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Abstract 

The development of analytical techniques that decode chemical information in complex 

biochemical samples to discriminate different structural components may open the way for 

several new findings.  In this study, principal component analysis (PCA) is carried out using 

a novel coding approach through a Matlab interface that provides a transparent access to 

multivariate analysis of Raman mapping datasets. Here, we illustrated the efficacy of this 

method to extract meaningful results from Raman images of Cannabis sativa trichomes. A 

large dataset of Cannabis trichome comprising of 441 Raman spectra was examined for the 

first time using our OpenPCA. By mapping the chemical distribution in the trichome, we 

could locate the secretary vesicles in the generated PC score curves from the Raman 

spectrum. Black-box PCA solutions available in commercial software can be limited by rigid 

input interfaces which may prevent obtaining information by tuning the PCA analysis on 

selected wavenumber ranges. The OpenPCA scripts facilitate the task of obtaining key 

information from widely distributed range of wavenumbers that are characteristic to a 

specific cannabinoid, namely Δ9-THC and CBD. Overall, the PCA-coding algorithm shows 

advantages in decoding Raman spectrum which could be extended to handle all kinds of 

datasets with simultaneous spatial and chemical details. 
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1. Introduction  

Cannabis sativa from family Cannabaceae is predominantly a dioecious annual herb 

that have significant importance in the industrial and medicinal field [1].  It is widely utilized 

and consumed for manifold purposes including personal-care products, natural fungicides, 

food additives, essential oils, and medical formulations. The cannabinoids are the prime 

bioactive substance in C. sativa and are a promising therapeutic candidate for cancer 

treatment, neurological diseases, appetite disorders, and inflammation [2]. These 

cannabinoids are secreted from trichome structures which are the specialized hairs covered on 

female inflorescences. Three kinds of trichomes were observed with different morphologies, 

namely capitate-stalked, capitate-sessile, and bulbous [3]. A basal cell, secretory cells, several 

stalk cells, and large sub-cuticular storage cavity together constitute the abundantly present 

capitate-stalk of trichome that contains highest cannabinoid levels [2].  Phytocannabinoids, a 

unique group of terpenophenolics with three leading cannabinoids tetrahydrocannabinol 

(THC), cannabinol (CBN) and cannabidiol (CBD) are naturally synthesized in the trichomes. 

Δ9-THC is considered as an illicit drug as it possesses psychotropic effect and hence 

restricted in most countries [4]. However, CBD is a substance with non-psychoactive nature, 

and acts as an antagonist to THC effects. Further, CBD displays neuroprotective, anti-

rheumatoid arthritis, anti-nausea, anxiolytic, anti-spasmodic, and anticonvulsant properties 

[5].  

Despite the medicinal and economic significance of trichomes, cannabinoid levels, 

chemical profile, and its distribution in the trichomes remain uninvestigated and poorly 

understood [6]. To analyse the trichomes and to extract their chemical composition, a 

powerful non-destructive Raman spectroscopy technique was adopted, but no systematic 

information was reported on the spatial distribution of the chemical species in the plant [7, 8]. 

However, the high spatial resolution of confocal Raman micro-spectroscopy, as proved for 



instance in ref. [9] , may provide a way to obtain the chemical distribution of the cannabinoid 

substances at the micrometric scale, by probing directly samples of Cannabis, such as the 

trichomes. To assign the chemo-markers to the experimental trichome spectra, the Raman 

spectra of pure cannabinoids that are present in high levels and free of other chemicals are 

now gaining momentum and being reported in the literature (see e.g. [7, 10]). Hence Raman 

mapping is a powerful tool that would eventually allow one to detect the presence of specific 

cannabinoids, their spatial distribution and, their concentration in a sample. 

The Raman spectroscopic analysis of the trichome could be applied in several fields. 

