
Machine Learning-Enhanced High-Throughput Fabrication and Optimization of Quasi-
2D Ruddlesden-Popper Perovskite Solar Cells  
 
Nastaran Meftahi,*,† Maciej Adam Surmiak,*,† Sebastian O. Fürer, Kevin James Rietwyk, 
Jianfeng Lu, Sonia Ruiz Raga, Caria Evans, Monika Michalska, Hao Deng, David P. 
McMeekin, Tuncay Alan, Dechan Angmo, Doojin Vak, Anthony Chesman, Andrew J. 
Christofferson, David A. Winkler, Udo Bach, and Salvy P. Russo 
 

Dr. N. Meftahi, Dr. A. J. Christofferson and Prof. Salvy Russo 
ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, 
Melbourne, Victoria 3001, Australia 
E-mail: nastaran.meftahi@rmit.edu.au 
 
Dr. M. A. Surmiak, Dr. S. O. Furer, Dr. K. J. Rietwyk, Dr S. R. Raga, Dr. J. Lu, Ms. M. 
Michalska, Dr. D. P. McMeekin and Prof. U. Bach 
Department of Chemical and Biological Engineering, Monash University, Victoria 3800, 
Australia 
ARC Centre of Excellence for Exciton Science, Monash University, Victoria 3800, Australia 
E-mail: adam.surmiak@monash.edu 
 
Dr. D. Angmo, Dr. D. Vak, Dr. A. Chesman and Dr. M. A. Surmiak 
CSIRO Manufacturing, Clayton, Victoria 3168, Australia 
 
Dr. J. Lu 
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan 
University of Technology, Wuhan 430070, China 
 
H. Deng, Dr T. Alan 
Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash 
University, Clayton, Victoria 3800, Australia 
 
H. Deng 
Department of Material Science and Engineering, Monash University, Clayton, Victoria 3800, 
Australia 
 
Caria Evans 
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 
30332, United States 
 
Prof. David A. Winkler 
Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La 
Trobe University, Melbourne, Victoria 3086, Australia 
School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, United Kingdom 
 
*Corresponding authors 
†These authors contributed equally 
 
Keywords: machine learning, quasi 2D Ruddlesden-Popper perovskites, solar cells, high-
throughput  



Abstract 
 
Organic-inorganic perovskite solar cells (PSCs) are promising candidates for next-generation, 

inexpensive solar panels due to their high power conversion efficiency, which is on par with 

their commercial silicon counterparts. However, PSCs suffer from poor stability. A new subset 

of PSCs, quasi-two-dimensional Ruddlesden-Popper PSCs (quasi-2D RP PSCs), is known for 

improved photostability and superior resilience to environmental conditions in comparison 

with three-dimensional (3D) metal-halide PSCs. To expedite the search of new quasi-2D RP 

PSCs we report a combinatorial, machine learning (ML) enhanced high-throughput perovskite 

film fabrication and optimization study. We designed a bespoke experiment strategy and 

produced perovskite films with a range of different compositions through a fully automated 

drop-casting process. The performance and characterization data of these solar cells were used 

to train a ML model that allowed for material parameter optimization and directed the design 

of improved materials. The ML optimized quasi-2D RP perovskite films yielded solar cells 

with power conversion efficiencies reaching 16.3%. 

  



1. Introduction 

Lead halide perovskite solar cells (PSCs) have demonstrated power conversion efficiencies 

(PCE) up to 25.7%, matching the state-of-the-art silicon solar cells (26.1%).1 These three-

dimensional perovskite materials (ABX3) typically include a large cation A+ (for example: 

CH3NH3
+, HC(NH2)2

+ or Cs+), a smaller cation B2+ such as Ge2+, Pb2+, Sn2+, and halide anions 

X- (for example: I-, Br-, Cl-).2-3 The formation of perovskite crystals typically needs to fulfil the 

Goldschmidt tolerance factor (GTF) defined by the equation 𝐺𝐺𝐺𝐺𝐺𝐺 =  (𝑟𝑟𝐴𝐴 +  𝑟𝑟𝑋𝑋)/�(𝑟𝑟𝐵𝐵 +  𝑟𝑟𝑋𝑋) , 

where 𝑟𝑟𝐴𝐴, 𝑟𝑟𝐵𝐵, 𝑟𝑟𝑋𝑋 are the radii of A, B and X ions.4 A large number of different perovskite 

materials can be formed based on different permutations of the ionic precursors. Optimization 

of these precursor ratios has helped to improve the performance as well as stability of these 

compounds. The latter has to date still proven more challenging due to their sensitivity towards 

moisture,5 oxygen,6 light,7 temperature8 and electrical bias,9 among other factors. Ruddlesden-

Popper perovskites (RPPs) are a related material class that has shown some promise to be more 

resilient to environmental stress then conventional ABX3 perovskites. In this work, we study 

RPPs with the general formula R2(MA)n-1BnX3n+1, where the R+ stands for a large cation(s) 

which typically does not satisfy the GTF rule, methylammonium cation (MA+), B2+ metal 

cation, and halide anion (X-). The quasi-2D structure of RPPs is shown schematically in Figure 

