom must be pruned if its subvalence equals zero. None of the bonds to
such an atom can be promoted without altering the atom’s charge attribute.
Pruning the atom ensures the stability of its charge attribute, without inter-
fering with bond promotion elsewhere. Viewed from another perspective, an
atom with zero subvalence lacks unpaired electrons - at least within the narrow
boundaries of the Balsa valence model. Such atoms can only form double bonds
through changes to atomic charge.

An atom to be considered for pruning may have a non-zero charge. If so,
subvalence is computed using the isoelectronic element’s default valences. For
example, a selected nitrogen atom with a charge of +1 would use the default
valence for carbon. A selected phosphorous atom with a charge of -1 would use
the default valences of sulfur. And so on. If no default valences are found in
this way (e.g., “[c+2]”), a reader must report an error. Writers must not encode
such atoms.

Pruning becomes necessary in cases of gratuitous selection (Figure 24). Gra-
tuitous selection is the selection of an atom whose subvalence is zero and which
therefore can never become part of a DS. This can happen when style, tradi-
tion, or convenience override symmetry concerns. Consider a string representing
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Figure 25: Depth-first traversal. Traversal of a disconnected, cyclic molecular
graph (top) in depth-first order leads to a tree containing one bridge and one
gap (bottom).

furan in which all atoms are selected (e.g., “c1ccco1”). Selecting any atom is
unnecessary because furan does not exhibit DIME. This applies doubly to the
the oxygen atom because it lacks an unpaired electron and so will never lead to
DIME. It is nevertheless convenient to select the carbon atoms because all bonds
can then be elided. The resulting representation (e.g., “c1cccO1”) leads to a
delocalization subgraph with a perfect matching and hydrogen counts consistent
with the original encoding.

Writers are encouraged, but not required, to avoid gratuitous atom selection.
Readers, however, must always be prepared to prune.

Writing Strings

Whereas a reader transforms a string into a data structure, the goal of a writer
is the opposite: to transform a data structure into a valid string. The data
structure will most often take the form of a molecular graph or tree, but other
forms are possible. For practical reasons, the input data structure is likely to
resemble the output from a reader. This enables strings to be encoded and
decoded with minimal intermediate translation.

Regardless the input data structure’s form, it must be traversable in depth-
first order (Figure 25). A depth-first traversal operates over a set of nodes
associated in pairwise fashion by a set of connectivity relationships, which are
typically edges. Traversal proceeds by successively replacing each node as the
center of focus, or root. Each new root is chosen from the untraversed neighbors
of the current root. Eventually all nodes are processed, ending the traversal.

A writer intercepts the depth-first traversal of an input data structure to
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Table 11: Writing a string with the aid of a stack.

C

N

S

I

F

O

Step Action Stack
1 root C “C”
2 open “C”,“(”
3 extend N “C”,“(N”
4 open “C”,“(N”,“(”
5 extend S “C”,“(N”,“(S”
6 extend I “C”,“(N”,“(SI”
7 close “C”,“(N(SI)”
8 extend F “C”,“(N(SI)F”
9 close “C(NSI)F)”
10 extend O “C(NSI)F)O”

write an output string compatible with the formal grammar. There are no
requirements around style. For example, it’s equally valid to represent the
carbon atom of methane using either implicit or virtual hydrogens (e.g., “C”
or “[CH4]”). Single bonds may be elided or not, all other things being equal.
Similarly, selection may or may not be used. Although an organization may
seek to standardize certain styles of string output, a reader must process any
string that is syntactically and semantically valid.

As described previously, the branch non-terminal encodes branches. A use-
ful tool for encoding branches is a stack (Table 11). A writer begins by pushing
the current branch onto the stack and extending it. When a new branch is en-
countered, it is pushed to the stack and extended. When the branch terminates,
the current branch is popped and its contents are appended to the stack’s new
top item.

Writers should consider the non-negligible costs of atom selection. Algo-
rithms for selection are likely to involve the perception of cycles, and so could
exhibit superlinear time complexity. Often, a reader must perform a global de-
selection to arrive at a localized Lewis representation, which at the very least
requires pruning and a maximal matching procedure. In other words, atom
selection imposes two sets of costs: one on the writer and the other on every
subsequent reader forever into the future.