The determination of cannabinoid levels can be employed to design a sensor by which the 

point of maximum maturation of the plant and its best harvesting time can be identified. The 

development of analytical methods for testing cannabinoid substances could display a 

potential application in law enforcement and forensic applications. In addition, according to 

the legal framework established by governments and regulatory bodies, the farmers would be 

able to distinguish between two varieties of hemp (cultivated for fibre production) or 

marijuana (cultivated for drug and medical purposes) based on the chemical threshold levels 

i.e. Δ9-THC in hemp is ≤ 0.2 % and marijuana is > 0.2 % [5].  

Despite its benefits, the decoding of large dataset of Raman spectra is an arduous task 

[11]. Normally, tens to thousands of spectra are collected from pixel scans on a sample to 

create a Raman mapping. As a result, it is often a tedious, time consuming process to decode 

this large data matrix that comprises of a multitude of signal intensities at different 

wavenumbers [12]. In this work, a sample area of 21 µm × 21 µm with a pixel size of 1 µm × 

1 µm were scanned to acquire 441 spectra as a matrix. Commonly, a wavenumber that is 

specific to a cannabinoid of interest is selected and a Raman image is mapped based on the 

varying intensity at that point. If the chosen wavenumber is a unique characteristic peak of 

the specific compound of interest, the image generated with relation to the scanned area and 



intensity is devoid of interference. The drawback behind carrying out this method in regular 

software includes the limited information associated with produced image that corresponds 

only to the selected wavenumber, low signal-noise ratio and loss of signal. Key information 

encompassed within Raman spectrum matrix is usually widely distributed throughout the 

dataset [13]. Principal component analysis (PCA) is an effective statistical method to handle a 

complex large data matrix by reducing the dimensionality and still preserving the most 

critical features [14]. However, PCA being a modern data analysis tool remain as a black box 

that is widely used but poorly understood. In this work, a novel coding approach is presented 

to introduce PCA in Matlab where the background process is observable, open and is a white 

box approach. The software coding is based on a fully algebraic approach that focuses on the 

variance-covariance matrix of the dataset and its spectral decomposition. This allows the 

easier control over the multivariate dataset, and facilitates the analysis and tuning of the right 

parameters. 

In this study, we carry out analysis of a novel dataset of C. sativa trichomes by the 

implementation of new white-box approach. This work demonstrates a label-free and non-

destructive method based on principal component analysis of the micro-Raman mapping of 

trichome to understand different structures and chemo-types along with its distribution. 

Nevertheless, this technique is not limited only to Cannabis, but could be extended widely for 

handling and investigating all kinds of natural or technological processes that deal with 

simultaneous spatial and chemical details. 

 

2. Materials and methods 

2.1 Experimental 

The Raman spectra of pure THC and CBD cannabinoids were analysed. For micro Raman 

analysis, 5 µL of the Δ9-THC solution (1 mg/mL) prepared with methanol solvent was 



dropped on a glass slide. In the case of CBD, 10 mg of pure CBD was directly used without 

any solvent to carry out Raman measurements. The Cannabis seeds were obtained from a 

Cannabis licensed distributor in Oshawa (ON, Canada). The trichomes were procured from 

the grown plant during the flowering phase. The trichome sample was used as received to 

obtain the Raman spectra. The area of the trichome scanned was over a grid of 21 x 21 points, 

with 1 μm spacing. Here, each single point Raman analysis had a duration of 10 sec with 1 

accumulation (referred as sample 1) and 10 accumulations each (referred as sample 2). 

2.2 Instrumentation 

The Raman Spectra were obtained using a Renishaw Raman instrument equipped 

with a 532 nm laser. The spectra were acquired at a laser power of 1%, with a 50x objective, 

the exposure time was 10 s, 1 - 10 accumulations, and ranged from 100 cm-1 to 4000 cm-1. 

Raman spectrum of methanol was acquired as well for control measurements.  

The fluorescence background associated with the obtained Raman spectra, especially 

with shorter wavelengths makes it harder to read. To resolve this issue, a completely 

automated software from Renisha, Windows®-based Raman Environment (WiRE), included 

with the Raman spectrometer was applied for the acquisition of the mappings and the 

removal of background signal. In addition, the WiRE has control over both Raman data 

acquisition and data processing options. Thus, the fluorescence background subtraction 

allows for a clearer visualization of the Raman data. However, numerical artifacts could also 

be introduced in this process and should be carefully noted to avoid misleading conclusions. 

