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Abstract

We describe the Serestipy software, which is an add-on to the quantum-chemistry

program Serenity. Serestipy is a representational-state transfer-oriented applica-

tion programming interface written in the Python programming language enabling

parallel subsystem density-functional theory calculations. We introduce approxi-

mate strategies in the context of frozen-density embedding time-dependent density-

functional theory to make parallel large-scale excited-state calculations feasible. Their

accuracy is carefully benchmarked with calculations for large assemblies of porphine

molecules. We apply this framework to a theoretical model nanotube consisting of

rings of porphine monomers, with 12,160 atoms (or 264,960 basis functions) in total.

We obtain its electronic structure and absorption spectrum in less than a day of

computation time.
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1 Introduction

Computational studies on large molecular systems of chemical interest demand high

computational effort employing ab-initio descriptions in quantum chemistry [1–4]

(QC). Traditionally, high-performance computing (HPC) infrastructure is utilized to

perform calculations requiring a large amount of computational resources. This type

of calculations, however, is often limited by the capacity and availability of the chosen

HPC center. As the internet has seen a drastic development in the last years [5–21]

these limitations can be mitigated by deploying QC software into the available cloud

infrastructure [22–24]. Cloud-based QC opens the possibility to dynamically scale the

needed resources depending on the system of interest. With these seemingly infinite

resources of the cloud at hand, it is necessary to integrate traditional QC software

into that framework. Therefore, it is mandatory to employ application programming

interfaces (APIs) that provide a uniform gateway between a possible user and the

QC software running as backend. Recently, the open chemistry project [25,26] has

been launched. It provides an end-to-end platform for chemical-science research that

integrates data from computational and experimental approaches through a modern

web-based interface. In this project, the focus was to facilitate the interplay between

experimental and computational researchers employing a shared platform that is

easy to use for both parties. On a technical level, this platform uses a RESTful [27]

API design which easily integrates into cloud-based infrastructure, because already

large parts of the internet rely on these technologies. The QC backend, however, is

the open-source NWChem [28] program.

In this work we will present the Serestipy software, which is inspired by design

guidelines employed in the open-chemistry project. In contrast to the original idea

of creating a uniform platform for experimental and computational researchers, we

3



will use such a framework to drastically improve the efficiency of QC studies on

large molecular systems using the Serenity [29, 30] program as a backend. To this

end, we employ fragmentation approaches such as Frozen-Density Embedding [31]

(FDE) that follow a divide-and-conquer strategy. The concept of “horizontal scaling”

integrates perfectly with this fragmentation approach as each fragment is treated

as a separate entity. The possibility to dynamically scale the needed resources

in a cloud-based infrastructure enables massively-parallel calculations. Breaking

down the full computational effort into smaller fragment-based calculation pieces

drastically reduces the overall computational time. Therefore, in this work we will

exemplarily tackle at an acceptable time scale massively-parallel computations of

excited states of nano-scale systems in the form of model porphine nano-tubes

that are usually completely out of reach for first-principles electronic-structure

calculations. In particular, we will employ subsystem time-dependent density-

functional theory [32–35] (subsystem TDDFT) with parallel FDE calculations as a

reference [36,37] to efficiently obtain excited states. Besides the presented example,

this massively-parallel framework could be employed to efficiently perform tasks such

as embarrassingly-parallel potential-energy surface constructions [38–43], parallel

mode- and intensity-tracking or general semi-numerical frequency calculations [44–47],

or many-body expansion calculations [48–52].

This article is structured as follows. First, we outline FDE theory in the context of

ground and excited states. We propose an approximate inter-subsystem coupling

strategy for excited states based on the simplified TDDFT [53,54]. Next, technical

tests are performed using Serestipy for clusters of 30 water molecules to compare

the computational timings and the convergence behavior of the parallel and serial

approaches. Next, the porphine-nanotube model system used in this study is

introduced. We discuss the absorption spectrum of porphine and assess the accuracy
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of approximate transition-charge couplings. We demonstrate the efficacy of the

implementation and the parallel FDE approach for FaT and subsystem TDDFT

calculations for the nanotube system. Finally, we conclude from our results.

2 Theory

2.1 Frozen-Density Embedding

The starting point for the derivation of FDE [31] is subsystem density-functional

theory [55,56] (subsystem DFT) as a fragmentation ansatz within density-functional

theory [57,58]. The main idea of subsystem DFT is to partition the total electron

density ρtot of some system into subsystem densities ρI

ρtot(r) =
∑
I

ρI(r), (1)

where I labels the subsystems and r collects the spatial coordinates. On the grounds

of DFT being an exact theory, this partitioning is intrinsically not an approximation.

As a result, the total energy of the system can be written formally as a sum over

intra- and inter-subsystem contributions

E[{ρI}] =
∑
I

Eintra[ρI ] +
∑
I<J

Einter[ρI , ρJ ], (2)

assuming that the intra- and inter-subsystem energies are strictly additive.

FDE can be considered a specific realization of subsystem DFT that can actually

be put to practical use. The essential prerequisites for an FDE-based description

of a supersystem partitioned into subsystems are: (i) for each subsystem there

exists a separate non-interacting Kohn–Sham-like reference system [59] (along with
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the corresponding auxiliary Slater determinant and orbitals), (ii) in the limit of

a vanishing environment, FDE reduces to regular KS theory, (iii) the density of

each subsystem “experiences” an effective KS-like potential, and (iv) the number of

electrons of each subsystem is constrained to be constant.