1. Due to their large size, the R+ cation cannot be incorporated into the 3D perovskite lattice. 

Instead, they assemble into layered separated slabs of [BX6]4- octahedra and intercalated MA+ 

cations with a structure similar to the one found in ABX3 perovskites. The dielectric mismatch 

of organic and inorganic components creates a favorable environment for the formation of 

quantum wells and barriers,10 generating an excellent perovskite for excitonic phenomena.11-13 

Like their 3D counterparts, RPPs have easily tunable band gaps,14 can be solution-processed,15 

and exhibit high device PCE of ~17-18 %.16-17  



Crystals of RPPs18 confer a stability increase by virtue of the hydrophobic aliphatic layers of 

its alternating structure limiting water ingress,10, 19 and like 3D PSCs, their properties can be 

enhanced with a range of perovskite additives.20 For example, polyvinylpolypyrrolidone 

(PVP),21-22 which is widely employed in 3D PSCs, exhibits hydrogen bonding between its 

carbonyl groups and the protic polar species present in the RPP, leading to the creation of a 

polymer framework around the crystal structure that furthers enhances stability23-25 

Additionally, the use of different R+ in the crystal lattice relaxes the GTF requirement,26 

resulting in potentially hundreds of thousands of undiscovered, yet highly-performing, 

compositions.27-29  

While the RPPs PSC stability is impressive, the current manually fabricated spin-coated 

devices limit research progress and technology transfer30-32 because of lack of cross-laboratory 

standards and reproducibility. The implementation of fully automated and standardized 

fabrication and measurement techniques33 would help to significantly improve the 

comparability of results between different users and different laboratories.34-35 Most highly 

efficient lead halide PSCs were fabricated via a spin-coating process, yet a number of 

alternative fabrication techniques have already been employed, primarily: doctor blading,36-37 

spray,38-39 ink-jet,40-41 meniscus printing42-43 or vacuum deposition.44-45 These methods require 

great skill to control and optimize the film crystallization kinetics,46 precursor rheology47 and 

impact on the film quality.48 This imposes significant financial and time costs on the 

optimization of fabrication processes required for production of perovskites with a high degree 

of reproducibility.49-50 Another factor that slows down the progress is the use of one-step-at-a-

time classical systematic experimentation procedure that has a substantial disadvantage of not 

considering interactions between input parameters.51 Remarkably, RPP perovskite precursor 

solutions at molar concentrations (M) below ~0.7 M crystalize into uniform and highly 

crystalline films when deposited via a simple drop-casting technique.52-53 An interesting 



method was employed in 2021 by Zuo et al.,54 who used a simple drop casting methodology 

on mildly preheated substrates for perovskite fabrication. The authors demonstrated that by 

lowering the concentration of the perovskite precursor solution (< 0.5 M), the solution could 

spread more evenly across the substrate and form self-assembled, vertically oriented and 

efficient perovskite films. Extraordinarily, such a simple technique creates new opportunities 

for rapid compositional screening using drop-cast precursor solutions to form high quality 

perovskite films. It is known that the reproducibility of PSC fabrication is severely hindered 

by subtle changes in environmental conditions during deposition,33 which is likely to impact 

negatively on the optimization of the fabrication process avoiding this can be accomplished by 

partial or complete removal of manual handling and human error. In this technique, the 

mechanism of RPP film formation originates from the precursor solution-substrate surface 

interactions. Unlike for their 3D counterparts, there are fewer RPP studies focused on 

crystallization or spread mechanisms (e.g., using additives), controlling the spread and wetting 

process to ultimately optimize the quality of the resulting RPP film. The drop-casted RPP 

perovskite film quality depends on a number of factors, such as precursor molarity, substrate 

temperature and roughness, hydrophilicity or hydrophobicity of the perovskite adjacent charge 

transporting layer and spread of such precursor, and environmental conditions (pressure, 

humidity, temperature, atmosphere).55-56 Given these factors, we focused on the development 

of an inexpensive, yet highly controllable and rapidly deployable, technique that expands the 

mechanism of manual perovskite drop-casting to a rapid combinatorial screening. Herein, we 

describe the automated, machine learning enhanced combinatorial high-throughput (cHTR) 

screening deposition strategy that allowed for fabrication of multiple new perovskite film 

compositions via carefully aliquoted, microfluidically57 prepared precursors. Our bespoke 

design of experiment (DoE) allows for fabrication of each PSC layer completely free from 

human intervention. To further accelerate the parameter optimization process, we developed a 



state-of-the-art machine learning (ML) protocol from the measurement of electrical and 

physical properties. This model allows for making predictions on the likely PV properties of 

RPP films based on a given set of fabrication input parameters. ML algorithms were also used 

to explore amongst parameters to find the best combinations of permutations in order to 

develop the device with the highest PV properties.58-60 To demonstrate our DoE in this work 

(Figure 2) we selected a small sub-set of compositional and fabrication parameters to be varied 

and only allow a limited number of discrete values which we chose based on our previous 

knowledge of RPPs.61 Within this parameter space we then chose a limited number of 

permutations, fabricated the RP PSCs, and evaluated their photovoltaic performance. These 

data sets were then analyzed and employed as data to train a machine learning model. The 

trained model was then used to gain deeper understanding on the influence of specific 

parameter values on device performance and to predict a parameter set with optimized 

performance.  