Writers must ensure that all selected atoms can be deselected. Consider
pyrrole, erroneously encoded with a selected nitrogen atom (e.g., “n1cccc1”).
The nitrogen atom can not be pruned because of its non-zero subvalence (3 - 2).
The DS therefore contains all five atoms and all five bonds. A perfect matching
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does not exist. A reader receiving such a string must report an error. To avoid
this outcome, a writer can consume the subvalence by adding a virtual hydrogen
(e.g., “[nH]1cccc1”). The subvalence of nitrogen in this case is zero, so the atom
can be pruned. Doing so leaves a DS with four atoms, four edges, and a perfect
matching. Readers will therefore consider the string valid. The larger question
of gratuitous selection nevertheless remains.

Working with Molecular Graphs

Molecular trees offer some important benefits, but they are used less often than
molecular graphs. Sooner or later, interconversions will be required. Readers
will need to transform a tree into a graph, and writers will need to transform
a graph into a tree. Although there are only three main differences between
molecular trees and molecular graphs, these differences can lead to complex
reconciliations during transformation. Understanding them is the key to lossless
conversion.

The first difference is the simplest to account for: atoms in a molecular tree
have two kinds of edges: the one entering from an optional parent; and the zero
or more exiting to children. A molecular graph, in contrast, maintains a single
set of edges for an atom. Transformation of an atom in a tree to one in a graph
must account for a possible inbound bond. The converse transformation must
place the inbound bond.

The second difference is that molecular trees have gaps, but molecular graphs
do not. Therefore, an edge may or may not represent a bonding relationship.
Transformation from tree to graph must recognize the presence of gaps and
place no corresponding bond. Gaps can occur at any outbound edge, even those
within branches. Transformation from graph to tree must locate an appropriate
pair of atoms to host the gap. A convenient pair would be the last atom of the
first connected component and the first atom of the next connected component,
but other choices are possible.

The third difference leads to the most complex reconciliation: molecular trees
have bridges but molecular graphs do not. When transforming tree to graph,
the two sides of a bridge bond must be identified, spliced, and added to the
graph. When transforming graph to tree, a ring closure bond must be detected
and split into a pair compatible bridge bonds. Compounding the problem in
either sense of conversion is index reuse. Transformation from graph to tree will
reuse gap indexes to avoid overflow. Transformation from tree to graph must
account for the possibility that gap index reuse has occurred.

Transformation of graph to tree can be aided by a pool (Tabe 12). A pool
issues a bridge index given an unordered pairing of atomic identifiers. The
bridge index will not be re-issued until the pool receives the same pairing again.
A pool is used during a depth-first traversal of a molecular graph, where the
presence of a cycle is indicated by the discovery of an index that has already
been traversed. On encountering a cycle, a bridge index is requested from the
pool by submitting the source and target atomic indexes as an unordered pair.
The bridge index is then used to construct the first half of the gap bond. Later,
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Table 12: A pool manages bridge indexes during the transformation of a molec-
ular graph.

0

1
2

34
6

5

Step Edge Cycle Found Return Value Action
1 (0,1) No None
2 (1,2) No None
3 (2,3) No None
4 (3,0) Yes 1 Reserve 1
5 (3,1) Yes 2 Reserve 2
6 (1,3) Yes 2 Release 1
7 (1,4) No None
8 (4,5) No None
9 (5,6) No None
10 (6,4) Yes 2 Reserve 2
11 (4,6) Yes 2 Release 2
12 (0,3) Yes 1 Release 1

the same bond will be traversed in the opposite direction. When it is, a gap
index is requested from the pool by re-submitting a source and target index
pairing. Doing so yields the bridge index, while simultaneously freeing it for
later use.

Compatibility

For maximum compatibility with existing software, Balsa was designed as a
language subset of SMILES. A language subset contains some of the syntax
and semantics of its parent language, but adds none of its own. In principle
this means that a feature present in Balsa should also be present in SMILES.
Conversely, a feature present in SMILES may or may not also be present in
Balsa.

Language subsets have ample precedent in computer science. One exam-
ple is MISRA C [46], a subset of the C programming language that aims to
eliminate “known undefined or otherwise dangerous behavior” [47]. Another
example is the subset of JavaScript described by Crockford whose purpose is
to “chip away at the features that are not beautiful until the language’s true
nature reveals itself.” [48]. Language subsets arise for two main reasons. First,
designing a language presents many opportunities to introduce errors small and
large. Second, popular languages inevitably bring with them many users with
diverse problems that demand new features. Some of these features cause fu-
ture problems of their own. A language subset can improve both situations by
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eliminating the most problematic features.
Although similar considerations apply to SMILES, its case is different in

one important way: SMILES was never publicly described with high precision.
Overviews of the language have been published by both Weininger and Daylight.
But the kind of technical documentation suitable for software development was
never made public. Both the OpenSMILES and SMILES+ initiatives cite this
shortfall as motivation.