Consideration (i) directly implies that each ρI can be written as a sum over simple

one-particle densities

ρI(r) =
∑
i

∣∣φIi (r)
∣∣2, (3)

where i labels the occupied orbitals φ of subsystem I. The total electronic supersystem

FDE energy can be derived as

E[{ρI}, ρtot] =
∑
I

Ts[φ
I
i ] +

∑
I

Exc[ρI ] + Vnuc[ρtot] + J [ρtot]

+ T nadd
s [{ρI}, ρtot] + Enadd

xc [{ρI}, ρtot],

(4)

where the kinetic energy of subsystem I is written in terms of its KS orbitals

Ts[ρI ] = min
{φIi }−→ρI

(
−
∑
i

〈
φIi
∣∣∇2

2

∣∣φIi 〉
)
, (5)

and the non-additive energy contributions are introduced to make the expression

formally equal to the supersystem energy

F nadd[{ρI}, ρtot] = F [ρtot]−
∑
I

F [ρI ] (6)

for F = Ts, Exc. To obtain the density of subsystem I that minimizes its energy

in the presence of all other subsystems, a self-consistent solution of some set of

KS-like one-particle Schrödinger equations that accounts for both the KS potential
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of subsystem I as well as all other subsystems is required. These local potential

contributions enter the one-particle equations via a Fock-like operator for each

subsystem I. The local potential whose orbitals fulfill these equations can be shown

to be the derivative of the FDE energy with respect to the density of subsystem I.

The corresponding Fock-type operator is given as,

F̂ I =

(
−∇2

2
+ vIeff [ρI ](r) + vIemb[ρI , ρ

tot](r)

)
, (7)

which, accounting for (iv), enters the Kohn–Sham equations with constrained electron

density (KSCED) for each subsystem I as

F̂ IφIi (r) = εIiφ
I
i (r). (8)

It is understood that vIeff is the effective KS potential evaluated for the density of

subsystem I (and the corresponding nuclear contribution) and vIemb is the embedding

potential which arises from the frozen environment densities (and the corresponding

nuclei) and acts on subsystem I

vIemb[ρI , ρ
tot](r1) =

∑
J 6=I

(
vnuc
J (r1) +

∫
ρJ(r2)

r12

dr2

)
+
δ(T nadd + Enadd

xc )[ρI , ρ
tot]

δρI(r1)
. (9)

Here vnuc
J is the potential arising from the nuclei of subsystem J and the density

derivative of the non-additive contributions is given as

δF nadd[ρI , ρ
tot]

δρI(r)
=
δF [ρ]

δρ(r)

∣∣∣∣
ρ=ρtot

− δF [ρ]

δρ(r)

∣∣∣∣
ρ=ρI

. (10)

Both KS-DFT and subsystem DFT are formally exact in the limit that exact

functionals are used, provided that the corresponding representability conditions of
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Figure 1: Comparison of serial and parallel FaT. Each box represents a subsystem, and
orange and blue denote relaxed and frozen subsystems, respectively.

the densities are met. However, FDE introduces additional approximations through

the usage of approximate non-additive functionals (this also holds for subsystem DFT)

and not fully relaxing the densities of the environment subsystems. More specifically,

if the same exchange–correlation (XC) functional approximation is used for evaluating

the intra-subsystem and non-additive XC energy, an approximation is needed for the

non-additive kinetic energy (NAKE) contributions. This is due to the fact that the

intra-subsystem kinetic energy is evaluated with the subsystem KS orbitals while

for the non-additive kinetic contributions one must resort to approximate density

functionals because the supersystem orbitals are unknown. As a result, the main

area of application of subsystem DFT using approximate NAKE functionals are

weakly-interacting subsystems. For more strongly-interacting subsystem connected

via for example covalent bonds, other ways of describing the subsystem interaction

such as potential-reconstruction [60–68] or projection techniques [69–72] are usually

more suitable.

In practice, FDE calculations are performed by solving Eq. (8) for each subsystem

in the presence of all other, frozen subsystems in an alternating fashion until some

criterion for the self consistency of e.g. the subsystem densities is met. This procedure

is commonly called Freeze-and-Thaw [73] (FaT) and will be referred to as such in
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the following. There are two modes in which a FaT procedure can be performed,

which are schematically depicted in Fig. 1. In a cycle of a serial FaT, the densities of

each subsystem are relaxed subsequently and are made available for the updates of

the other subsystems immediately, on the one hand. In a cycle of a parallel FaT, on

the other hand, the densities of each subsystem are only updated after all subsystem

densities have been relaxed. In the parallel case, each individual FDE calculation can

be carried out on independent worker compute nodes (WCN), which implies that the

parallel mode has some conceptual advantages regarding cross-node parallelization.

