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Abstract 
Michaelis-Menten kinetics is an essential model to rationalize enzyme reactions. The 

quantification of Michaelis-Menten parameters can be very challenging as it is sensitive to even 

small experimental errors. We here present a quantification of the uncertainty inherent to the 

experimental determination of kinetic rate parameters for enzymatic reactions. We study the 

influence of several sources of uncertainty and bias, including the inner filter effect, pipetting 

errors, number of points in the Michaelis-Menten curve, and flat-field correction. Using Monte 

Carlo simulations and analyses of experimental data, we compute typical uncertainties of 𝑘𝑐𝑎𝑡, 

𝐾𝑀, and catalytic efficiency 𝑘𝑐𝑎𝑡/𝐾𝑀. As a salient example, we analyze the extraction of such 

parameters for CRISPR-Cas systems. CRISPR diagnostics have recently attracted much interest 

and yet reports of these enzymatic kinetic rates have been highly unreliable and inconsistent. 

 

Introduction 
 The Michaelis-Menten set of reaction rate equations is the most used model to describe 

enzyme kinetics. Since its original formulation in 1913,[1] there has been considerable work to 

refine the quantification of the kinetics of enzymatic reactions. A seminal variation of Michaelis 

and Menten’s work was derived by Briggs and Haldane,[2] who formulated the quasi-steady 

state assumption. In this framework, enzyme kinetics are fully described by two constants: a 

turnover rate (𝑘𝑐𝑎𝑡) and the Michaelis-Menten constant (𝐾𝑀). Protocols to measure these 

parameters have been studied extensively in the past century. Some proposed methods proport 

to require a single experiment to measure 𝑘𝑐𝑎𝑡 and 𝐾𝑀.[3–5] However, most studies recommend 

variation of the initial substrate concentration and measure the corresponding initial reaction 

velocities. These velocities are plotted versus substrate concentration to create a so-called 

“Michaelis-Menten curve” and the data is fitted to extract 𝑘𝑐𝑎𝑡 and 𝐾𝑀.[3,6–9] Small errors in the 

initial velocities can lead to significant discrepancies in the estimation of the kinetic 

parameters.[7] To date, we know of only one study that has considered the propagation of 

uncertainty in the Michaelis-Menten model for the specific case of microbial pollutant 

degradation.[10] The latter work quantified uncertainty due to the effect of fitting a finite number 

of data points but took into account neither sources of experimental uncertainty nor their 

propagation. A few such experimental uncertainties have been studied separately including the 

influence of the inner filter effect on experimental Michaelis-Menten curves[11] and the number 

of points in the Michaelis-Menten curve (corresponding to the number of dilutions performed) 

required for the determination of 𝐾𝑀.[12] However, we know of no work that systematically 

quantifies the major sources of experimental uncertainty typical of Michaelis-Menten kinetics 

analyses (including for clustered regularly interspaced short palindromic repeats (CRISPR) 

systems). We also know of no study that performs propagation of error analyses to estimate the 

combined influence of such uncertainties on the uncertainty in 𝑘𝑐𝑎𝑡 and 𝐾𝑀. 

 A recent and important example of Michaelis-Menten rate parameter evaluation is the 

quantification of CRISPR-associated (Cas) enzyme kinetics. CRISPR-Cas systems are used to 

detect nucleic acid sequences with high specificity,[13–17] and the limit of detection of such 

assays is directly governed by the kinetic rates of the enzyme.[18–20] The accurate quantification 

of the kinetic parameters is therefore paramount to evaluate the reliability and regime of 
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applicability of CRISPR-based diagnostics assays. Despite its importance, the vast majority of 

CRISPR-Cas enzyme kinetics reports have exhibited grossly inconsistent data that clearly and 

demonstrably violate basic laws of mass conservation and chemical kinetics. Ramachandran 

and Santiago[18] and Santiago[20] collectively discuss over 10 examples of publications which 

exhibit gross errors in kinetic rate data and/or report limits of detection which are difficult to 

reconcile given current capabilities of CRISPR-Cas systems. At the same time, 𝑘𝑐𝑎𝑡 and 𝐾𝑀 

values are often reported to three significant figures. As just one example, Santiago[20] points 

out that the two highest values of 𝑘𝑐𝑎𝑡 ever reported (about 4,850 s-1) agree with each other to 

three significant figures, despite corresponding to two different CRISPR-Cas orthologs. 

 In this work, we characterize and quantify important sources of experimental 

uncertainty typical of enzymatic kinetics analyses in the Michaelis-Menten framework. As a 

case study, we analyze typical kinetic rate studies typical of CRISPR-Cas enzymes. To this end, 

we first derive a closed-form solution for the fluorescent signal intensity, the measured quantity 

in CRISPR-based assays. Next, we characterize each source of input uncertainty in the 

processes of solution dilution, signal calibration, and other experimental methods and variables. 

This includes an estimate formulation of the input probability density distributions of each 

experimental variable. We then simulate experimental realizations of the kinetic rate analyses 

using Monte Carlo simulations which leverage the Michaelis-Menten model with triplicate 

averaging. In this way, we propagate the experimental variable uncertainty to estimate the 

uncertainties on the kinetic parameters 𝑘𝑐𝑎𝑡, 𝐾𝑀, and 𝜂 = 𝑘𝑐𝑎𝑡/𝐾𝑀. The analyses highlight key 

sources of uncertainty and strongly suggest that the experimental measure of the catalytic 

efficiency 𝜂 exhibits higher precision than the individual estimation of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. 