 

Figure 1. Parameter space for the RPPs. The stoichiometry of RPPs is clearly defined by the 

formula R2(MA)n-1BnX3n+1. For each of the components, there is a number of possible 

candidates which can be mixed in arbitrary ratios, spanning a de-facto infinite compositional 

parameter space. In a similar way there is a plethora of processing parameters which need to 

be defined that will ultimately determine the morphology and quality of the resulting perovskite 

layer and its performance in a photovoltaic device. 

 

This bespoke DoE and the ML model allowed for identification of completely new, improved 

RPP composition that surpassed the performance of the experimentally chosen champion from 

the initial subset, yielding to an entirely new champion solar cell with a PCE of ~16.3 % for an 

active area of 0.1 cm2.  

 



2. Results and Discussion 

2.1 Materials selection 

Our DoE began with the selection of the parameter space. The main focus was oriented on 

generating new quasi-2D RPPs. The variables considered are shown in Figure 2. This defines 

a parameter space with: 10 × 4 × 5 × 5 × 4 × 4 = 16,000 possible permutations. To ensure 

reproducibility, all the halide salts of 2D and 3D cations were mixed in stoichiometric ratios to 

obtain the RPP solutions, resulting in films with specified n-numbers, cation, and halide 

compositions. The drop-casted solutions further contained additives or alternatively were 

additive-free (denoted as “none”). The temperature of the perovskite annealing step was also 

varied. This selection permitted for semi-random list of 100 recipes of theoretically high-

performing RPPs. See Supplementary Information for further experimental details.  

 

 



 
Figure 2. Experimental parameter space explored in this study. All halide salts, cations and 

additives were mixed to ensure the same stoichiometric ratios and to obtain the desired n-

numbers. All other fabrication parameters were fixed. Abbreviations: BA is butylammonium, 

AVA is 5-amminovaleric acid, PEA is phentylammonium, GUA is guanidinium, FA is 

formamidinium, MA is methylammonium, I is iodide, Br is bromide, MASCN is 

methylammonium thiocyanate, MACl is methylammonium chloride (where LC is low 

concentration and HC is high concentration), HI is iodic acid, and None stands for equivalent 

pure solvent used for dissolving the rest of additives. The RPP film post-annealing was also a 

varied parameter as denoted.  

 

2.2 Automated solar cell fabrication 

Importantly, we demonstrate a new, easily adaptable cHTR deposition system that allows for 

the rapid combinatorial screening of quasi-2D RPPs. We tracked all experimental deposition 

conditions and parameters to serve as an additional productivity measure and reproducibility 

check (Supporting Information). This high-throughput system employed pre-cut and pre-

patterned substrate reported by us earlier,56 along with a microfluidic precursor solution 

agitating and dosing system. The substrates were thoroughly cleaned and then automatically 



coated with NiO following the previously reported method62 (see Supplementary Information 

for exact fabrication details). By accurately controlling the precursor aliquots via pre-defined 

strokes of programmable syringe pump (Chemyx 4000), we were able to quickly and accurately 

fabricate any given perovskite system. In short, the proposed cHTR system allows us to 

mitigate the impact of human-induced error, thus improving the lab-to-lab and user-to-user 

reproducibility. This systematic automated DoE is a promising step towards fully unbiased, 

rapid exploration and population of vast compositional spaces in order to streamline the 

generation of a large and widely accessible perovskite libraries of unforeseen quality. After the 

perovskite deposition, a multi-step evaporation process was employed to assure reproducibility 

and uniformity of the devices. Finally, we fabricated 600 individual solar cells following the 

proposed recipes, and then proceeded with the data extraction through the automated electrical 

characterization62 (see Supporting Information for more details) whilst ensuring that the only 

possible difference in the results would originate from RPPs films.  

 

 
Figure 3. The combinatorial high-throughput spin-coating free perovskite film deposition 
system. For quasi-2D RPP systems. A) The conceptual view of the key components and 
working principle of the solution agitating and deposition system. The deposition head with 
blunt needle inside of the 3D printed crystallization cavity. B) The spreading and crystallization 
mechanism: (1) syringe pump stroke pushes the droplet onto the substrate; (2) isotropic 
movement distributes precursor solution across the substrate; (3) precursor surface tension 
reaches the edge; (4) causing the van der Waals surface tension to break and the solution to 
spread along the edge; (5) solvent evaporation and timely application of N2 quenching gas 
causes film formation. See the Supplementary Information more details. 
 



 

Figure 4. The first screening results. More detailed photovoltaic data can be sound in SI. 