2.2 Frozen-Density Embedding for Excited States

Linear-response subsystem time-dependent density-functional theory (subsystem

TDDFT or FDE-TDDFT) is a variant of subsystem DFT for the description of excited

states [32–35]. The linear-response of the density δρtot to a frequency(ω)-dependent

perturbation is partitioned into individual subsystem contributions

δρtot(r, ω) =
∑
I

δρI(r, ω), (11)

where δρI(r) is the density response of subsystem I which is expanded in elements

of that subsystem’s first-order density matrix δP :

δρI(r, ω) =
∑
(pq)I

δP I
pq(ω)φIp(r)φIq(r). (12)

Using a time-dependent perturbation treatment, one finds that (i) only the occupied–

virtual and virtual–occupied blocks of δP contribute to the linear response of density

and (ii) they can be written in terms of matrix elements of the change in the
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perturbing potential δvIpq

δP I
pq(ω) =

1

ω − (εIp − εIq)
δvIpq(ω). (13)

Within the electric-dipole and adiabatic approximations, the perturbation of δvIpq

consists of two parts, i.e. one that is a result of the (spatially-uniform) external

perturbation, such as an electric-dipole perturbation, and one part that is due to an

induced change in the potential caused by the linear response of the subsystem I

itself and all other subsystems. Considering the matrix elements of these changes in

potentials, one finds

δv(ia)I (ω) = δvext
(ia)I

(ω) + δvind
(ia)I

(ω), (14)

where δvext
ia describes the external perturbation in the orbital-transition space of

subsystem I and δvind
ia describes the change of the potential due to a change in

the subsystem densities. This is assumed to be instantaneous in the following, i.e.

retardation effects will be neglected. The change in the induced potential can further

be derived in terms of the first-order density matrix as

δvind
(ia)I

(ω) =
∑
J

∑
(jb)J

K(ia)I ,(jb)J

(
δP J

jb(ω) + δP J
bj(ω)

)
, (15)

where the subsystem TDDFT coupling matrix K is introduced. Following the

generalization of subsystem TDDFT with exact exchange (see Refs. [74] and [75])

and employing the (11|22) notation for the two-electron integrals, its elements read

K(ia)I ,(jb)J = (φIiφ
I
a|φJj φJb ) + δIJ

[
(φIiφ

I
a|f Ixc|φIjφIb)− cHF(φIiφ

I
j |φIaφIb)

]
+ (φIiφ

I
a|fnadd

xc |φJj φJb ) + (φIiφ
I
a|fnadd

kin |φJj φJb ). (16)
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The first part describes the classical Coulomb interaction between the responses of

subsystems I and J . The second part includes the non-classical intra-subsystem XC

interaction via the intra-subsystem XC kernel f Ixc as well as Hartree–Fock exchange

with an amount of cHF as used in the respective approximation for the XC functional.

Within the adiabatic approximation, f Ixc reduces to

f Ixc(r1, r2) =
δ2Exc[ρ]

δρ(r1)δρ(r2)

∣∣∣∣
ρ=ρI

. (17)

The non-additive XC and kinetic kernels stem from the non-additive XC and kinetic

energy potentials and read

fnadd(r1, r2) =
δ2F [ρ]

δρ(r1)δρ(r2)

∣∣∣∣
ρ=ρtot

− δIJ
δ2F [ρ]

δρ(r1)δρ(r2)

∣∣∣∣
ρ=ρI

. (18)

with F = Exc, Ts. Inserting Eq. (15) into Eq. (13) and subsequently rearranging the

equations for the external potential, one finds [74,76]


A B

B A

− ω
1 0

0 −1



X

Y

 = −

Q

R

, (19)

where the following definitions apply

A(ia)I ,(jb)J = δIJδabδij(ε
I
a − εIi ) +K(ia)I ,(jb)J , (20)

B(ia)I ,(jb)J = K(ia)I ,(bj)J , (21)

for the matrix elements and

X(ia)I = δP I
ia, Q(ia)I = δvext

(ia)I
, (22)

Y(ia)I = δP I
ai, R(ia)I = δvext

(ai)I
, (23)
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for the vector elements. For ω → ω0n, where ω0n is the excitation energy to the

n-th excited state, the linear response of the density diverges irrespective of the

perturbation strength. As a result, excitation energies and corresponding transition

densities can be obtained by setting Q,R = 0 and therefore as a solution of the

generalized non-Hermitian eigenvalue problem [74–76]

A B

B A


X

Y

 = ω

1 0

0 −1


X

Y

. (24)

Scrutiny of Eqs. (20) and (21) makes the inherent subsystem block structure of

the subsystem TDDFT response equations apparent [34]. Within the uncoupled

approximation of subsystem TDDFT (FDEu), the contributions of the change in the

induced potential where I 6= J are neglected [see Eq. (15)]. This amounts to setting

the inter-subsystem blocks of the K-matrix to zero and thus implies that the block of

each subsystem of the fully coupled response matrix is decoupled from the response of

all other subsystems. As a result, the transition densities of the uncoupled excitations

are only expanded in the orbital-transition space of the respective subsystem and

are therefore localized on subsystem only (assuming that monomer basis sets are

employed). The FDEu approximation can be expected to give accurate results only

for transitions that are mainly localized on only one subsystem [34].

This work is restricted to the Tamm–Dancoff approximation [77] of subsystem

TDDFT [78] for computational convenience, i.e. we neglect the B-matrix in Eq. (24).