2.3 PCA – as implemented in OpenPCA 

The PCA was introduced in 1933 by Harold Hotelling in the context of psicometric data 

analysis [15]. PCA has been widely applied to many fields where multivariate datasets have 

to be dealt with. However, PCA remain as a black box that is poorly understood. A novel 

coding approach is required to introduce PCA in Matlab that allows the background process 



to be observable, and modifiable. The easier approach to introduce PCA, by also taking into 

consideration its numerical implementation in Matlab, is through a fully algebraic approach 

that focuses on the variance-covariance matrix of the dataset and its spectral decomposition. 

Let us introduce first the multivariate dataset matrix Xov, which along each row stores the 

results of one multivariate observation along a given number of variables (Nv). The adopted 

notation for the dataset matrix highlights the different role of row vs. column indexes. The 

different observations are identified in the Xov matrix by the row index (o), whereas the 

different variables of each multivariate measurement (observation) are identified by the 

column index (v). In the context of spectroscopy, each row represents one spectrum, and the 

different variables are the wavenumbers at which the instrument has recorded a given spectral 

intensity (e.g., Raman intensity, or absorbance). Hence, because of the adopted notation, we 

have the following identities: 

𝑿𝑿 =  𝑿𝑿𝑜𝑜𝑜𝑜   (1a) 

𝑿𝑿𝑜𝑜𝑜𝑜 =  (𝑿𝑿𝑜𝑜𝑜𝑜)𝑡𝑡 =  𝑿𝑿𝑡𝑡   (1𝑏𝑏) 

where t indicates matrix transposition. As described later, the variance-covariance matrix 

among the variables of the dataset can be straightforwardly introduced through the matrix of 

the centered dataset, 𝜒𝜒𝑜𝑜𝑜𝑜: 

𝝌𝝌𝑜𝑜𝑜𝑜 =  𝑿𝑿𝑜𝑜𝑜𝑜 −  〈𝑿𝑿𝑜𝑜𝑜𝑜〉    (2) 

Where 〈𝑿𝑿𝑜𝑜𝑜𝑜〉 represents the row vector of the average values of the variables over the number 

of No observations, and its v-th element is given by:  

〈𝑋𝑋𝑜𝑜𝑜𝑜〉 =
1
𝑁𝑁𝑜𝑜

�𝑋𝑋𝑜𝑜𝑜𝑜

𝑁𝑁𝑜𝑜

𝑜𝑜=1

   (3) 

we adopt in Eq. (2) the same abuse of notation used in Matlab: by subtracting a row vector to 

a matrix actually one subtracts the given row vector to each row of the matrix. Hence Eq. (2) 

is implemented in Matlab as simply as chi = X - mean(X), because the Matlab function 



mean(X) gives the row vector corresponding to the average of all the rows of the X matrix – 

which effectively corresponds to averaging out with respect to the available observations (see 

above). By using the cantered dataset matrix, the variance-covariance matrix among the 

variables of the dataset (Σvv) can be introduced as follows: 

𝚺𝚺vv =
1

𝑁𝑁𝑜𝑜 − 1
 𝝌𝝌𝑜𝑜𝑜𝑜𝝌𝝌𝑜𝑜𝑜𝑜    (4) 

Clearly, by definition, Σ is a symmetric matrix, and it is positive definite. Therefore it admits 

spectral decomposition by the orthogonal matrix of its eigenvectors, and the eigenvalues are 

positive quantities [16]. The matrix eigenvalue problem of the variance-covariance matrix is 

written as: 

𝜮𝜮𝜐𝜐𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐 = 𝑳𝑳𝜐𝜐𝜐𝜐𝝈𝝈𝜐𝜐𝜐𝜐 (5) 

In Eq. (5) σss is the diagonal matrix of the eigenvalues of Σvv and Lvs is the orthogonal matrix 

of the eigenvectors of Σvv. The orthogonality of Lvs implies: 