Nevertheless, several SMILES software implementations have been released.
Each one represents a unique set of decisions about how to reduce the published
broad SMILES descriptions to a specification detailed enough for software de-
velopment. Some implementations have themselves been reverse-engineered for
clues. The Daylight implementation in particular is sometimes considered a
de facto SMILES specification. Unfortunately, access to this implementation is
restricted by commercial licensing, as is the case with several SMILES imple-
mentations. Moreover, reverse engineering is unlikely to address every question
because of the vast search space defined by SMILES. Although some implemen-
tations are released under Open Source licenses, they are neither authoritative
nor unanimous in their interpretations.

A publicly-available and precise subset of SMILES would offer a new way to
address the problem. Such a subset should be interpretable by all existing soft-
ware without modification. Moreover, most strings written by existing software
would be interpretable by software based on the language subset. Because its
description would be both public and precise, the language subset could serve as
the basis for many implementations, with strong consensus around both syntax
and semantics.

Unfortunately, the choice of the Balsa base language is fraught with difficulty
on technical, historical, and cultural grounds. Simply put, the term “SMILES”
has come to mean different things to different people. To some, SMILES is
the language defined in public documentation. To others, SMILES is the Day-
light implementation source code. Some may view SMILES as the collective
definitions contained in both published documents and all software. To others,
SMILES isn’t even definable.

These problems can be avoided by considering as a base language not
SMILES itself, but a proto-language. A proto-language is a hypothetical lan-
guage from which a family of languages can be derived. A suitable SMILES
proto-language would ideally contain all of the features consistent with the
many ways in which the term “SMILES” is used today.

Accordingly, Balsa’s base language is “ProtoSMILES,” a SMILES proto-
language. ProtoSMILES was identified through a process of elimination that
started with every SMILES document ever published and every SMILES soft-
ware implementation. The field was narrowed through two restrictions: (1)
the source must be authoritative; and (2) the source must be publicly acces-
sible. “Authoritative” in this context means that the source was created by
either Weininger himself or Daylight, who alone can speak most authoritatively
about what SMILES is. The requirement for public accessibility ensures that
claims of compatibility can be tested. The following documents were identified
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as candidate ProtoSMILES sources:

• Weininger’s report to the US Environmental Protection Agency (“The
Report”) [21].

• Weininger’s original publication (herein “The Article”) [1].

• Weininger’s 2003 book chapter, revised in 2008 (“The Chapter”) [22].

• An online manual maintained by Daylight (“The Manual”) [23].

• The Daylight’s toolkit, which implements a SMILES reader and writer
(“The Toolkit”) [7].

The Toolkit was eliminated for three reasons. First, its source code is not
available, forcing an indirect reverse-engineering approach to language defini-
tion. Second, as a product of the company Weininger started, the Toolkit is
likely to recapitulate the other sources. Third, as a commercial product with-
out source code, the Toolkit may not always be available in the future.

The Report was eliminated mainly because the contents of this older doc-
ument contradict at least two of the remaining sources (The Article and the
Chapter). The Report contains no mention of bracket syntax, using markedly
different notation instead. The Report also supports unusual characters in-
cluding the exclamation mark (!). Unspecified “special states” for nitrogen-
containing atoms are also supported by the Report.

The Manual was disregarded as a ProtoSMILES source because it merely
restates content already present in The Paper and The Chapter. Removing
this source simplifies the construction of ProtoSMILES without changing its
definition. A secondary consideration was the possibility that updates to this
web page could change the meaning of ProtoSMILES. However, web archives
indicate that neither styling nor content of the Manual have changed in at least
ten years.

Analysis of The Article and The Chapter revealed the former to contain
all of the material in the latter. Moreover, The Chapter contains information
not present in The Article. Therefore, the Paper was eliminated as a basis for
ProtoSMILES.

This process of elimination left just The Chapter as the basis for Proto-
SMILES. The remainder of this section compares and contrasts ProtoSMILES
with Balsa. The main difficulty with this approach is that the work defining
ProtoSMILES occasionally contains contradictions. These will be noted when
relevant.