Subsystem TDA-TDDFT (and subsystem TDDFT) calculations are generally per-

formed in a two-step procedure: In the first step, some of the lowest-lying excitations

of each subsystem are determined within the respective uncoupled approximation

(FDEu step). In the second step, the corresponding uncoupled transition density
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matrices are used to setup a coupled FDE (FDEc step) Hamilton-like matrix H [34]

H(m)I(n)J =
∑
(ia)I

∑
(jb)J

Xm
(ia)I

A(ia)I ,(jb)JX
n
(jb)J

, (25)

which is defined in the basis of the uncoupled excitations m and n of subsystems I and

J as determined in the FDEu step. Delocalized excitation energies with corresponding

contributions from the local excitations can be extracted from eigenvalues and

eigenvectors, respectively, of the H-matrix by solving the reduced eigenvalue equation

Hx = ωFDEcx. (26)

The FDEc procedure is somewhat ambiguous in the sense that coupled excitations

energies and transition moments may highly depend on the number and choice of

uncoupled excitations used to setup the reduced H-matrix. We note, however, that

in the limit of all uncoupled excitations of all subsystems, Eq. (25) can be interpreted

as an orthogonal transformation of the A-matrix, i.e. the eigenvalues of the H-matrix

will be identical to the eigenvalues of the coupled A-matrix.

2.3 Approximate Inter-Subsystem Couplings

The TDA renders both the response matrix A and the FDEc Hamilton matrix H as

well as their eigenvalue problems symmetric. As a result, the uncoupled eigenvectors

of a particular subsystem trivially diagonalize the intra-subsystem block of the FDEc

matrix belonging to that subsystem. It follows that the diagonal blocks of the

coupling Hamilton matrix consist of the uncoupled excitation energies ωIm

H(m)I(n)J = δIJδmnω
I
m + (1− δIJ)V(m)I(n)J , (27)
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which are coupled by virtue of FDEc coupling elements V on the off-diagonal blocks

V FDEc
(m)I(n)J

=
∑
(ia)I

∑
(jb)J

Xm
(ia)I

A(ia)I ,(jb)JX
n
(jb)J

. (28)

In practice, the FDEc step can thus be simplified straightforwardly by (i) only

calculating the coupling elements V explicitly and (ii) doing that only for I < J

to exploit the symmetry of the matrix. Nonetheless, this can be one of the most

computationally demanding steps in subsystem TDDFT since the number of couplings

to be calculated, in principle, grows quadratically with both the number of subsystems

and uncoupled transitions determined beforehand (in the case that all excitations

are coupled). In view of the fact that the excitonic coupling between the transitions

of two subsystems may decay rapidly as a function of the subsystem separation, it

is plausible that certain approximations can be used to simplify the calculation of

these couplings for spatially distant subsystems.

2.3.1 Simplified Subsystem TDDFT

Our approximate coupling strategy can be considered a subsystem extension to

the simplified TDA/TDDFT approaches originally published by Grimme an co-

workers [53,54]. In simplified TDDFT, the four-center integrals entering the response

matrices are approximated with a simple monopole-type approximation. We propose

the same approximation for entries of the subsystem TDDFT response matrices with

reference orbitals from subsystem DFT. The elements of the A and B matrix would

then read

Ã(ia)I ,(jb)J = δIJδabδij(ε
I
a − εIi ) + ˜(φIiφ

I
a|φJj φJb )− ˜(φIiφ

J
j |φJaφIb), (29)

B̃(ia)I ,(jb)J = ˜(φIiφ
I
a|φJb φJj )− ˜(φIiφ

J
b |φJaφIj ), (30)
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with the definitions for the approximate integrals

˜(φIiφ
I
a|φJj φJb ) =

∑
A∈I,B∈J

qA(i)I(a)I
ΓKABq

B
(j)J (b)J

, (31)

˜(φIiφ
J
j |φIaφJb ) =

∑
A∈I,B∈J

qA(i)I(j)J
ΓJABq

B
(a)I(b)J

, (32)

˜(φIiφ
J
b |φIaφJj ) = cHF

∑
A∈I,B∈J

qA(i)I(b)J
ΓKABq

B
(a)I(j)J

, (33)

where A and B denote atoms on either subsystem I or J and, again, cHF the

amount of Hartree–Fock exchange in the corresponding XC functional. We obtain

the Γ-matrices as proposed in Refs. [53,54],

ΓKAB =

 1∣∣∣~R(A)I − ~R(B)J

∣∣∣α + η−α

1/α

, (34)

ΓJAB =

 1∣∣∣~R(A)I − ~R(B)J

∣∣∣β + (cHF · η)−β


1/β

, (35)

where ~R(A)I and ~R(B)J are the position vectors of atoms A and B, respectively, and

η is their average chemical hardness. The atomic partial charges q are obtained

based on a Löwdin population analysis of the subsystem orbitals with orthogonalized

molecular-orbital coefficients C̃ from

qA(p)I(q)J
=
∑
µ∈A

C̃I
µpC̃

J
µq, (36)

and

C̃I
µp =

∑
λ

√
SIµλC

I
λp, (37)
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where SI and CI are the atomic-orbital overlap and coefficient matrices of subsystem

I, respectively. In a subsystem basis (as it is employed in this work), basis functions

are not shared between subsystem. As a result, the approximate exchange-like

integrals ˜(φIiφ
J
j |φIaφJb ) and ˜(φIiφ

J
b |φIaφJj ) vanish (see Eq. 36) and the inter-subsystem

coupling thus reduces to Coulomb-like integrals only

V sTDA
(m)I(n)J

=
∑
(ia)I

∑
(jb)J

Xm
(ia)I

Ã(ia)I ,(jb)JX
n
(jb)J

(38)

=
∑
(ia)I

∑
(jb)J

Xm
(ia)I

˜(φIiφ
I
a|φJj φJb )Xn

(jb)J
. (39)

The formulation of inter-subsystem couplings given in Eq. (39) is particularly useful if

approximate integrals are needed explicitly. In the context of subsystem TDDFT, this

is for example the case for the calculation of linear-response properties which involves

solving a linear equation system in the fully coupled orbital-transition space [76].