𝑳𝑳𝜐𝜐𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐 = 𝟏𝟏𝜐𝜐𝜐𝜐  (6) 

𝑳𝑳𝜐𝜐𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐 = 𝟏𝟏𝜐𝜐𝜐𝜐  (7) 

Therefore, by left-multiplying Eq. (5) by Lsv, and by considering its orthonormality, one 

obtains the spectral decomposition of the variance-covariance matrix: 

𝑳𝑳𝜐𝜐𝜐𝜐𝜮𝜮𝜐𝜐𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐 = 𝝈𝝈𝜐𝜐𝜐𝜐 (8) 

By substituting in the right-hand side of Eq. (8) the definition of Σvv = 𝝌𝝌𝜐𝜐𝑜𝑜𝝌𝝌𝑜𝑜𝜐𝜐 / (No - 1) (cfr. 

Eq. 4), one obtains: 

𝝈𝝈𝜐𝜐𝜐𝜐 =  
1

𝑁𝑁𝑜𝑜 − 1
 𝑳𝑳𝜐𝜐𝜐𝜐𝝌𝝌𝜐𝜐𝑜𝑜𝝌𝝌𝑜𝑜𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐         (9) 

Similarly to the definition of a variance-covariance matrix (Eq. (4)), it is then possible to 

identify in the right-hand side of Eq. (9) a structure given by the product of a matrix (defined 

S) by its transpose: 

𝝈𝝈𝜐𝜐𝜐𝜐 = � 1
�𝑁𝑁𝑂𝑂−1

𝑳𝑳𝜐𝜐𝜐𝜐𝝌𝝌𝜐𝜐𝑜𝑜� �𝝌𝝌𝑜𝑜𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐
1

�𝑁𝑁𝑜𝑜−1
� = 𝑺𝑺𝜐𝜐𝑜𝑜𝑺𝑺𝑜𝑜𝜐𝜐 =  𝑺𝑺𝑡𝑡𝑺𝑺  (10) 



The rows of such a matrix (Sos) - named the scores matrix - define the observations (o label) 

through the so-called principal components (s label): 

𝑺𝑺𝑜𝑜𝜐𝜐 = � 1
�𝑁𝑁𝑂𝑂−1

𝝌𝝌𝑜𝑜𝜐𝜐𝑳𝑳𝜐𝜐𝜐𝜐�  (11) 

The matrix of the eigenvectors of the variance-covariance matrix (Lvs), which is named the 

loadings matrix, defines the linear relationship existing between each principal component 

and the set of variables. The PCA scatterplot e.g. of the first two principal components (PC1, 

PC2) can be obtained by plotting on the Cartesian xy plane the first column of the S matrix (x 

coordinates) vs. the second column of the S matrix (y coordinates). This plot immediately 

allows judging data clustering or the presence of outliers. Such scatterplots can be of course 

extended to other principal components (i.e., to other columns of the S matrix). Sometimes, 

the scores matrix is normalized in such a way to produce an associated variance-covariance 

matrix (over the s variables) that is a unit matrix. This normalization is simply done as 

follows: 

𝑺𝑺𝑜𝑜𝜐𝜐′ = 𝑺𝑺𝑜𝑜𝜐𝜐𝝈𝝈𝜐𝜐𝜐𝜐
−12  (12) 

It is then straightforward to show that the variance-covariance matrix associated to 𝑺𝑺𝑜𝑜𝜐𝜐′  is a 

unit matrix: 

(𝑺𝑺′)𝑡𝑡𝑺𝑺′ = �𝝈𝝈𝜐𝜐𝜐𝜐
−12𝑺𝑺𝜐𝜐𝑜𝑜� �𝑺𝑺𝑜𝑜𝜐𝜐𝝈𝝈𝜐𝜐𝜐𝜐

−12� =  𝝈𝝈𝜐𝜐𝜐𝜐
−12𝝈𝝈𝜐𝜐𝜐𝜐𝝈𝝈𝜐𝜐𝜐𝜐

−12 = 1     (13) 

 

3. Results and discussion 

3.1 Spectroscopic characterization of Δ9-THC and CBD 

The volatile nature of Δ9-THC makes it hard to control the formation of solid samples that 

tend to sublimate (Δ9-THC is supplied as methanol solution). To our fortune some 

microcrystalline aggregate was stable for just enough time to perform a Raman mapping. 