ProtoSMILES defines a fixed set of chemical element symbols that even at
the time of publication was partially obsolete [22, p. 83]. The symbol for ele-
ment 105 is given as Ha (Hahnium), despite IUPAC’s resolution of the naming
controversy of the element in favor of the symbol Db (Dubnium) years prior [49].
Balsa therefore disallows the symbol Ha. To maintain compatibility with Proto-
SMILES and avoid future changes to Balsa’s grammar, elements having atomic
number greater than 105 are also excluded.
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ProtoSMILES defines a recursive grammar for branching which, perhaps
without the knowledge of the author, allows sequentially nested parentheses [22,
p. 86]. Balsa disallows such constructs (e.g., “*((*))*” and “*(((*)))*”).

ProtoSMILES supports reactions but Balsa does not. Specifically, the
greater than symbol (>) is not a valid Balsa character. This restriction pre-
cludes strings such as “*>>*”. Furthermore, Balsa lacks the “map” attribute,
used for atom-atom mapping in reactions, and its accompanying syntax.

Balsa only supports two stereodescriptors, encoded with the terminals “@”
and “@@.” ProtoSMILES provides a recursive grammar for stereodescriptors
that allows multi-symbol descriptors such as “@@@” and “@@@@” [22, p. 94].
ProtoSMILES also supports non-tetrahedral descriptors including “@AL1,”
“@AL2,” “@1,” and “@SP1.” None of these are supported by Balsa. Nor
does Balsa support the application of tetracoordinate stereodescriptors to odd
cumulenes. These other forms of atomic configuration are relatively rare. Their
inclusion in Balsa would add substantial cost for little gain.

ProtoSMILES supports “aromatic bonds” (“:”), but Balsa does not. Despite
clear inclusion within the syntax of ProtoSMILES, no precise guidance on using
aromatic bonds is provided. Weininger notes that “Adjacent atoms without an
intervening bond symbol are connected by a valence-dictated bond (typically a
single or aromatic bond) ‘-’ (single) and ‘:’ (aromatic) bond symbols may always
be omitted on input” [22, p. 85]. This passage implies that aromatic bonds serve
no purpose. Accordingly, Balsa does not allow them and the syntax does not
include the colon symbol (:).

ProtoSMILES sets no limits on the atoms that can be marked as selectable
(i.e., “aromatic”), but Balsa does. As described previously, pruning the DS
requires a method to determine whether or nor an atom is subvalent (see: Va-
lence and Subvalence). Making this determination requires at least one default
valence. The only reasonable way to allow selection of all atoms regardless of
associated element would be to provide default valences for them. As a result,
only those atoms associated with a subset of elements may be selected (“B”,
“C”, “N”, “O”, “P”, “S”). This list is a subset of the elements whose default
valences are defined. Halogens were excluded because they rarely appear in
rings. This restriction only marginally limits the capabilities of Balsa because
atoms other than those supported are rarely involved in DIME.

It’s unclear whether ProtoSMILES allows a virtual hydrogen count on hy-
drogen itself. Weininger notes that “explicit hydrogen specification is required”
in the case of “hydrogens connected to other hydrogens, e.g. [H][H], molecular
hydrogen” [22, p. 97]. This may reflect an erroneous belief that parsers would
be incapable of processing the implied strings (e.g., “[HH]”). To be clear, Balsa
supports virtual hydrogen counts on all atoms.

ProtoSMILES ascribes ambiguous meaning to gaps. As noted by Weininger,
“... In terms of the valence model being represented, the dot literally represents
a bond of formal order zero: the atoms on either side of the dot are explicitly
not bonded to each other.” [22, p. 88]. Other statements appear to contradict
this statement. Balsa explicitly disallows the zero bond order interpretation.

ProtoSMILES assigns no explicit upper or lower bounds to numerical atomic
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attributes. These boundaries are nevertheless crucial for implementors, who
must determine the data types necessary to efficiently prevent underflow and
overflow. For this reason, Balsa sets both upper and lower bounds, respectively,
on the following atomic attributes: isotope (0 < value <1000); charge (-10,
<value <10); and hydrogens, 0 ≤ value <10). Although it might be argued
that lower bounds on physical quantities such as isotope and hydrogen count
should be implicit, the lack of precision forces implementors to improvise, which
can lead to divergent behavior. ProtoSMILES places no upper bound on the
charge notation (e.g., “++” and “--”): “. . . ‘+’ meaning +2 . . . ” [22, p. 94].
Due to their redundancy, Balsa disallows duplicated plus and minus characters
(+ and -, respectively) within bracket atoms.