The present work, however, is concerned with couplings of specific transitions directly

and it is thus advantageous to use a different formalism (see below).

2.3.2 Transition Charges

For the second approach for coupling excitations on different subsystems, we use

the concept of atomic transition charges. The subsystem TDDFT transition-charge

approach can be summarized as follows: The uncoupled transition density matrices

are first transformed to the (monomer) atomic-orbital basis they are defined in

Xm,AO
(µν)I

=
∑
(ai)I

CI
µiX

m
(ia)I

CI
νa (40)

and then a Löwdin population analysis [79] is performed for the transition density

to obtain atomic transition charges Qm
(A)I

for each transition m and atom A on
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subsystem I

Qm
(A)I

=
∑
µ∈(A)I

(√
SIXm,AO

I

√
SI
)
µµ
. (41)

The quantum-mechanical subsystem TDDFT description of the inter-subsystem

couplings is then effectively replaced by a mere Coulomb-like coupling based on the

obtained atomic charges via

V TC
(m)I(n)J

=
∑

(A)I(B)J

Qm
(A)I

Qn
(B)J∣∣∣~R(A)I − ~R(B)J

∣∣∣ , (42)

where, again, ~R(A)I and ~R(B)J are the position vectors of atom A and B, respectively.

We note the close relationship of these two approaches as both of them rely on partial

charges obtained from a Löwdin orthogonalization. In particular, for the specific

choice of η = 0 entering the ΓK-matrix, transition-charge and Coulomb couplings

from simplified subsystem TDDFT context become equivalent (see Sec. S1 of the

Supporting Information).

Closely-related methods are the transition density cube method [80], the transition-

density fragment interaction method [81–83] as well as the transition charge from

electrostatic potential (TrESP) method [84] and extensions thereof [85]. In fact, the

approach used here can be regarded as a simplified TrESP method, since we do not

obtain transition charges from a least-squares fit involving the electrostatic potential

but from a simple population analysis. In this work, we also compare the approximate

couplings introduced above to the well-known dipole–dipole approximation as the

leading term of the multipole expansion of the electronic coupling for dipole-allowed
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transitions [86, 87]. In the subsystem TDDFT context, this coupling reads

V DD
(m)I(n)J

=

(
~µ(m)I · ~µ(n)J

)
|~RIJ |3

− 3

(
~µ(m)I · ~RIJ

)(
~µ(n)J · ~RIJ

)
|~RIJ |5

, (43)

where ~µ(m)I is the transition dipole moment of the m-th excitation of I and ~RIJ is

the difference vector between the geometric centers of the two monomers I and J .

3 Computational Details

All calculations were performed with locally-modified versions of the Serenity

[29, 30] and Serestipy programs. The approximate couplings strategies have been

implemented in the former of the two and will be part of one of its upcoming

releases. In all FaT and subsystem TDDFT calculations, PBE0 [88, 89], PW91

[90,91], and PW91k [92] were used as approximations for the intra-subsystem XC,

non-additive XC, and non-additive kinetic energy functionals, respectively (abb.

PBE0/PW91/PW91k). Monomer def2-TZVP [93] basis sets were used throughout.

Coulomb contributions of both the Fock matrix and response matrix-vector products

were approximated with the RI approximation and the def2-universal-JFIT [94]

and RI-FIT [95] (RI-C) basis sets corresponding to def2-TZVP, respectively. Grid

accuracy settings of 4 as implemented in Serenity were used and potentials and

kernels for the FDE and FDEu calculations, respectively, were evaluated employing

grids located only on the considered subsystems. FDEc calculations employ grids on

both of the coupled monomers. All FDEu eigenvectors were converged to residual

norms of < 10−5. In all FDEu calculations, 24 of the lowest-lying excitations were

determined and the TDA [77,78] is applied throughout.
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4 Results and Discussion

4.1 Water Clusters

As already stated in Sec. 2.1, FaT calculations can be carried out in a serial or a

parallel mode. In both modes we must consider two possible types of parallelization

schemes. In the first case the QC calculation is carried out on one single WCN and

parallelized employing OpenMP [96] or similar algorithms. This case, however limits

the calculation to the resources available on the chosen WCN. Those calculations

can only be scaled “vertically”. Vertical scaling implies upgrading the available

WCN by adding CPU cores or more main memory, which might be very costly.

The second parallelization scheme makes use of the possibility to split the overall

calculation into individual steps that can be carried out simultaneously on different

WCNs. Each individual calculation might still be parallelized using algorithms such

as OpenMP [96], as in the first mentioned case. These cases, therefore, can be scaled

“horizontally” according to the system size. In this regard, horizontal scaling means

Figure 2: Water cluster consisting of 30 water molecules.
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the possibility to easily add or remove WCNs that run the calculations. Serial FaT

calculations might be carried out efficiently using the first parallelization scheme.