 

Results and discussion 
We here describe the governing equations for the time evolution of signal of a wide range 

of assays based on Michaelis-Menten processes. In interpreting assay signal and its associated 

background and uncertainties, we consider the specific application of CRISPR-based 

diagnostics assays. In particular, we focus on CRISPR assays which quantify fluorescence 

signal resulting from cleaving of reporter molecules. First, we derive a closed-form solution for 

the concentration of cleaved reporters. Next, we consider calibration between concentration and 

fluorescence signal and quantification of background signal from uncleaved reporters and the 

inner filter effect. Lastly, we present a model for the uncertainty associated with pipetting and 

typical serial dilution processes. The goal of these formulations is to provide a closed-form 

expression for the fluorescence signal and a model for experimental uncertainties and bias. 

These uncertainties and bias errors are then combined with Monte Carlo simulations of many 

Michaelis-Menten kinetics analyses to compute corresponding distributions of 𝑘𝑐𝑎𝑡 and 𝐾𝑀.  

 

Closed-form solution of the cleaved substrate concentration 
We here summarize some key aspects of Michaelis-Menten kinetics, particularly in the 

context of CRISPR-diagnostics assays. CRISPR assays involve two reactions: a specific cis-

cleavage step during which the enzyme is activated and a trans-cleavage step where the 

activated enzyme indiscriminately cleaves single-stranded nucleic acids.[17,21,22] The cis-

cleavage step is analogous to a second-order reaction, where the low-abundance target is 

consumed. As we discuss in the Supplementary Information (S7), for typical detection 

assays, the time-scale for completion of the cis-cleavage portion of CRISPR assays is typically 

significantly lower than that of the trans-cleavage.[20] Hence, trans-cleavage step has been 

identified as the rate-limiting reaction in diagnostics assays,[18] and this is true even for trace 

amounts of target. The trans-cleavage step is here modeled by Michaelis-Menten kinetics and 

is the main focus of the present work. 



The trans-cleavage CRISPR enzymatic reaction can be described using the following 

equation:  

 

𝐸 + 𝑆 
𝑘𝑓

⇌
𝑘𝑟

 𝐶
𝑘𝑐𝑎𝑡

→
 

𝑃 + 𝐸 (1) 

where 𝐸 denotes the target-activated Cas enzyme, 𝑆 the uncleaved reporter, 𝐶 an intermediate 

complex and 𝑃 the cleaved reporter. 𝑘𝑓 and 𝑘𝑟 are respectively the forward and reverse rate 

constants for the formation of the complex, and 𝑘𝑐𝑎𝑡 is the turnover rate of the enzyme. 

Typically, CRISPR assays use fluorophore-quencher reporters whose quantum yield 

significantly increases when cleaved. The rise in fluorescence signal implies the presence of 

activated enzyme and enables detection of the target nucleic acid. Although an important source 

of background, for simplicity, we here do not consider the background non-specific cleavage 

activity of the non-activated enzymes.[19] 

The kinetic equations that describe trans-cleavage are known as the Michaelis-Menten 

system and are detailed in the Supplementary Information (S1). Under both the reactant 

stationary assumption[23] and the quasi-steady state assumption,[2] the reaction velocity is 

governed by the Michaelis-Menten equation: 

 
𝑑[𝑃]

𝑑𝑡
(𝑡 = 0) = 𝑣0([𝑆]0) =

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]0

𝐾𝑀 + [𝑆]0
. (2) 

where 𝐾𝑀 =
𝑘𝑐𝑎𝑡+𝑘𝑟

𝑘𝑓
 is the Michaelis-Menten constant. In practice,[19] the kinetic rate 

parameters 𝑘𝑐𝑎𝑡 and 𝐾𝑀 are determined by fitting the Michaelis-Menten curve, i.e. the 

variations of the initial reaction velocity 𝑣0 as a function of the initial substrate concentration 
[𝑆]0. Multiple experiments are performed with varying [𝑆]0 and measured values 𝑣0 are used 

to build the Michaelis-Menten curve. The best fit of Equation (2) then yields values of 𝑘𝑐𝑎𝑡 

and 𝐾𝑀. Note that reliable Michaelis-Menten curves should include values of [𝑆]0 which 

encompass 𝐾𝑀,[24] even though this value is initially unknown. The relatively high value of 𝐾𝑀 

of Cas enzymes[18] (𝐾𝑀 ∼ 𝒪(100 nM to 1 µM)) compel the research to use proportionally high 

initial concentrations of reporters. This contributes to increase the absorbance of the solution in 

which the trans-cleavage reaction takes place and the so-called inner filter effect, which is 

discussed in a subsequent section. In order to derive a closed-formed solution for all time 

instants, the Michaelis-Menten system can be integrated to derive a well-known solution:[25]  

 [𝑆](𝑡) = 𝐾𝑀𝑊 (
[𝑆]0

𝐾𝑀
𝑒

[𝑆]0
𝐾𝑀

−
𝑘𝑐𝑎𝑡[𝐸]0

𝐾𝑀
𝑡
) ≡ 𝐾𝑀𝒜(𝑡; [𝑆]0, [𝐸]0, 𝑘𝑐𝑎𝑡, 𝐾𝑀). (3) 

where 𝑊 is the Lambert-W function that satisfies 

 𝑥𝑒𝑥 = 𝑦 ⇔ 𝑥 = 𝑊(𝑦). (4) 

We here defined 𝒜(𝑡; [𝑆]0, [𝐸]0, 𝑘𝑐𝑎𝑡 , 𝐾𝑀) simplicity. We show details of the latter derivation 

in the Supplementary Information (S1).  