Unfortunately, the replication of the same conditions to obtain the microcrystals was not 



succeeded anymore and only this single Raman data set was obtained on Δ9-THC. The reason 

behind this finding could be hypothesized to the presence of a nucleation site created from a 

piece of dirt on the glass slide that prevented evaporation. This is the reason behind the lack 

of data with respect to pure cannabinoid samples. Most of the analysed area does not belong 

to Δ9-THC, therefore the obtained Raman data set was processed by PCA to get 2D Raman 

mapping image. Cluster analysis is performed to evaluate the variation in the Raman signal 

with respect to the position of the laser spot in the measurement. Matlab was used to perform 

multivariate analysis and to plot the spectra. The Raman spectrum of the ephemeral sample of 

Δ9-THC and CBD is shown is Figure 1 along with its chemical structure that displays very 

sharp and defined peaks, most likely due to the ordered crystalline state of the sample. It is 

remarkable to note that X-ray diffraction data of Δ9-THC was not available in the literature 

owing to its volatile nature. The peaks corresponding to CH stretching modes observed at 

2847, 2913, 2990 and 3056 cm-1 are not highly structure-specific markers, but the expected 

peaks for both aliphatic (2847, 2913, 2990 cm-1) and aromatic (3056 cm-1) structures were 

observed. The OH stretching modes that is observable around 3500 cm-1 were not detected. 

The fingerprint region of the spectrum is observed in the range of 200 to 1800 cm-1 that 

contains the characteristics collective modes of the molecule. All the literature Raman spectra 

of Δ9-THC found in literature show only the fingerprint region, so the comparison will be 

limited to this range of frequencies [7, 17, 18]. The Raman spectrum of Δ9-THC recorded in 

this work with a 532 nm laser and the reference Raman spectra retrieved from 633 nm laser 

spectrum in the study of Islam et al. (2020) [18] represent the similar strong peaks close to 

1002, 1087 and 1605 cm-1. These vibrations of most enhanced peaks at 1002 and 1087 cm− 1 

belong to the benzene ring and the alkyl chain of this drug. The band observed in the range of 

1600 to 1670 cm-1 belong to the Benzene ring stretch (sym) and oxygen atoms of the 

hydroxyl group [18]. The shifting of the bands compared to the previous reports can be 



caused by many different factors: the wavelength of the light used for the analysis, the 

different physical states of the samples, the different crystalline forms and the effect of the 

solvents from which the sample was obtained [19, 20]. The other peaks in the fingerprint 

region is assigned as follows: 715 cm-1 depicts CH deformation, 1032 cm-1 depicts C-C 

stretching, 1437 cm-1 depicts CH3 twist and bend [21]. 

The CBD sample is a pure crystalline powder and provides a very neat FT-Raman spectrum 

with sharp and well-defined peaks. Out of the whole spectra, speaks at 1433 and 1662 cm-1 in 

the fingerprint region and peak at 2927 cm-1 in the high frequency region is predominant and 

could be recognized clearly. The peak at 1433 cm-1 is ascribed to the vibrations of the 

hydroxyl (OH) group, hexene ring stretch, and CH bend of the benzene ring [18]. The peak at 

1662 cm-1 corresponds to the C=C stretch in cyclohexane [22]. In both Δ9-THC and CBD, the 

high frequency region between 2500 and 3600 cm-1 is ascribed to the CH (around 3000 cm-1) 

and OH (around 3500 cm-1) stretching vibrations. Δ9-THC and CBD have the most similar 

chemical structures as they are distinguished by two benzene rings with different number of 

hydroxyl group (OH). Compared to Δ9-THC, CBD has a strong peak at 1433 cm− 1 which can 

be used to distinguish this analog from Δ9-THC. 