The second scheme, however, is not available for serial FaT calculations, because of

the fact that each FDE calculation must be carried out subsequently. Parallel FaT

calculations are the most efficient when employing the second parallelization scheme,

because each FDE calculation might be carried out simultaneously on different WCNs.

In the following, we will refer to the first scheme as intra-fragment parallelization,

while the second scheme is referred to as inter-fragment parallelization, in the context

of subsystem DFT. Apart from that there exist intra-subsystem parallelization

schemes, where the complete workload of a calculation is distributed over several

WCNs employing principles such as the message passing interface [97] (MPI) protocol,

but these will not be the focus of this work. The inter-fragment parallelization scheme

is beneficial in a cloud-computing environment, because a seemingly infinite and

easily scalable number of (small) WCNs is available. Our Serestipy framework can

distribute the parallel FaT calculations efficiently by making use of the Serenity

program as a backend employing an inter-fragment parallelization. The Serenity

program only supports OpenMP parallelization, while an MPI scheme is not available.

For implementation details of the Serestipy API, the reader is referred to Sec. S2

in the Supporting Information. To assess the wall-clock timings and convergence

behavior of parallel and serial FaT in the following sections, calculations were carried

out with Serestipy for a model water cluster consisting of 30 molecules (see Fig. 2).

4.1.1 Computational Timings

All presented calculations were performed on machines with a dual AMD EPYC

7552 48-core processor and 528 GB of main memory. Because the individual FDE

calculations in parallel FaT runs can be performed on independent WCNs, each
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FDE calculation can be performed with individual hardware settings. For serial FaT

calculations, however, it is not possible to make use of cross-node parallelization in

the case of the Serenity program and the hardware requirements are, thus, limited

by the individual WCN. All parallel FaT calculations use 2 CPU cores and 8 GB of

main memory for each individual FDE calculation. Thus, the total number of CPU

cores throughout the calculation is 2N where N is the number of water molecules

included in the model. To provide a suitable comparison between the capabilities

of parallel and serial FaT calculations, we chose two different strategies for the

serial runs: (i) provide the same total amount (2N) of CPU cores for all the serial

runs and (ii) keep the number of CPU cores fixed at a value of 2 for all the serial

runs. Parallel FaT calculations are especially beneficial in cases where the available

computational hardware does not allow for efficient serial runs and vertical scaling

is not possible. This case is mimicked by the second strategy. Wall-clock timings

following the first strategy are presented in Fig. 3, while wall-clock timings following
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Figure 3: Wall-clock times for serial and parallel FaT runs for an increasing number
of included water molecules. For the parallel runs 2 CPU cores have been used for the
individual FDE calculations, while for the serial run 2 ·N CPU cores have been used for
each individual FDE step, where N is the number of water molecules. This procedure
ensured a comparable total number of CPU cores for parallel and serial runs. A total
number of three cycles has been applied in both cases.
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the second strategy are presented in Fig. 4. As can be seen from Fig. 3, where both

types of FaT calculations use the same total amount of CPU cores, the serial FaT is

clearly faster than the parallel FaT for all system sizes. This is because of the smaller

amount of CPU cores for each FDE calculation carried out in parallel compared to

the serial case. By contrast to the serial case, the communication overhead for the

parallel runs slows down the whole procedure. Note that the serial FaT calculations

following the first strategy are limited by the resources of the available WCNs: When

increasing the system size for systems beyond 48 fragments, the wall-clock timings

will drastically increase compared to smaller systems. The specific number of 48

fragments is a result of the available WCNs we used throughout this work, but can

of course differ depending on the hardware. In case of the parallel FaT calculations,

this hardware limitation is de facto not present (in our assumption of an effectively

unlimited number of [small] nodes), as the user can choose to run additional parallel

FDE steps on additional WCNs. This case is beneficial for the parallel FaT as can

be seen from Fig. 4. In the second strategy, we simulated the hardware limitation,
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Figure 4: Wall-clock times for serial and parallel FaT runs for an increasing number
of included water molecules. For the parallel runs 2 CPU cores have been used for the
individual FDE calculations, while for the serial run 2 CPU cores have been used for each
individual FDE step. A total number of three cycles has been applied in both cases.
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by fixing the number of CPU cores to exactly 2 for every serial FaT calculation.

As can be seen, the wall-clock timings of the serial FaT calculations increase more

drastically for larger systems compared to those in Fig. 3. By contrast, the parallel

FaT calculations are much faster than the corresponding serial ones.

4.1.2 Convergence Behavior

In addition to the wall-clock timings, we assessed the convergence behavior of

parallel and serial FaT calculations with respect to the number of needed FaT cycles.

Therefore, we chose a convergence threshold of 10−5 for the mean over all subsystems

of the RMSD of the density-matrix change between two FaT cycles. As can be

seen from Fig. 5, the parallel FaT requires the same amount or fewer FaT cycles

compared to the serial case for all system sizes. This may seem surprising at first

glance, but is connected to the way how the electron densities of the subsystems

are optimized and updated during the FaT procedure (see Sec. 2.1). The sequential

update scheme makes a serial FaT procedure dependent on the order of the applied
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Figure 5: Number of needed parallel and serial FaT cycles until convergence threshold is
reached for an increasing number of water molecules in the calculation.
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Figure 6: Mean over all subsystems of the RMSD of the density-matrix change between
two FaT cycles calculated for the first four serial (top) and parallel (bottom) FaT cycles
including an increasing number of water molecules.