Despite the utility of the latter solution, our current analysis requires a solution to the 

kinetics of the cleaved substrate concentration. The latter is required as a model of the measured 

fluorescence signal in CRISPR assays . We here therefore here derive a closed-form solution 

for the so-called “progress curve,” i.e. the time evolution of the concentration of cleaved 

reporters. To this end, we again apply the quasi-steady state assumption and the rate of 

formation of product to formulate the concentration of intermediate complex: 

 [𝐶](𝑡) ≈
[𝐸](𝑡)[𝑆](𝑡)

𝐾𝑀
=

[𝐸]0[𝑆](𝑡)

𝐾𝑀 + [𝑆](𝑡)
. (5) 

We provided details of the derivation of Equation (5) in the Supplementary Information 

(S1). In the latter discussion, we also compared Equation (5) to a numerical solution of the full 



Michaelis-Menten system. We then apply the conservation of reporters and formulate the 

progress curve as follows: 

 [𝑃](𝑡) = [𝑆]0 − 𝐾𝑀𝒜(𝑡) − [𝐸]0

𝒜(𝑡)

1 + 𝒜(𝑡)
. (6) 

In the next section, we quantify the fluorescence signal from uncleaved (Equation (3)) and 

cleaved (Equation (6)) reporters. 

 

Error due to neglecting signal from uncleaved reporters 
 We now present the calibration of the progress curve, i.e. the conversion from the 

fluorescence signal to the corresponding value of cleaved reporter concentration. 

Unfortunately, the vast majority of measurements of CRISPR enzyme kinetics studies[13,17,26,27] 

do not report calibration data relating signal to product concentration. Of those that report such 

data, only a few[14,18,19,28] report separate calibrations for uncleaved versus cleaved reporters–

even though typical cleaved-to-uncleaved signal ratios[18] are only on the order of 10. Assuming 

negligible inner filter effect (which will be discussed in the next section), the actual 

fluorescence signal measured during a CRISPR trans-cleavage assay is well described by the 

following calibration curve:[28] 

𝐼(𝑡) = 𝐹𝑈𝑐𝑙[𝑆](𝑡) + 𝐹𝐶𝑙[𝑃](𝑡). (7) 

Here, 𝐹𝑈𝑐𝑙 and 𝐹𝐶𝑙  are calibration parameters accounting for the signal respectively produced 

by uncleaved and cleaved reporters and 𝐼(𝑡) is the measured fluorescence signal. Note that the 

reporters complexed with the enzyme (noted 𝐶) are ignored in this calibration because their 

concentration is typically much lower than both [𝑆] and [𝑃].  
 We can therefore quantify the error incurred on the concentration of cleaved reporters 

if the fluorescence signal due to uncleaved reporters is ignored (as is apparently commonly 

done in the field). From Equation (7), this error can be quantified as 

 [𝑃̃] − [𝑃] = 𝛼([𝑆]0 − [𝑃]). (8) 

Here, [𝑃̃] is the overprediction of the concentration [𝑃]. As expected, the error scales with the 

dynamic range (i.e. the cleaved-to-uncleaved signal ratio) of the reporters 𝛼 =
𝐹𝑈𝑐𝑙

𝐹𝐶𝑙
. A 

derivation of Equation (8) along with the study of influence of 𝛼 on the determination of 𝑘𝑐𝑎𝑡 

and 𝐾𝑀 is detailed in the Supplementary Information (S2). Briefly, not accounting for the 

signal of uncleaved reporters tends to result in an underprediction of 𝑘𝑐𝑎𝑡, but has negligible 

effect on 𝐾𝑀. 

 

Error associated with the inner filter effect and calibration between fluorescence 

signal and concentration 
 In practice, CRISPR assays are performed in solutions that have nonzero absorbance. 

This leads to the so-called inner filter effect, which originates from the self-absorption of both 

excitation and emission photons.[29] This results in a non-linear calibration curve. Huyke et 

al.[19] suggest the following correction to account for this effect: 

 𝐼(𝑡) =
𝐹′

𝑈𝑐𝑙[𝑆](𝑡) + 𝐹′
𝐶𝑙[𝑃](𝑡)

10[𝑆]0/𝑐0
. (9) 

This calibration curve depends on three calibration factors. First, 𝑐0 has the dimension of a 

concentration and is inversely proportional to the product of the molar extinction coefficient 

and the optical path length, as per the Beer-Lambert law.[30] 𝐹′
𝑈𝑐𝑙 and 𝐹′

𝐶𝑙 are the parameters 

obtained from fitting the calibration data. 