 

2.3 Machine learning optimized recipe 

In this project, we used ML algorithms to investigate the effect and contribution of each 

fabrication permutation on PV properties such as PCE, open circuit voltage (VOC), short circuit 

current density (JSC) and fill factor (FF). More material details can be found in Supporting 

Information. We used the 100 experimentally developed devices as described in section 2.1 as 

our dataset. These device recipes were generated by randomly applying preselected parameters 

such as: 2D cations (n-BA1, AVA1, PEA1, GUA1, nBA0.5AVA0.5, nBA0.50PEA0.5, n-

BA0.5GUA0.5, AVA0.5PEA0.5, AVA0.5GUA0.5, PEA0.5GUA0.5), 3D cations (FA, MA, 

Cs0.05FA0.8MA0.15, Cs0.17FA0.83), halides (I, I0.975Br0.025, I0.95Br0.05, I0.85Br0.15, 

I0.9Br0.1), additive options (MASCN, 5% MACl, 35% MACl, , HI, no additive), n-number 

options (9, 15, 30, 60) and annealing temperature [°C] (100, 120, 140 and 170). As described 

above, all possible combinations of these device parameters would require the experimental 



development and testing of 16,000 different devices. We therefore employed machine learning 

on a subset of fabrication parameters to find the optimum fabrication parameters which result 

in maximum performance, which we define as the champion recipe. Generally, ML models 

describe a quantitative relationship between the structure of compounds and a specific property. 

Here, we instead used ML techniques to explore the quantitative relationships between the 

device fabrication parameters and the photovoltaic performance parameters (PCE, VOC, JSC and 

FF) of the resulting solar cell devices. To the best of our knowledge, this is the first reported 

study that employs ML optimization combined with automated fabrication process to design 

PSCs. We used the MLREM (Multiple Linear Regression with Expectation Maximization) 

algorithm63 implemented in the CSIRO-BioModeller® package.64-66 In general, ML models 

require descriptors (mathematical entities that encode physical or chemical properties) to find 

relationships between descriptors and the target property. In our dataset, the majority of data 

points (RPP PSCs) had the same chemical components, so molecular descriptors were not 

required. Thus, we used the list of fabrication parameters for devices (Figure 3) as descriptors 

to build the models. In our DoE we used 1-hot binary descriptors (i.e., 1 if feature is present 

and 0 if absent) for fabrication parameters such as: 3D-cations, halides, additive options, n-

number of option and annealing temperature.  

The MLREM algorithm is a very sparse feature selection method that removes less relevant 

descriptors in a context-dependent way and optimizes the balance between the variance (model 

complexity) and bias (model simplicity). The Laplacian prior method is used to give zero 

weight to irrelevant descriptors and automatically remove them from the model. This feature 

selection algorithm is similar to the LASSO technique, and is based on L1 regression.67-68 In a 

general machine learning modeling procedure, the dataset would be divided into a training set 

(e.g., 80% of dataset) to generate the model and a test set (e.g., 20% of the dataset) to evaluate 

the predictive power of the model. In this study, our aim was mainly focused on investigating 

the contribution of fabrication parameters on PCE, VOC, JSC and FF rather than developing a 

model for property prediction purposes. Therefore, we derived the models by applying 100% 

of data as training set to elucidate the contribution of the variables listed in Figure only on PCE, 

VOC, JSC and FF. This information then provided guidance on how to fabricate new and more 

efficient RPP PSCs. The performance of MLREM models were assessed by the R2 statistics 

(squared correlation coefficient), and the standard error of estimation (SEE).69-70 Table 1 shows 

the statistics of MLREM models for PCE, VOC, JSC, and FF. These results indicate the 

significant parameters (descriptors) for each property. Figure 5 shows the contribution as well 

as the effect of descriptors on each property where the parameters with positive and negative 



sign increase and decrease the values of property, respectively. 

 

Table 1. Statistics of MLREM models of PCE (%), VOC (V), JSC (mA cm-2), and FF applying 
100% of dataset as training set. Neff is the number of effective parameters (weights) and Ndesc 
is the final number of parameters in the models. SEE is the scaled standard error of estimation. 

 
Training Set  Ndesc Neff R2 SEE 
PCE [%] 33 34 0.54 0.21 
VOC [V] 33 34 0.54 0.28 
JSC [mA cm-2] 33 34 0.50 0.22 
FF 33 34 0.53 0.23 

 

 



Figure 5. The effect and contribution of parameters on PCE, VOC, JSC and FF. Parameters 

with positive value increase the photovoltaics properties, and parameters with negative value 

decrease the PV properties. 

 



The contribution effects indicated how certain modifications can in general increase or 

decrease PCE, VOC, JSC, and FF. For example, in the 2D cations category, the AVA can increase 

PCE, VOC, JSC, and FF, while PEA and GUA negatively impact all of them. The mixture of 

BA:PEA and BA:GUA positively impact all of them. The mixture of BA:AVA, AVA:PEA and 

AVA:GUA had very small impact on all properties. The mixture of PEA:GUA showed a 

negative effect on all properties. In summary, within the 2D cations category, GUA exhibited 

the largest negative effect while the mixture of BA:GUA showed the largest (or second largest) 

positive effect on PCE, VOC, JSC, and FF, as they have the largest negative and largest positive 

coefficients respectively. 