Balsa provides a few semantic clarifications not fully addressed in Proto-
SMILES. A detailed algorithm for determining implicit hydrogen count is pro-
vided, together with the required valence table. Unlike ProtoSMILES, Balsa
explicitly considers the case of computing implicit hydrogen counts on selected
atoms. Balsa also provides detailed algorithms, absent in SMILES, for selection
and deselection. These are based in graph theory rather than the ambiguous and
overloaded chemical concept of “aromaticity” used in ProtoSMILES. Uniquely,
Balsa introduces the concepts of “pruning” and “gratuitous selection.” Proto-
SMILES does not specify those bonds that can be promoted during deselection,
but Balsa does. ProtoSMILES does not restrict partial parity bonds to those
atoms also possessing at least one double bond, whereas Balsa does. Finally,
Balsa syntax is based on a formal grammar and tooling rooted in decades of
computer science research, whereas ProtoSMILES syntax is based for the most
part on imprecise natural language descriptions and only a partial formal gram-
mar.

Compatibility between Balsa and ProtoSMILES is summarized in Table 13.
Barring elements of ProtoSMILES that are either underspecified or internally in-
consistent (entries marked “maybe”), Balsa can be seen to be a subset of Proto-
SMILES. Output from Balsa writers should therefore be readable by SMILES
readers. However, output from SMILES writers may or may not be readable by
Balsa readers. Balsa can therefore be characterized as forward compatible with
ProtoSMILES [50].

Discussion

Balsa’s main advantage as a molecular serialization format is high information
density. The most common atom types can be represented with just one char-
acter. The worst case atom, using every available atomic attribute, requires 14
characters. The most common bond types can be encoded implicitly. In the
worst case one character per bond is required.

These metrics compare favorably with alternatives. Consider the Molfile
(V2000) format. 32 characters per atom are required in the best case, and 51
characters in the worst. All bonds, regardless of type, require between nine
and 12 characters. Atomic charges and isotopes typically require additional
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Table 13: Some differences between ProtoSMILES and Balsa.

Feature ProtoSMILESa Balsa
element symbol Ha yes no
multiple branching (e.g., “*((*))*”) yes no
reactions using greater than symbol (>) yes no
atomic “map” attribute yes no
extended stereodescriptors (e.g.,
“@OH1”)

yes no

use of stereodescriptors on odd cumu-
lene centers

yes no

virtual hydrogen count on hydrogen
(e.g., “[HH]”)

maybe yes

gaps are bonds of “formal order zero” maybe no
unbounded numerical atomic properties yes no
atoms associated with any element are
selectable

yes no

non-elided bonds may be promoted dur-
ing selection

maybe no

isolated partial parity bond yes no
repeated charge notation (e.g., “++”
and “--”)

yes no

aromatic bond (“:”) yes no

aValues of “maybe” indicate underspecified and/or internally inconsistent features.
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characters.
The information density of Balsa strings makes them attractive for sev-

eral applications. In memory-constrained environments such as those found on
handheld devices and networks, many more Balsa strings can be present than al-
ternative encodings. In-memory structure search over large collections becomes
feasible. Because a string often fits within one line on a terminal, Balsa can be
used for data entry in manual interactive shells such as a real-eval-print loops
(REPLs) or notebooks.

Another advantage is lossless interconversion with other serialization for-
mats. The line notation InChI might appear to compete with Balsa in this sense.
The authors of InChI have noted that InChI is not a solution to the molecular
serialization problem but rather an identifier [51]. The reason presumably lies
with the fact that InChI uses concepts such as hydrogen delocalization that are
uncommon elsewhere. To date, no third-party reader or writer of InChI has
been reported.

Despite its information density, Balsa can faithfully encode and decode most
of what chemists would consider “organic molecules.” This is evidenced by the
widespread presence of Balsa strings within large, public-facing databases such
as PubChem,[9] ChEMBL,[12] ChEBI,[10] and others.