 We can then infer from Equations (3), (6) and (9) the closed-form solution of the 

fluorescence signal for a typical CRISPR assay: 



 
𝐼(𝑡) =

𝐹′
𝑈𝑐𝑙𝐾𝑀𝒜(𝑡) + 𝐹′

𝐶𝑙 ([𝑆]0 − 𝐾𝑀𝒜(𝑡) − [𝐸]0
𝒜(𝑡)

1 + 𝒜(𝑡)
)

10[𝑆]0/𝑐0
. 

(10) 

The solution therefore depends on the kinetic parameters of the enzyme (𝑘𝑐𝑎𝑡, 𝐾𝑀), initial 

concentrations ([𝑆]0, [𝐸]0) and the calibration parameters (𝐹′
𝐶𝑙, 𝐹′

𝑈𝑐𝑙, 𝑐0).  

 

Model for the uncertainty associated with pipetting and serial dilutions 
 We now model the uncertainty associated with pipetting steps and the associated error 

propagation during the serial dilution process typical of CRISPR assays. The construction of a 

Michaelis-Menten curve requires the iterative preparation of 𝑁 several solutions of varying 

uncleaved reporter concentration noted [𝑆]0,𝑛 (0 ≤ 𝑛 ≤ 𝑁).[31] We derive the concentration 

distribution for each dilution.  

 We define 𝑠𝑛 and 𝑥𝑛 as the random variables associated with the error in the 

concentration at the 𝑛th dilution (dilution factor 𝑓) and the pipetting error associated with the 

𝑛th dilution step, respectively. Similarly to previous studies,[32] we model 𝑥𝑛 (for a single 

dispensation step) as normally distributed, such that 𝑥𝑛 ↪ 𝒩(0, 𝜎𝑛). We here propose that the 

dilution protocol imposes the following recurrence relation: 

 𝑠𝑛+1 =
𝑠𝑛

𝑓
+ 𝑥𝑛+1. (11) 

We can iterate for all 𝑛 ≥ 1: 

 𝑠𝑛 =
𝑠0

𝑓𝑛
+ ∑

𝑥𝑗

𝑓𝑛−𝑗

𝑛

𝑗=1

. (12) 

𝑠𝑛 has therefore the following distribution: 

 𝑠𝑛 ↪ 𝒩 (
𝑠0

𝑓𝑛
, (∑ (

𝜎𝑗

𝑓𝑛−𝑗
)

2
𝑛

𝑗=1

)

1/2

). (13) 

We then add an additional pipetting step to account for the dilution of the stock solution to the 

tube in which the trans-cleavage reaction is performed. We can therefore conclude for 0 ≤ 𝑛 ≤
𝑁:  

 [𝑆]0,𝑛 ↪ 𝒩 (
𝑠0

𝑓𝑛+1
, (𝜎𝑛+1

2 + ∑ (
𝜎𝑗

𝑓𝑛−𝑗
)

2
𝑛

𝑗=1

)

1/2

). (14) 

Note that this result is irrespective of the assumed distribution of 𝑥𝑛 (as long as 𝜎𝑛 ≠ 0) due to 

the Central Limit Theorem. We demonstrate the accuracy of our pipetting model Equation (14) 

by benchmarking it with a Monte-Carlo model accounting for a large number of realizations of 

serial pipetting in the Supplementary Information (S3). 

The input parameters for this model are here taken from the tabulated uncertainty values for 

micropipettes[33] and the typical choice of substrate concentrations.[18] Consistent with the 

experimental data we will present, we take the following values: 

 𝜎𝑗 ≃ 0.04
𝑠0

𝑓𝑗
, 𝑓 = 2. (15) 

 

Estimates of uncertainty distributions of 𝒌𝒄𝒂𝒕 and 𝑲𝑴 based on Monte Carlo 

simulations 
We first present purely computational estimates based on the previously described 

uncertainty and bias errors and the closed-form solution for the fluorescence signal (Equation 

(10)). To this end, we performed Monte Carlo simulations to estimate the distribution of the 



kinetic parameters 𝑘𝑐𝑎𝑡 and 𝐾𝑀 due to various errors for known constant values of these 

parameters 𝑘𝑐𝑎𝑡
∗  and 𝐾𝑀

∗ . We first study the separate influence of the phenomena described in 

the previous sections on the estimation of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 and we will later examine the 

propagation of error if such phenomena are superposed. Here, we generated distributions of 

input parameters corresponding to experimental uncertainties. For now, we consider three 

sources of uncertainty, each characterized by an input parameter: the inner filter effect (𝑐0, see 

Equation (9)), pipetting errors ([𝑆]0,𝑛 and [𝐸]0, see Equation (14)) and the number of points 

in the Michaelis-Menten curve (𝑁). Each value of the input parameter is then used to derive a 

unique set of progress curves, with varying initial substrate concentrations. Each set of progress 

curves is repeated three times, to simulate triplicates (experiments repeated three times). The 

effect of replicates of the experiment is discussed in more detail in the Supplementary 

Information (S4). We then plotted the corresponding Michaelis-Menten curve and extracted 

the values of the kinetic parameters corresponding to the input parameter. This enabled us to 

construct distributions of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 given distributions of the input parameter. All 

simulations and fits were performed using Python 3.7.11[34] and SciPy 1.7.3.[35] 