FDE steps in case it is not fully converged. In the parallel FaT, each subsystem

electron density is updated simultaneously during each FaT cycles, which makes

the procedure independent of the order of FDE calculations. This difference in

the density update scheme leads to the generally better convergence in parallel

calculations. As can be seen from Fig. 6 (top) the electron densities change more

strongly between the first three FaT cycles in the serial case than for the parallel

case (bottom). The change in the electron density is one order of magnitude smaller

in the parallel case than for the serial case. This trend does not change for increasing

system sizes. In fact, the parallel density update between two parallel FaT cycles
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leads to smaller density changes than in case of the serial procedure. Additionally, it

is important to note that both methods converge to the same subsystem electron

densities.

As can be seen from the presented results, serial FaT calculations are computationally

more efficient provided the system under study is small- or medium-sized, in a sense

that it consists only of a few fragments. On the downside, however, serial FaT

calculations are dependent on the order when not fully converged. This is not

beneficial, because the serial FaT calculations converge more slowly compared to the

parallel counter part. We note that in calculations employing the three-partitioning

version of FDE, the convergence behavior was reported to be better for the serial

version [98,99]. However, these calculations may not directly be comparable, since

these calculations employ additional capping fragments and cap molecules, which may

change the convergence behavior. In case of FDE, the parallel FaT is computationally

most efficient for a large amount of similarly-sized fragments or in case the available

hardware is not suitable for efficient serial calculations. It can be easily scaled to,

in principle, infinitely large calculations (assuming a de factor unlimited number of

WCNs). Additionally, individual hardware requirements can be specified during the

calculation for differently sized fragments.

4.2 Porphine Nanotube

The porphine molecule is a basic building block in many cofactors/chromophores in

nature. For example, chlorophyll molecules in photosynthetic reaction centers [100]

or heme groups in hemoglobin [101], myoglobin [102] or cytochromes [103] all rely on

porphine as structural motif because of its beneficial properties in terms of charge

and excitation-energy transfer [104–109]. Apart from nature, this structural motif is

also very useful in many compounds investigated in materials science [110–112]. This
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is because of its π-stacking capabilities often leading to large-scale liquid crystals

that have been reported several times in the literature [113–116]. As such, the

porphine molecule is well-studied [104–109] both experimentally and theoretically in

the literature and thus constitutes a good starting point for our purposes.

In the following, we first give an overview over the general excited-state properties

of the porphine molecule. Subsequently, we describe the model setup of our artificial

example of a porphine nanotube and give details about the massively-parallel cal-

culations. Next, an assessment of the transition-charge approximation used in this

work to compute inter-subsystem couplings is given. Finally, we present results for a

porphine nanotube model system introduced below.

4.2.1 Absorption Spectrum

In this work, we are concerned with calculating excited-state properties of porphine

nanotubes exploiting the high level of redundancy within the supermolecular system

with the parallel approach. Therefore, we discuss briefly the absorption spectrum of

the monomeric porphine molecule as a first step to determine an XC functional to

use for the nanotube system.

In Fig. 7, we compare the experimental absorption spectrum of porphine with three

computed ones, each employing a different XC functional [PBE0, LC-BLYP [117],

and CAM-B3LYP [118]/def2-TZVP]. The experimental absorption spectrum of

porphine in the UV/vis region consists of two bands with little absorption in the

visible wavelength window. These are commonly called Qx and Qy bands [107].

Additionally, one finds a strong band in the near-UV region (called Soret or B band)

along with two shoulders in the tail of higher energy (called N and L bands). Due

to its dominant character in the absorption spectrum, in this work we will center

our discussions around the Soret band. The involved transition wavelengths are
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Figure 7: Comparison between the experimental absorption spectrum of free base porphine
(left, digitized based on Ref. [105]) and three computed ones in dipole-length representation
(right) [(PBE0, LC-BLYP, CAM-B3LYP)/def2-TZVP]. For the computed spectra, a def2-
TZVP basis was used and 24 of the lowest-lying excitations were determined. The oscillator
strengths were broadened using Lorentzian functions with a full width at half maximum of
0.2 eV.

underestimated by about 1.1 eV (corresponding to 100 nanometers in this wavelength

regime) by all employed XC functionals. The general shape of the experimental

absorption spectrum is fairly well reproduced with the PBE0 functional, whereas

the deviation of the LC-BLYP and CAM-B3LYP spectra is somewhat larger. In

particular, the agreement of the Soret band in relation to the bands in the lower-energy

region is much better in the PBE0 case. Note, however, that for PBE0 the Soret

band convolutes two close-lying transitions with a similar oscillator strength. Due to

the better agreement of the PBE0 spectrum compared to the other functionals tested,

in this work we will continue to employ the PBE0 functional as an XC functional

and corresponding potentials and kernels.