3.2 Spectroscopic characterization of trichomes 

Glandular trichomes are the structures that are observed covering the surface of each floral 

inflorescence of C. Sativa which are the site of production of metabolites. In this study, we 

examine the chemical composition and spatial distribution of one such important metabolite, 

cannabinoids at the microscopic scale using micro-Raman spectroscopy. Here, we aim to 

differentiate the structure of secretary vesicles in the whole trichome using Raman 

spectroscopy based on the fact of variation in the levels of cannabinoids. According to 

Livingston et al. [6] some regions can be identified as the secretory vesicles that are 

characterized by the presence of higher level of cannabinoids than others. The bright field 



image of a trichome sample 1 and 2 is depicted in Figure 2a and d. The Raman chemical map 

generated with the most intense peak of the Raman spectra of trichome sample 1 and 2 i.e. 

1295 cm-1 is depicted in Figure 2b and e. This Raman map image demonstrates the 

information obtained from direct conversion at a particular wavenumber without any 

advanced dataset processing analysis. Average spectrum obtained from Raman spectroscopy 

of several points of a flower trichome sample 1 and 2 is represented in Figure 2 c and f. 

 3.3 PCA of the micro-Raman mapping of a Cannabis trichome 

The PCA of the Raman spectra of the map was performed in order to visualize similarities 

between spectra and to identify unsupervised grouping of image pixels on the basis of their 

Raman signature, which reflects the chemical composition in that location. Once the PCA 

scripts are run in the Matlab, screeplot in the logarithmic scale is obtained to inspect the 

relevant principal components (PCs) as shown in Figure 3a (screeplot of sample 1). The 

screeplot is a representation of total variance of multivariate dataset by denoting the principal 

variance of PCs (eigenvalues) in decreasing order with regard to PC index.  It is noticed that 

how quickly the intensity of the principal components decreases along the screeplot. For this 

reason, the loadings along the first four PCs were analyzed. The components starting from 

PC5 have been neglected since their variance is very low compared to the previous PCs. 

At first, the Raman analysis of the sample 1 is presented. The PC loadings were investigated 

to obtain the chemical information behind different PCs. The scoremaps and loadings of PC1 

to PC4 depicted in Fig. 3f. The loadings of PC 1 to PC3 conveys some relevant chemical 

information, whereas, PC4 has mostly an undulatory behaviour with unclear peaks that is 

attributed to noisy signal. The PC1 loadings PC1 clearly display an intense fluorescence 

background, which is almost missing in the loadings of PC2. In PC1 and PC2 it is not 

possible to fully decouple the fluorescence and Raman contributions, as PC1 and PC2 are 

both characterized by a fluorescence and Raman component. However, while in PC1 it is the 



fluorescence component to be more intense, in PC2 it is the Raman contribution to be 

dominant. Hence, with a little degree of approximation, when considering the associated 

scoremaps we may assume that PC1 describes the areas of the trichome that are more 

fluorescent, whereas PC2 indicates the areas that are more Raman active. Since the 

fluorescence signal is less strongly related to the chemical structure of the compound than the 

Raman signal, one may expect to get chemical information out of PC2. The corresponding 

scoremaps of PC1 to PC4 was obtained from Matlab PCA scripts. In the scoremap, each 

single measurement point in the Raman mapping experiment is represented in separate pixel 

along with different shades of the color to identify the value of the score. The lack of 

homogeneity in scoremaps is a representation of variation in how much of the Raman 

spectrum associated with each point. This indicates the local changes in levels of 

cannabinoids in the trichome sample. In the first scoremap (Fig. 3f), we could observe three 

dark spots (consider negative loading). The corresponding loading of PC1 displays same 

trend and super imposes perfectly with the average spectrum. Hence, this is regarded as the 

overall strength of the Raman signal. To be more precise, this indicates the overall variation 

that arise from the different point to point focusing on the curved bulb of the trichome surface 

without any chemical details. In the second scoremap, we can identify central dark region. 