Figures 1a-b show the bias error influence of the inner filter effect calibration on the 

estimation of the kinetic parameters. Figure 1a shows a plot of Michaelis-Menten curves for 

six values of the absorption parameter 𝑐0. The apparent initial reaction velocity gradually 

decreases with increasing values of the absorbance (i.e., decreasing values of 𝑐0). Figure 1b 

shows the apparent values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 for 97 values of 𝑐0 ranging from 3 to 100 µM. True 

values of the kinetic parameters 𝑘𝑐𝑎𝑡
∗  and 𝐾𝑀

∗  are shown with a cross. The inset shows the 

corresponding relative error on 𝑘𝑐𝑎𝑡 and 𝐾𝑀 defined as 𝑢𝜅 =
|𝜅∗−𝜅|

𝜅∗  (𝜅 = 𝑘𝑐𝑎𝑡, 𝐾𝑀). Neglecting 

the inner filter effect (Equation (9)) in calibration for 𝑐0 and 𝑆0 values observed 

experimentally[14] results in relative errors of more than 50% on each kinetic constant. This 

observation is important as at least some papers in the field exhibit data with strong inner filter 

effect but do not account for this in calibration (see Li et al.[36] for an extreme case). Importantly, 

the distribution data in Figure 1b also suggests that all estimates of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 yield roughly 

approximately equal, and fairly accurate, value of the ratio of these parameters which is, of 

course, the Michaelis-Menten kinetic efficiency 𝜂 =
𝑘𝑐𝑎𝑡

𝐾𝑀
. From this observation we conclude 

that 𝜂 is insensitive to 𝑐0 and the inner filter effect bias error. 

 Figure 1c shows Michaelis-Menten curve data for 10,000 simulated realizations of the 

pipetting process. Each cluster shows a distribution induced by the distributions of [𝑆]0,𝑛 

(Equation (14)) and [𝐸]0 (normal distribution). In inset are plotted progress curves for each 

repeat. Figure 1d shows the corresponding distributions of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. Relative errors solely 

due to pipetting errors are as high as 10% and 20% for 𝑘𝑐𝑎𝑡 and 𝐾𝑀, respectively. Note that the 

distributions shown in this figure include the effect of averaging over triplicates. As shown and 

discussed in the Supplementary Information (S4), the distribution of individual realizations 

of 𝐾𝑀 is markedly skewed toward larger values. 

 Figure 1e shows Michaelis-Menten fits for seven choices for the number of dilutions of 

reporter (i.e. numbers of values of [𝑆]0 used to generate the curve). The cardinality of the 

subsets of dilutions ranges from four to ten. This simulation also includes the effect of simulated 

pipetting errors as described by Equation (14). Figure 1f shows the corresponding values of 

𝑘𝑐𝑎𝑡 and 𝐾𝑀. Values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 corresponding to even (odd) number of points in the 

Michaelis-Menten curve are shown with a circle (triangle). Curved arrows track the progression 

of the estimation of the kinetic parameters with increasing numbers of [𝑆]0 values used for the 

Michaelis-Menten curve. Here, the kinetic parameter estimates converge as the number of 

dilutions increases. Conversely, Michaelis-Menten curves constituted of four or five points, as 

sometimes reported in CRISPR studies,[36] yield estimates of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 off by a factor 2 



compared to the theoretical values 𝑘𝑐𝑎𝑡
∗  and 𝐾𝑀

∗ . We therefore recommend eight points on the 

Michaelis-Menten curve for reliable estimates of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. This is consistent with the 

recommendation for the estimation of 𝐾𝑀 only by Ritchie and Prvan.[12]  

Figure 1. Estimates of kinetic constants given uncertainty on experimental parameters using 

simulated progress curves. All simulation results are shown for fixed kinetic parameters of 

𝑘𝑐𝑎𝑡
∗ = 0.75 s-1 and 𝐾𝑀

∗ = 0.5 µM. a and b quantify the inner filter effect (IFE). a Initial reaction 

velocities vs varying concentration of reporters [𝑆]0 (symbols) and Michaelis-Menten curves 

(solid lines) for six values of 𝑐0 (Equation (9)). No IFE corresponds to 𝑐0 = +∞. b Distribution 

of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 for 97 values of 𝑐0 (circles). 𝑘𝑐𝑎𝑡
∗  and 𝐾𝑀

∗  are marked with a cross. Inset shows 

relative error of each parameter. c and d quantify pipetting errors. c Michaelis-Menten curves 

for 10,000 repeats of the pipetting process (Equation (14)). Inset shows the corresponding 

progress curves. The relative error in substrate concentration for each repeat is defined as 

𝑢[𝑆]0
=

|[𝑆]0,th−[𝑆]0,exp|

[𝑆]0,th
, where [𝑆]0,th is target concentration and [𝑆]0,exp is pipetted 

concentration of the individual repeat. d shows corresponding distributions of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. The 

marginal distribution of 𝑘𝑐𝑎𝑡 (resp. 𝐾𝑀) is plotted on the top (resp. right) axis. e and f quantify 

the effect of varying the number of [𝑆]0 values used to generate the Michaelis-Menten curves. 

e Initial reaction velocities vs [𝑆]0 (symbols) and Michaelis-Menten fits (solid line) considering 

four to eight points of the Michaelis-Menten curve. f Corresponding values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 

(circles for even number of dilutions, triangles for odd). Curved arrows indicate the progression 

of values extracted with increasing number of [𝑆]0 values. 