In the 3D-cation category, FA showed the largest negative effect while MA indicated a very 

large positive impact on VOC and FF and moderately positive effect on JSC and PCE. The 

mixture of Cs0.17FA0.83 showed a consistent positive effect on PV properties. 

In the halides category, the machine learning algorithm showed that adding bromine to iodine 

can decrease PCE while the opposite trend was shown for VOC. Machine learning algorithms 

also demonstrate that including 0.025 bromine to iodine would increase JSC and FF, while 

adding more bromine could decrease the aforementioned properties. Also, by comparing the 

coefficient contribution of iodine with hydrogen iodine, the PV properties will be increased. In 

summary, the 35%MACI has the largest positive effect on PCE, VOC and JSC while for FF the 

5%MASCN has the largest positive contribution. 

In terms of n number of options, there is a pattern that shows increasing the number of option 

from n=9 up to n=30 decreases the PV properties, while from n=30 to n=60 there is a less 

negative effect in PCE, VOC, JSC and FF. Machine learning algorithm also indicated that the 

temperature 140 °C is the optimum temperature for all PV properties. 

 

2.4. Optimized recipe 



In the final part of our study, we extracted and employed results from ML models to investigate 

the effect of fabrication parameters on PV properties. By only applying the parameters that can 

increase the property values shown in Figure 6, we obtained the champion recipe, which we 

used to fabricate the final batch of 2DRP PSCs. The final solar cells were tested for their 

performance (PCE, VOC, JSC and FF). The fabrication details can be found in the Experimental 

Section, and the performance metrics can be viewed in Figure S10 in Supporting Information. 

A comparison between the photovoltaic properties of the new device based on the champion 

recipe suggested by machine learning (ML champion) with the experimental champion is 

shown in Figure 7. 

 
Figure 7. Comparison of the range of PV properties of the experimental champion with the 

ML champion.  

 

For both experimental and ML champion, we measured the PV properties seven times and each 

time by forward and reverse measurement, and then compared the results. For PCE, JSC and 

FF, the devices suggested by ML produced a higher PV values. Only for VOC did the ML 

champion recipe exhibit a slightly lower value than the experimental champion. Notably, the 



range of VOC values for each measurement is minimal, which means that the VOC values of this 

device are extremely reproducible. 

 

3. Conclusions 

Here we describe a new DoE with the combination of a bespoke ML protocol and a 

reproducible perovskite film fabrication technique that allows for rapid, combinatorial studies 

and screening of potentially hundreds of thousands of compositions. Our experimental cHTR 

system can be easily adopted and serve as an inexpensive, cross-reference tool for perovskite 

material fabrication. The automated approach reduces the sample-to-sample variation of 

manually produced materials, resulting in better precision of resulting films which could be 

directly fed into a ML protocol with high degree of trust. Notably, we have shown how the 

combination of automated perovskite film fabrication and ML modelling can rapidly generate 

unseen RPPs recipe with improved performance. The ML models elucidate the contributions 

of key fabrication parameters to make device performance characteristics, aiding the process 

of device improvement. The complete tracking of the key fabrication steps and conditions and 

automated performance measurements proposed here generated useful data to train ML models 

that were subsequently used to design improved PV materials.  The insights from the ML 

models significantly shortened the discovery time and increased productivity. Importantly, our 

study revealed that some complex compositions, parameters, and additives can be 

synergistically screened which further accelerates progress in the perovskite photovoltaics. In 

comparison with manual fabrication, our methodology provides large improvements in the 

reproducibility and reliability of device manufacture. Moreover, our materials are made in 

similar conditions to manual drop-casting methods and hence can serve as a state-of-the-art 

comparison setup. The tracking of all parameters and precise precursor mixing allows for 

multiple tests and improvements, as well as staggered bleaching. ML protocols significantly 



narrowed the distribution of parameters that had already been lowered by automation and 

facilitated fabrication of samples. These results pave the way for rapid, large-scale discovery 

studies where each fabrication step is carefully recorded and the complete protocol can be 

reproduced reliably without the variability inherent in manual methods. We have shown that 

such complex dissection of the fabrication process and automation of crucial steps allows for 

construction of data libraries that serve as cross-research group reference points and as training 

data for computational models. In summary, automated fabrication combined ML modeling 

allows the fabrication of optimal, efficient RPP films of high reproducibility that can be 

incorporated into devices with very good efficiencies and high long term environmental 

stability that can readily translate to industrialization of PSCs.   

 

4. Experimental Section 

General Information: Unless otherwise specified, all materials were purchased from Sigma-

Aldrich.  