Balsa’s compact representation requires some tradeoffs around expressive-
ness. Multi-atom bonding is not supported beyond what’s available through the
delocalization subgraph. As a result, many bonding arrangements such as those
found in organometallics and delocalization-stabilized ions can not be encoded.
Zero-order bonds are not supported. Only four-coordinate, tetrahedral stereo-
centers can be encoded, which precludes many forms of chirality such as helical
chirality, all forms of non-tetrahedral stereochemistry, and lone-pair tetrahedral
centers. Conformational restrictions other than those found in isolated double
bonds are not supported, precluding important molecules exhibiting atropiso-
merism for example. Formats such as CDXML and molfile support enhanced
stereochemical features enabling the differentiation of various kinds of partial
stereochemical information, but Balsa does not.

Broader expansion of Balsa’s capabilities could be possible through metafor-
mats. A metaformat embeds one or more Balsa strings within a surrounding
serialization format. For example, two- or three-dimensional coordinates could
be associated with each atom through a metaformat that includes a dictionary
mapping implicit atomic index to coordinate. An implicit atomic index could in
turn be based on node order. Collections of atoms or bonds could likewise be en-
coded to replicate the enhanced stereochemistry features of other formats. And
so on. However, the utility of such extensions should be weighed against Balsa’s
main value proposition: high information density. An application attempting
to use a verbose metaformat may benefit from adopting a better-suited format
instead.

Setting aside the many technical and usability issues a metaformat would
raise, versioning is likely to play an important role. Balsa itself lacks any mech-
anism to convey the concept of version. This stands in contrast to InChI, which
not only encodes a version identifier, but has done so from its first release.
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Adding a version identifier would, unfortunately, break compatibility with the
large number of existing SMILES software. Metaformats offer an opportunity
to address this limitation.

The most noteworthy feature of Balsa is its compatibility with SMILES. Con-
temporary SMILES implementations will be able to read and write Balsa strings
— at least to a point. Incompatibilities will arise from three main sources: (1)
those features of SMILES that Balsa has deliberately omitted; (2) those as-
pects of the SMILES language that are incompletely-specified, ambiguous, or
self-contradictory; and (3) those features of SMILES that were deliberately dis-
regarded by implementations.

The availability of a minimal yet highly functional, fully-specified core lan-
guage offers many opportunities to improve data quality. One of the most im-
portant will be an open reference implementation, the design and source code of
which are underway. A freely-available reference implementation in turn makes
automated validation suites possible. These suites can improve data quality by
reporting syntax and semantic differences among implementations, preferably
before release. A reference implementation taken together with the guidelines
for readers and writers in this paper should make it possible to write software
that conforms to a very high level of precision, regardless of programming lan-
guage or paradigm. Given verified implementations, performance optimizations
can be considered. The existence of a core language specification should also aid
standardization efforts, either for Balsa itself, or SMILES. Finally, the develop-
ment of better line notations is only possible given a thorough understanding
of the scope and limitations of existing options. Here, metaformats could offer
a bridge from the present to the future.

Conclusion

This paper describes Balsa, a compact molecular serialization format designed
to be forward compatible with SMILES. Constitutionally, Balsa can encode
molecules conforming to the electron-pair bonding model. In the event of unde-
sired symmetry artifacts due to delocalization, Balsa offers a mitigation based in
graph theory. Conformational isomerism of alkenes is supported by partial par-
ity bonds. The configurations of tetracoordinate, stereogenic atoms are encoded
through the use of a parity enumeration and conventions around its use.

Balsa’s syntax is described in detail through a formal grammar. This method
concisely summarizes the complete set of strings that could be considered syn-
tactically valid Balsa representations. The formal grammar was created for
either direct use with an automated parser generator or as a blueprint for a
hand-written recursive-descent parser.

The complete set of rules needed to interpret Balsa’s syntax are described
in detail. This is a crucial component of the language’s definition because Balsa
achieves its information density in part by favoring convention over encoding.
As an aid to difficult cases, guidelines for readers and writers are included.

As a language subset, Balsa can be used with a wide range of SMILES soft-
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ware today. In this sense, Balsa may seem to offer nothing new or even of value.
However, Balsa has been defined at a level of precision that SMILES never
was. This difference makes it possible to use Balsa in unique ways. Open refer-
ence implementations and validation suites can now be developed and deployed.
Families of extensions can be built, each one based on the same unambiguous
foundation. Formal standardization becomes more feasible given detailed refer-
ence material on which to draw. Finally, it is only through the clear demarcation
of boundaries that the frontier becomes visible.
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