Uncertainty propagation in the estimation of the kinetic parameters 
We now present the results of Monte Carlo simulations to estimate the values of 𝑘𝑐𝑎𝑡 and 

𝐾𝑀 considering both individual sources of uncertainty and considering combinations of such 

sources. Similarly to what we presented in the previous section, we generated modified progress 

curves using Equation (10) and extracted initial velocities to build Michaelis-Menten curves. 

We then fit these curves yields values of the kinetic constants 𝑘𝑐𝑎𝑡 and 𝐾𝑀. Figure 2 shows the 

relative error on 𝑘𝑐𝑎𝑡 (resp. 𝐾𝑀), denoted 𝑢𝑘𝑐𝑎𝑡
 (resp. 𝑢𝐾𝑀

), on the lower (resp. upper) diagonal 

half using two color scales and for test cases of propagated uncertainty. These cases involve 

both individual sources of uncertainty ((a)-(d)) or combinations thereof. For random sources of 

uncertainty ((a) and (b)), the value shown in Figure 2 was calculated as the averaged relative 

error across 1,000 realizations of the random process. Similarly to the previous section, each 

set of progress curves is replicated thrice to simulate triplicates. Note that the cumulative effect 

of two sources of uncertainty is reported at the intersection of the corresponding row and 

column. As expected, adding more sources of uncertainty increases the error on the estimation 

of the kinetic parameters. Inclusion of three or more sources of uncertainty results in relative 

errors which easily exceed 70% for each kinetic parameter. Uncertainties in 𝐾𝑀 are particularly 

amplified given errors which we believe are typical of Michaelis-Menten experiments. A good 

rule of thumb may be that estimates in 𝐾𝑀 and 𝑘𝑐𝑎𝑡 values are, at best, good to within a factor 

of 2 for carefully executed experiments with three replicates of each progress curve. 

Figure 2. Relative error in the determination of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 for case estimates of uncertainty. 

These cases were chosen as either individual effects or the combinations of the effects of five 

distinct sources of uncertainty (a-d) as shown. Reported are values of relative error in 𝑘𝑐𝑎𝑡 (resp. 

𝐾𝑀) on the lower-left (resp. upper-right) portion. Relative error is defined as 𝑢𝜅 =
|𝜅∗−𝜅|

𝜅∗
 (𝜅 =

𝑘𝑐𝑎𝑡, 𝐾𝑀) where 𝜅∗ is the true value and 𝜅 the measured value. The values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 

obtained considering two sources of uncertainty are shown at the intersection of the 

corresponding row and column. Mutually exclusive cases are noted “N/A.” Unless specified 

otherwise, we used eight points of the Michaelis-Menten. The following values were used: 

𝑘𝑐𝑎𝑡
∗ = 0.75 s-1, 𝐾𝑀

∗ = 0.5 µM, [𝐸]0 = 1 nM, 𝑠0 = 2 µM, 𝑐0 = 7 µM, 𝛼 = 0.1. 

 

 

 

 

 



Uncertainty quantification for kinetic parameters extracted from experimental data 
This section presents analyses of bias errors in Michaelis-Menten curves with a typical 

experimental setup. As a case study, we present analyses of the raw experimental calibration, 

progress curves, and Michaelis-Menten curve data for CRISPR AsCas12a and AapCas12b of 

Huyke et al.[19] These analyses serve to demonstrate how three biases influence the measured 

value of kinetic constants. 

Figure 3a shows experimental progress curves for eight initial substrate concentrations 

using the CRISPR ortholog AapCas12b. The enzyme was pipetted at concentration [𝐸]0 = 1 

nM in presence of reporters functionalized with a fluorophore-quencher pair at initial 

concentration [𝑆]0. The fluorescence signal was measured using a MiniOpticon thermal cycler 

(Bio-Rad Laboratories, CA, USA) and corrected for optical effects as we shall discuss next. 

The sensitivity of microwell-type array fluorescence detectors is not uniform. A single value of 

fluorophore concentration and a very uniform dispensing of sample volumes results in a non-

uniform measured signal. We hypothesize this may be due to well-to-well differences in 

illumination and in the light-capture optics. A significant component of this non-uniformity in 

response is repeatable across experiments over periods of one week or two. Hence, this non-

uniformity may be corrected by accounting for the non-uniform response. We here term this 

correction “flat-field” in analogy to the correction used to correct for non-uniform system 

response in fluorescence microscopy (which is typically mostly due to non-uniform 

illumination).[37] For micro-well arrays of thermocyclers, we recommend the following 

correction to the raw data: 

 𝐼𝑐𝑜𝑟𝑟 =
𝐼 − 𝐼𝐵𝐺

𝐼𝐹𝐹 − 𝐼𝐵𝐺
. (16) 

where 𝐼, 𝐼𝐵𝐺 , 𝐼𝐹𝐹 and 𝐼𝑐𝑜𝑟𝑟 are respectively the raw signal from the thermal cycler, the 

background, flat-field, and corrected signals. The quantity 𝐼 here refers to a matrix quantity 

whose elements each correspond to the well-specific signal. The flat-field signal of the 

aforementioned thermocycler was obtained by filling each well of the thermal cycler with the 

same volume of the same solution of cleaved reporters (concentration 2.5 µM). This 𝐼𝐹𝐹 is 

shown as an inset in Figure 3d for the recently serviced (by manufacturer) thermocycler array 

system. Figure 3d shows a histogram distribution of the intensity of the flat-field signal in the 

48 wells of the thermal cycler and the corresponding raw signal for each well (inset). 