Preparation of the Perovskite Precursor Solution: The perovskite precursor solution was 

prepared in a N2-filled glovebox (MBraun, 02< 0.01ppm, H2O<0.01 ppm) by mixing powders 

to a specified recipe in order to cover 100 different recipes described. As the stock solution 

anhydrous N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and γ-Butyrolactone 

(GBL) were mixed in order to achieve 4:1:1 v/v. Stock solutions containing MASCN and 

MACl were produced by adding them proportionally in order to achieve specified 

concentrations in a 1 mL mixture (4:1:1 v/v) of anhydrous N,N-dimethylformamide (DMF), 

dimethyl sulfoxide (DMSO) and γ-Butyrolactone (GBL). The perovskite precursor solution 

and stock solutions were heated to 45 °C and magnetically stirred overnight until fully 

dissolved, subsequentially filtered with 0.45µm – directly prior the deposition all the solutions 

were passed through the microfluidic device described in Supporting Information.  



 

Perovskite Solar Cell Fabrication: We used the same perovskite fabrication technique for both 

films and solar devices. Pre-cut and commercially pre-patterned ITO-coated soda lime glass 

substrates (Latech, 10 Ω cm-2) were cleaned in sequence by sonication in: Milli-Q water (10 

minutes at 25 °C), 2% Hellmanex® solution (10 minutes at 25 °C), acetone (10 minutes at 

40 °C), isopropanol (15 minutes at 40 °C), ethanol (10 minutes at 25 °C). The substrates were 

subsequently treated with oxygen plasma for 12 minutes. We then fabricated ligand-modified 

NiO films employing method developed by Michalska and Surmiak et al.57 Subsequentially, 

such prepared substrates with NiO films were transported to the glovebox with the system; they 

were then preheated on hot plate at 100 °C for 30 minutes and the N2 was constantly applied 

onto the hot-plate area to remove residual H2O. After that the substrates were brought to 

deposition pre-set temperature on programmable hot-plate stage. The precursor solution was 

pushed through the ultrasonic piezoelectric microfluidic device (see Supporting Information 

for more details) by programmable syringe pump (Chemyx 4000); the purity of the composition 

is ensured by emptying the dead volume from tubes (at least 3 times the tube length of 20 cm) 

into the purging waste container. Each pre-heated substrate located inside the cavity was blown 

with N2 gas to remove any residual particles directly prior the deposition. Aliquots of 6 µL of 

perovskite precursor solution were deposited on the substrate and 10 seconds was allowed for 

the precursor solution to spread across the surface prior to quenching with an applied N2 gas 

stream. The hot-plate was subsequently heated up to chosen annealing temperature, with the 

temperature maintained for 60 minutes, followed by cooling of the films naturally to RT. 

Samples to be used for complete device fabrication were transported in a sealed container into 

the evaporation glovebox. For complete devices, the perovskite edge was mechanically 

removed, followed by evaporation of fullerenes C60 (20 nm at 0.1 Å s-1 via thermal 

evaporation), C70 (10 nm at 0.1 Å s-1 via thermal evaporation), and then bathocuproine (3 nm 



at 0.1 Å s-1 via thermal evaporation). The devices were completed by the evaporation of 65 nm 

of the gold electrode at 0.5 Å s-1 through the evaporation mask. The devices were stored in a 

N2 glovebox for 1 day in the dark before characterization.  

Performance characterization: The current density (J-V) characteristics of the devices were 

measured using a fully automated combinatorial high-throughput solar cell measurement 

system that was reported by us previously.33 To simulate solar light, an ABET 3000 solar 

simulator with a xenon arc lamp, fed with 1000 W input power was used. The light intensity 

was calibrated using a professional reference silicon cell with an IR-cut off filter (KG5, Schott). 

The J-V curves were measured using a BioLogic VMP3 potentiostat in 4-wire sense 

configuration. All measurements (J-V dark, J-V light, stability and maximum power point 

tracking) were taken automatically without human interaction employing a high-throughput 

measurement technique developed by Surmiak et al.33 A 5 minutes break was applied where 

the devices were cooled down by a laminar flow of N2. The voltage step was set to 10 mV s-1, 

starting voltage was in the reverse direction, and no bias conditioning or light soaking was 

applied. The working area of the devices was set to 0.1 cm2.  
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SECTION 1. More on RPP perovskites and deposition technique development 

Three-dimensional (3D) perovskite solar cells (PSC) reached power conversion efficiencies 

(PCE) of up to 25.5% in 2020, an impressive achievement given their relatively short 

development period. Despite their advantages over state-of-art silicon solar cells (26.2%), such 

as low fabrication costs, reduced energy requirements during the manufacturing process, and 

band-gap tunability, there remain significant challenges, namely, long-term operational 

stability, poor reproducibility and anomalous hysteretic behavior. Poor device stability is one 

of the main limiting factors preventing this class of solar cell from being commercialized. 