However, since it is a complex data set with the combination of several chemical species, it is 

difficult to interpret the structure more precisely. Therefore, using the PCA scripts in Matlab, 

the range of wavenumber is selected from 1580-1700 cm-1 that contains a characteristic peak 

of cannabinoids observed in both THC and CBD. The Fig. 3g represents scoremap and 

loadings of PC1 and PC2 at specific 1580-1700 cm-1 wavenumber range. As mentioned 

earlier, the scoremap of PC1 does not include any specific chemical information as the 

loading looks similar to the average spectra (Fig. 3d). This may be associated with the 

florescence background over the Raman spectra. Noticing the scoremap of PC2, three dark 



circular spots (consider negative loading) are observed that indicates high concentration of 

cannabinoids, while the bright regions corresponds to low concentration. The dimensions of 

the bright spots is about 8-12 µm. This is compared with the dimension of the vesicles in the 

C. Sativa trichome. In general, THC is accumulated in this specific region called vesicles. 

The dimension of trichomes of about 65 µm was analysed and assuming it contains an 

average 8 vesicles, the dimension of the vesicle is deduced between 6 and 10 µm. The length 

of the dark region in scoremap 2 is compatible with the size of a vesicle. We may conclude 

that the dark regions, which are characterized by a higher accumulation of cannabinoids, 

represent the vesicles of the trichomes. In addition, the region of the most intense peak in the 

trichome spectra 1280-1310 cm-1 containing the sharp band at 1295 cm-1 was analyzed. The 

PC1 is ignored owing to the same reason. Based on the observation of PC2, we can observe 

the maximum and minimum spectral change with respect to average spectrum follows a 

pattern where the peak get more narrow and intense. The corresponding scoremap displays 

the three bright circular regions (consider positive loading) that confirms the accumulation of 

substances in the trichome that is attributed to secretary vesicles. 

The screeplot of trichome sample 2 from PCA analysis of the overall spectra is depicted in 

Fig. 4a. PC1 to PC4 loadings and scoremap of Raman analysis of the sample 2 is given in 

Fig. 4f. The first scoremap (Fig. 4f), we could observe entire black region. The corresponding 

loading of PC1 displays its due to the fluorescence background of the Raman signal. In the 

second scoremap, we can identify few circular dark spots (consider negative loadings) that 

could depict the overall presence of chemical species. To extract the precise details belonging 

to the specific chemical species, the range of wavenumber that contains a characteristic peak 

of cannabinoids at range 1600-1700 cm-1 was analysed. The Fig. 4b and d represents the 

screeplot and average spectrum corresponding to this range. Fig. 4g represents scoremap and 

loadings of PC1 and PC2. Although PCA is useful to visualize regions with different 



chemical composition, a detailed interpretation of chemical information brought by the PCs is 

not always successful since the vibrational modes of the chemical compounds are not always 

represented in the PCs loadings maintaining the same profile of the chemical Raman spectra, 

for example, negative peaks can appear since the shape of the bands are the results of the 

mathematical elaboration and do not reflect the exact vibrational spectral bands [17]. As 

mentioned earlier, the scoremap of PC1 does not include any specific chemical information 

and may be associated with the florescence background over the Raman spectra. Noticing the 

scoremap of PC2, a large dark spot was observed. Since the dimensions of the observed dark 

area is 20 µm, this would be ideally compared with the trichome structure where the presence 

of chemical species make it Raman active. The PC3, the maximum and minimum difference 

with respective to average spectrum is devoid of any fluorescence. We can observe three dark 

spots with area of around 8-10 µm that fitted well with vesicles size. The same pattern was 

observed for the PCA analysis of the region with high intense peak 1270-1290 cm-1 (Fig. 4c, 

e, and h). The reproducible pattern with different spectral range confirms the accumulation of 

cannabinoids in those regions. 

  

4. Conclusions 

Raman mapping of chemically complex samples can provide access to chemical 

compositional information though the analysis of the spatial variation of the Raman signal. 