The flat-field-corrected progress curve data can be compared to the uncorrected version to 

analyze the well-specific bias errors incurred from uncorrected data. For the current data, this 

is shown in Figure 3b which plots a scaled concentration deficit 
[𝑃]𝑐𝑜𝑟𝑟−[𝑃]𝑛𝑜 𝐹𝐹

[𝑆]0
 versus time. 

Here, [𝑃]𝑐𝑜𝑟𝑟 is the product concentration calculated using the (fluorescence signal to 

concentration) calibration (i.e. inverting Equation (9)). Accordingly, [𝑃]𝑐𝑜𝑟𝑟 is the 

concentration obtained after flat-field correction and inner filter effect correction and [𝑃]𝑛𝑜 𝐹𝐹 

is the concentration obtained after inner filter correction only.  

Note that flat-field correction and calibration (including IFE) are coupled in any analysis. To 

isolate the effect of the IFE, Figure 3c shows the scaled concentration deficit 
[𝑃]𝑐𝑜𝑟𝑟−[𝑃]𝑛𝑜 𝐼𝐹𝐸

[𝑆]0
 

versus time observed if the inner filter correction is not applied on the experimental signal. 

Here, [𝑃]𝑐𝑜𝑟𝑟 is the concentration obtained after flat-field correction and inner filter effect 

correction and [𝑃]𝑛𝑜 𝐼𝐹𝐸  is the concentration obtained after flat-field correction only. In this 

case, the scaled concentration deficit can exceed 20% and, as predicted by Beer-Lambert law, 

it is always positive and strictly increases with concentration.  

The errors in concentration shown in Figure 3 propagate to the Michaelis-Menten curves 

and therefore impair accurate determination of the kinetic parameters. As a demonstration of 

the combined effect of various uncertainties, Figure 4 shows the influence of the nonuniform 



sensor response, inner filter effect, and the number of points chosen to build the Michaelis-

Menten curve on the experimental estimation of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. Data is shown for the two 

orthologs AsCas12a and AapCas12b. We present in Supplementary Information (S4) 

distributions of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 accounting for all effects presented in this work on simulated data. 

Figure 3. Influence of non-uniform sensor response (FF) and inner filter effect (IFE) on 

experimental progress curves. a Cleaved reporter concentration vs time for eight different initial 

reporter concentrations. Triplicates are shown with the same color. Data was corrected for both 

non-uniform sensor response and inner filter effect. b Scaled concentration deficit vs time due 

to the omission of the flat-field correction. c Scaled concentration deficit vs time due to 

omission of only the inner filter effect correction. d shows the non-uniform sensor response of 

a recently serviced thermocycler. Shown is a histogram of normalized intensity measured across 

48 wells of the plate reader (bars) and a corresponding Gaussian fit (solid line). The inset shows 

the spatial distribution of the flat-field signal over the 48-well plate. 

Figure 4a shows Michaelis-Menten curves for AsCas12a without flat-field correction, 

without inner filter correction and with both corrections. Figure 4b shows the corresponding 

measured values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 using four to eight points of each Michaelis-Menten curve. 

Figures 4c and 4d show analogous data than respectively Figures 4a and 4b for AapCas12b. 

Relative variations of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 exceed 60% for AsCas12a and 80% for AapCas12b. This 



compares well with the uncertainty estimation obtained in the Monte Carlo simulations. The 

number and range (relative to 𝐾𝑀) of [𝑆]0 values used to construct the Michaelis-Menten curve 

is critically important given that reported data is often limited to just a few values. As just two 

examples, Shinoda et al.[38] and Li et al.[36] present data for 𝑘𝑐𝑎𝑡 and 𝐾𝑀 given three and five 

[𝑆]0 values, respectively. 

Figure 4. Influence of non-uniform sensor response (FF), inner filter effect (IFE) and number 

of points in the Michaelis-Menten curve on kinetic constants determination. a shows measured 

reaction velocity vs initial substrate concentration for AsCas12a omitting flat-field correction 

(triangles), inner filter effect correction (crosses) and correcting for both effects (circles). 

Shown are measured velocities (symbols) and corresponding Michaelis-Menten fits (solid 

lines). b shows corresponding values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. Shown are measured values of the kinetic 

parameters without flat-field correction (triangles), without inner filter effect correction 

(crosses) and with both corrections (circles), for four to eight points in the Michaelis-Menten 

curve. c-d Analogous plots for the CRISPR ortholog AapCas12b. 

Figures 1 and 4 highlight an important trend in much of current analyses of bias and 

random errors associated with Michaelis-Menten-type analyses. Namely, individually or 

collectively, the various sources of uncertainty very strongly affect determination of 𝑘𝑐𝑎𝑡 and 

𝐾𝑀. However, these errors have a significantly weaker influence on the estimation of the 



catalytical efficiency parameter 𝜂 = 𝑘𝑐𝑎𝑡/𝐾𝑀. This precision in the quantification of catalytic 

conversion is manifested in the approximate groupings of measured values of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 

along diagonals in Figures 1b, 1d and 1f. To further illustrate this observation, Figure 5 shows 

the relative error on 𝜂 and the minimal relative error made on either 𝑘𝑐𝑎𝑡 or 𝐾𝑀 for the same 

test cases (i.e. column and row labels) of Figure 2. In most cases, the estimation of the kinetic 

efficiency of the enzyme yields relative errors lower than or on the order of the minimum of the 

two uncertainties on 𝑘𝑐𝑎𝑡 and 𝐾𝑀 separately.  