While thermal and moisture degradation can be minimized using encapsulation, additives or 

moisture- and oxygen-free fabrication environments, further degradation mechanisms have 

been reported. These include halide segregation, UV-light induced degradation, ionic 

movements, decomposition of complex inorganic-organic structures and problems induced by 

electrical stress. For commercialization of PSCs to be realized, research focus should not be 

limited to maximizing the efficiency on a smaller laboratory scale, but should be expanded to 

routinely include inexpensive materials that are deposited with industry-compatible production 

methods. Typically, most electron and hole accepting layers, along with the perovskite layer 

itself, are deposited by spin coating, which is not suitable for large-scale or high-throughput 

applications. To overcome this hurdle, a number of deposition techniques have been employed 

for PSC fabrication, such as blade coating, spray deposition, roll-to-roll printing, ink-jet 

printing and vacuum deposition techniques. While these methods provide a pathway towards 

commercialization, several challenges still remain. In particular, small variations in wettability, 

thickness, roughness and morphology causes non-uniformities over large areas, with these 

variations causing shunts, or even pinholes, which can short-circuit the device. There exist 

many trade-offs between each deposition techniques; for instance, large-area vacuum 

deposition techniques allow for accurate thickness control while limiting the number of voids, 

however, they suffer from low deposition rates and require high-vacuum, causing often 

uncontrollable phase transformations. There are multiple vacuum-free PSC fabrication 

techniques such as printing (ink-jet, roll-to-roll, doctor blading), gas pump method, gas-knife 

blading or dip-coating, all are suitable alternatives to high-vacuum deposition. An interesting 

method was employed in 2019 by Zuo et al., who used a simple drop casting methodology on 

mildly preheated substrates for perovskite fabrication. The authors demonstrated that by simply 

lowering the concentration of the perovskite precursor solution (< 0.5 M), the solution could 

spread more evenly across the substrate and form self-assembled, vertically oriented and 



efficient perovskite films. Remarkably, such a simple technique creates new opportunities for 

rapid compositional screening using drop-cast precursor solutions to form high quality 

perovskite films. The reproducibility of PSC fabrication is severely hindered by subtle changes 

in environmental conditions during deposition, which is likely to impact negatively on the 

optimization of the fabrication process. Avoiding this can be accomplished by partial or 

complete removal of manual handling and human error. Drop casting is a simple deposition 

technique that is compatible with a combinatorial high-throughput research (cHTR) approach, 

where key parameters can be controlled, allowing for highly reproducible results. cHTR 

systems have been applied to PSC research in order to screen the large parameter space created 

by the compositional variety of perovskite materials. Importantly, cHTR systems have been 

used to synthesize and characterize new perovskite materials. Current cHTR methods for 

perovskite fabrication include: miniature crystallization cuvettes, ink-jet sprays, solvent 

screening pipettes or spray-pyrolysis nozzles. Such systems allow researchers to accelerate the 

discovery process of perovskite compositions and their optimum fabrication conditions. The 

importance of predicting and screening new perovskite materials whilst recording the data into 

a concise materials library is essential. Manual fabrication attempts for large parameter space 

screenings related to wide band gap exploration and tandem silicon-perovskite devices were 

demonstrated in 2017 by Jacobsson et al. Continuing on this path, Chen et al. used a robotic 

system to create a compositional map for the FA1-xCsxPb(I1-xBrx)3 perovskite system in order 

to find the optimum composition for a wide-band gap material for tandem solar cells 

applications. Wide band gap perovskite materials are of particular interest as a front-cell in a 

tandem silicon-perovskite solar cell (TSPSC), which have demonstrated significant 

commercial potential by reaching > 29.1 % PCE in 2020. In particular, two dimensional (2D) 

perovskites have emerged as a critical component for TSPSC applications due to their excellent 

stabilities. Similarly to their 3D counterparts, the band gap of 2D perovskites can be tuned by 

halide substitution. The interesting properties of 2D materials led Tsai et al. to propose a hot 

casting method for fabricating 2D Ruddlesden-Popper (R-P) perovskites crystal structures, 

allowing for an increase in the PCE from <5 % to a more promising 12.52 %. Further studies 

by Stoumpos et al. provided a library of crystallographic and photophysical properties of 2D 

R-P perovskites through a systematic change in the precursor stoichiometry, the synthesis and 

characterization of R-P crystals ranging from stochiometric index (n): n = 1, 2, 3, 4 and ∞. For 

example, a photoluminescence and UV-vis absorption spectra study revealed that the R-P 

perovskite band gap can be tuned by changing the chemical composition with formula R2An-

1MnX3n+1, where R is a bulky organic cation, A an alkali metal or organic cation, M a group 



IVA metal and X a halogen (e.g. iodide or bromide). The R-P perovskite precursor solution 

crystallizes into a layered structure where 3D “packed” <100> crystal units are separated by 

2D layers, where ammonium spacer cations replace an A-site cation. It is worthwhile noting 

that in 2020 Ren et al. revealed the intra-layer molecular interactions of 2D R-P, further 

ushering those perovskites to the group of next emerging candidates for photostable, defect-

free and low hysteric candidates. Their work provided an interesting insight into fabrication 

methodology of highly performing 2D R-P perovskites, which are now reaching a competitive 

PCE of >18 %. We present in Figures S1 and S2, illustrations of the crystal structure for 

various n-numbers and its conceptual orientation to the substrate. 