This is very tedious to do manually and it is greatly simplified by applying principal 

component analysis to the dataset. The OpenPCA framework offers a way to carry out 

routine PCA analysis of Raman mappings, customising the spectral range and the selection of 

the principal components of interest. By plotting the scores of selected PCs on the map, one 

can easily spot regions of the samples where chemical variations occur, as they are witnessed 

by the changes is the Raman markers of given species. This method was implemented to spot 



the vesicles structures in the cannabis trichome head based on the rich accumulation of 

cannabinoids. This could open the doors to post-process various datasets that deals with 

chemical heterogeneity and its spatial distribution. 
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Figure 1. Pure cannabinoid spectra: the Raman spectrum of the ephemeral crystal of Δ9-
tetrahydrocannabinol and the Raman spectrum of the pure cannabidiol; (inset - chemical 
structure of Δ9-THC and CBD). 

 

  

 

 



Figure 2 

    

   

Figure 2. Trichome sample 1: (a) Bright field image of a trichome, (b) Raman chemical map 
of the Raman intensity at 1295 cm-1 and (c) average spectrum obtained from Raman 
spectroscopy of several points of a flower trichome. Trichome sample 2: (d) Bright field 
image of a trichome, (e) Raman chemical map of the Raman intensity at 1295 cm-1 and (f) 
average spectrum obtained from Raman spectroscopy of several points of a flower trichome. 
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Figure 3 

 

   

   

   

   

Figure 3. PCA analysis of trichome sample 1: (a) Screeplot of the Principal Components in 
the logarithmic scale on the y axis: variance of the dataset as a function of the PC index(s), 
(b) Screeplot of the filtered dataset in the spectra range 1580-1700 cm-1, (c) Screeplot of the 
filtered dataset in the spectra range 1280-1310 cm-1; (d) average spectrum in the region 
between 1580-1700 cm-1, (e) average spectrum in the region between 1280-1310 cm-1; (f) 
Scoremaps and loadings of PC1, PC2, PC3 and PC4, (g) Scoremaps and loadings of PC1 and 
PC2 of the filtered dataset in the spectra range 1580-1700 cm-1 and (h) Scoremaps and 
loadings of PC1 and PC2 of the filtered dataset in the spectra range 1280-1310 cm-1. 

  

-2.105 -2.104 -2.103

x-position ( m) 10 4

3.933

3.9335

3.934

3.9345

3.935

3.9355

3.936

y-
po

si
tio

n 
(

m
)

10 4

-6000

-4000

-2000

0

2000

4000

6000

2

3

4

 

1280 1285 1290 1295 1300 1305 1310

0.182

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2
PCA Loading 1

1280 1285 1290 1295 1300 1305 1310

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
PCA Loading 2

-2.105 -2.104 -2.103

x-position ( m) 10 4

3.933

3.9335

3.934

3.9345

3.935

3.9355

3.936

y-
po

sit
ion

 (
m

)

10 4

-250

-200

-150

-100

-50

0

50

100

 

1280 1285 1290 1295 1300 1305 1310

wavenumber/cm -1

3.3

3.35

3.4

3.45

3.5

3.55

3.6
10 4

1 2 3 4 5 6 7 8

PC index

10 4

10 5

10 6

10 7

10 8

10 9

10 10

pr
in

ci
pa

l v
ar

ia
nc

e

(a) (b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 



 Figure 4 

   

    

    

      

      

Figure 4. PCA analysis of trichome sample 2: (a) Screeplot of the Principal Components in 
the logarithmic scale on the y axis: variance of the dataset as a function of the PC index(s), 
(b) Screeplot of the filtered dataset in the spectra range 1600-1700 cm-1, (c) Screeplot of the 
filtered dataset in the spectra range 1270-1290 cm-1; (d) average spectrum in the region 
between 1600-1700 cm-1, (e) average spectrum in the region between 1270-1290 cm-1; (f) 
Scoremaps and loadings of PC1, PC2, PC3 and PC4; (g) Scoremaps and loadings of PC1, 
PC2 and PC3 of the filtered dataset in the spectra range 1600-1700 cm-1; and (h) Scoremaps 
and loadings of PC1, PC2 and PC3 of the filtered dataset in the spectra range 1270-1290 cm-

1. 
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