We attribute this to several aspects of the extraction of 𝑘𝑐𝑎𝑡, 𝐾𝑀 and 𝜂. For example, the 

inner filter effect more strongly attenuates measured signals for higher values of [𝑆]0. This 

modifies the shape of the Michaelis-Menten curve and results in lower apparent values of both 

𝑘𝑐𝑎𝑡 and 𝐾𝑀. Further, we note that bias error resulting from a lack of flat-field correction tends 

to affect 𝑘𝑐𝑎𝑡 and 𝐾𝑀 in approximately the same way. Hence, both constants are either over-

predicted or under-predicted so that 𝜂 is less affected. Similarly, we note that pipetting errors 

also tend to affect the estimation of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 in the same way, such that the estimation of 𝜂 

is, relatively speaking, more precise. 

Figure 5. Relative error in the determination of the kinetic parameters separately and for the 

kinetic efficiency 𝜂. The various cases analyzed (e.g. row and column labels and interpretation 

of intersections) are the same as those of Figure 2. The lower-left portion shows reported values 

of the minimum of the relative errors of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. Relative errors in 𝜂 are listed in the upper-

right portion. Relative error is defined as 𝑢𝜅 =
|𝜅∗−𝜅|

𝜅∗
 (𝜅 = 𝑘𝑐𝑎𝑡, 𝐾𝑀, 𝜂) where 𝜅∗ is the true 

value and 𝜅 the measured value. The following example values were used: 𝑘𝑐𝑎𝑡
∗ = 0.75 s-1, 

𝐾𝑀
∗ = 0.5 µM, [𝐸]0 = 1 nM, 𝑠0 = 2 µM, 𝑐0 = 7 µM, 𝛼 = 0.1. 

Lastly, we note that the precision of the measurement of 𝜂 relative to determination of 𝑘𝑐𝑎𝑡 

or 𝐾𝑀 individually is convenient as 𝜂 is likely much more important to the design and 

implementation of CRISPR-based assays. We hypothesize that most assays based on the 

cleavage of fluorophore-quencher pair reporters will employ relatively low values of [𝑆]0 

(compared to 𝐾𝑀) to avoid the significant background due to uncleaved reporters.[19] In the 

latter regime, the reaction velocity is more sensitive to 𝜂 (as 𝑣0 ~
[𝑆]0→0

𝑘𝑐𝑎𝑡[𝐸]0[𝑆]0

𝐾𝑀
∝ 𝜂), in contrast 

to the high substrate regime where lim
[𝑆]0/𝐾𝑀→+∞

𝑣0 = 𝑘𝑐𝑎𝑡[𝐸]0.  

 



Conclusion 

We used analytical derivations, Monte Carlo simulations, example analyses of models 

and experimental calibrations, and experimental data to estimate typical uncertainties 

associated with the determination of kinetic constants of enzymatic reactions following the 

Michaelis-Menten model. We focused such presentation by exploring the case of measurements 

of the Michaelis-Menten kinetics parameters of CRISPR-Cas enzymes which use reporter 

molecules consisting of synthetic nucleic acids functionalized with fluorophore-quencher pairs. 

We considered the independent and combined influences of neglecting background of 

uncleaved fluorescence reporters, inner filter effect, pipetting errors (including typical serial 

dilutions), the number of points in the Michaelis-Menten curve, and flat-field correction on the 

estimation of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. We constructed multi-dimensional probability distributions of these 

errors using our models and Monte Carlo simulations. This included estimations of the 

influence of the combined effects of various independent (and small groupings of the) sources 

of uncertainty. We also considered the effect of triplicate repetitions. As an example case study, 

we applied our uncertainty models to the experimental uncertainty associated with the 

estimation of 𝑘𝑐𝑎𝑡 and 𝐾𝑀 for two CRISPR-Cas orthologs, AsCas12a and AapCas12b. We 

characterized each source of uncertainty with an input parameter. 

Typical experimental distributions of input parameters led to substantial relative error 

for both 𝑘𝑐𝑎𝑡 and 𝐾𝑀. From the results of the Monte Carlo simulations, we conclude that both 

these constants are typically measured within a factor 2 and that uncertainties for reported 

experimental conditions prevent precise estimations of 𝑘𝑐𝑎𝑡 and 𝐾𝑀. However, the measure of 

the kinetic efficiency 𝑘𝑐𝑎𝑡/𝐾𝑀 leads to significantly more precise estimations than the 

estimation for either 𝑘𝑐𝑎𝑡 or 𝐾𝑀 independently, given the same input uncertainty. This suggests 

using 𝑘𝑐𝑎𝑡/𝐾𝑀 rather than 𝑘𝑐𝑎𝑡 and 𝐾𝑀 as an index of enzymatic performance–especially, as 

we have shown, for CRISPR-Cas systems. 
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