 

 

Figure S1. Crystal structure of quasi-2D Ruddlesden-Popper perovskite where R+ (bulky 

cation spacer) intercalates in the crystal lattice resulting in the enhancement of the structure 

stability. 

 



 

Figure S2. Schematic of the crystal structure evolution of 2D to 3D perovskites. A layered 

perovskite crystal structure for n-number = 1, 2, 3. The pure 2D-perovskite has the chemical 

formula R2BX4, the quasi-2D Ruddlesden-Popper structure R2An-1MnX3n+1. The n-number of 

the quasi-2D R-P PSC perovskites indicates the number of 3D perovskite layers separated by 

the bulky cation spacer layers, with n = ∞ giving a conventional 3D perovskite. 

 

 

Figure S3. Illustration of the process workflow with machine learning enhancement for 

narrowing down and accelerating the RPP recipe optimization. Each circle represents a batch 

of experiments. 

 



Section 2. PEROVSKITE PREPARATION 

 

Figure S4. Combinatorial High-Throughput system overview (testing stage before building it 

into glovebox). System consists of: XYZ stage with programmable hotplate, deposition head 

with needle, dual syringe programmable pumps, PC with algorithms for control. 

 

Figure S5. Films fabricated by the automated system inside of the 3D printed cavities. A) 

Nonuniform, “self-assembled” film without gas quenching. B) Uniform film with a “coffee 

ring” edge effect. C) Optimized through solvent engineering precursor solution resulting in 

significant or complete reduction of the “coffee ring” edge effect. D,E) Lack of timely 

employed gas quenching results in rough film, whereas the gas quenched films exhibit “mirror” 

like finish.   



 

Figure S6. SEM micrograms illustrating surface morphology of the films obtained by solvent 

exchange: DMF replaced with GBL (exchanged volume in top left corner of each microgram). 

 

 

Figure S7. Sample cell images. 

The authors in this particular work employed this novel device only to directly homogenize 

and agitate 1 solution type at a time (connecting two syringes pre-filled with the same solution). 



The piezoelectric actuated active acoutofluidic device. The device homogenies precursors 

within milliseconds, ultimately allowing for ad-hoc high pressure, high agitation, and low 

volume mixing. The operating principle of the device is to actuate the silicon-oscillator at 1.06 

MHz through the piezoelectric transducer (PZ26, Ferroperm Piezo-ceramics, Meggitt) using 

the function generator (Stanford Research Systems DS345) and amplifier (T&C Power 

Conversion, Inc. 229 AG 1006). During operation, a 1.06 MHz 1.37 W sinusoidal electric 

signal causes the membrane structure to resonate and thus rapidly homogenizes solutions. The 

device was flushed with a 20 mL of stock solution: (4:1:1 v/v) of anhydrous N,N-

dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and γ-Butyrolactone (GBL). More 

details and exact device fabrication specification can be found here.1  

 

 

 

Figure S8. Device schematic. 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure S9. Images. 

Optical properties 

Transmission and reflection spectra were obtained on a Perkin Elmer Lambda 1050 UV-Vis-

NIR spectrophotometer equipped with an integrating sphere (150 mm InGaAs Integrating 

Sphere) relative to a standard of known reflectivity. These two measurements were then used 

to calculate the absorptance (A) according to the equation A = 100 − (R + T). Photographs 



were taken using a Canon EOS 450 D with an EFS 60 macro lens. Time-resolved 

photoluminescence spectroscopy (TRPL) samples were measured using identical excitation 

conditions (at excitation source wavelength = 466 nm) using a low-intensity pulse diode laser 

(500 kHz). The step size was set to 1 nm. 

Photoelectron spectroscopy in air (PESA) 

The measurements were performed using a Riken Keiki AC-2 spectrometer. For all samples, a 

power intensity of 20 nW was used.  

Surface morphology 

Scanning Electron Microscopy: Scanning electron microscopy images of the thin film surface 

and cross-sections of the PSCs were recorded on a FEI Magellan 400 FEG microscope using a 

3 kV acceleration voltage. 

Atomic Force Microscopy: AFM measurements were performed on a Dimension Icon (Veeco) 

in air. Chromium-platinum-coated conductive probes (ElectriMulti75-G, BudgetSensors) were 

used for the measurements. The scanning area and scanning rate were 50 × 50 µm and 0.5 Hz, 

respectively. Grain cluster size was fitted by Gwyddion software. Grain boundaries were 

marked using ‘Mark by Segmentation’ function and the grain size was calculated 

automatically. 

 

 

 



 



Figure S10. Performance of the initial 100 solar cells fabricated. 
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	Organic-inorganic perovskite solar cells (PSCs) are promising candidates for next-generation, inexpensive solar panels due to their high power conversion efficiency, which is on par with their commercial silicon counterparts. However, PSCs suffer from...