4.2.2 Model and Calculation Setup

Since the goal of this study is to demonstrate the accuracy, efficiency, and scalability

of subsystem (TD-)DFT calculations, we employ a technical model system consisting

of porhpine molecules in a easily scalable way, and in which monomers interacting

with various strengths are present. For these purposes, porphine molecules are first
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13 nm 5 nm

Figure 8: Atomic representation of the porphine rings as employed in this study. One
ring consists of 32 monomers with identical distance and angle between them. The distance
between the center of mass of one porphine and the center of the ring is 20 Å and the
separation between the center of mass of porphines between two layers is 14 Å.

arranged in a circular fashion and the resulting porphine rings are stacked on top of

each other to create nano-scale porphine tubes (see Fig. 8). From a parallelism point

of view, this is especially convenient since it drastically simplifies the distribution

of jobs to different nodes because all subsystems are of the same size and thus the

resulting computational demand will be highly similar. We note, however, that we

do not exploit the symmetry of the system explicitly in any way. Systems with

subsystems of varying sizes (e.g. large proteins) are, in principle, also accessible in

such calculations but would require to determine the computational resources for a

particular job based on a metric concerning the subsystem size (like the number of

basis functions).

We first optimized one porphine molecule using PBE0 as an approximation for the

XC functional and a def2-TZVP basis set in combination with the D3 [119]-BJ [120]

correction using Turbomole 7.5 [121]. One ring of porphines is then defined by

two parameters: The first one is the distance between the center of mass of each

individual porphine molecule and the center of mass of the entire ring, which was

chosen to be 20 Å. The second parameter is the number of porphine molecules in one

ring (defining the angle between the porphine molecules) which was chosen to be 32.
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The resulting distance between the π systems of two neighboring porphine molecules

is then about 5–6 Å. To setup the nanotube, we have stacked the porphine rings on

top of each other so that the distance between the center of mass of molecules of

two different rings is 14 Å. We would like to stress that this model setup is artificial

and entirely technically motivated, since the interaction strengths are in a typical

range also observed in for example photosynthetic antenna systems (couplings of the

order of 102 to 103 cm−1 for the nearest neighbors.)

4.2.3 Accuracy of the Transition-Charge Approximation

To assess the accuracy of the transition-charge (TC) approximation instead of

subsystem TDDFT to compute inter-subsystem couplings, we consider one layer

of porphine rings as depicted in Fig. 8 and compare the difference between the

couplings computed following Eqs. (28) and (42) as a function of porphine molecules

between the coupled monomers. For these calculations, the electronic structures of

the monomers were converged in five FaT cycles and then 24 of the lowest-lying

excitations were determined for each monomer. For the FDEu and FDEc calculations,

all but the active monomers are used as environment systems. The data for the

transitions indicated by bars in the PBE0 spectrum in Fig. 7 is displayed in Fig. 9.

We find a relatively strong coupling between close monomers for all considered

transition pairs which decays rapidly with the inter-subsystem separation for both

the FDEc, TC and simplified TDA couplings. For all transition pairs, a non-zero

coupling can be identified up to the fith or sixth neighbor. We note in passing that

the equivalence of the TC couplings and simplified subsystem TDA couplings with

η = 0 is verified numerically by all excitations. Comparing the TC and simplified

TDA couplings with the FDEc couplings for direct neighbors, we find that the former

two are underestimated throughout. These deviations are caused by short-range
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Figure 9: Comparison of couplings of some excitations with the same excitation on a
neighboring porphine molecule between FDEc [PBE0/PW91/PW91k/def2-TZVP], transi-
tion charges computed based on the uncoupled transition density matrices and couplings
based on the simplified TDA approach. For numerical validation of the derivation in Sec. S1
of the Supporting Information, the simplified TDA couplings with η = 0 are also shown
in addition. The considered excitations are indicated by bars and labeled in the PBE0
spectrum in Fig. 7.

non-classical interactions. While these are, in principle, described by the non-additive

kernels in the FDEc case, they are neglected by the transition-charge and simplified

TDA coupling by construction. From the second neighbor on, FDEc couplings are

reproduced by the TC couplings with very high accuracy for all of the considered

transitions. As Coulomb interactions decay more slowly with the inter-subsystem

distance, neglecting all other interactions for intermediate distances is a well-justified

approximation. We find no advantage of sTDA couplings explicitly including the

chemical hardnesses via a non-zero η-parameter for any of the considered excitations

as they, in turn, further underestimate the TC couplings throughout. A comparison

of the couplings shown in Fig. 9 to transition-dipole–transition-dipole couplings [see

Eq. (43)] is given in Sec. S2 of the Supporting Information.
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For our approximate coupling strategy for the nanotube consisting of ten rings, we

conclude the following: (i) due to the strong deviations of FDEc and TC couplings

between direct neighbors, we employ subsystem TDDFT without further approxima-

tions in the couplings according to Eq. (28) for these pairs (that is, direct neighbors of

the same ring and direct neighbors between two rings), (ii) for all but direct neighbors

in the same and adjacent rings, we employ approximate TC couplings as given in

Eq. (42), due to their minor computational cost while being sufficiently accurate. For

neighbors that are not part of the adjacent rings, we neglect the coupling altogether.

We do not calculate simplified TDA or transition-dipole couplings for this example.

4.2.4 Workflow for Parallel FDE-TDDFT

The workflow for a parallel FDE-TDDFT procedure is presented in Fig. 10. As we

are working on a traditional HPC cluster, first a meta-process is needed that spawns

an API instance on each of the N WCNs, where N is the number of subsystems in the

calculation. For bottom-up FDE calculations we first need initial, isolated subsystem

densities for each subsystem. Those can be calculated completely independently, so

that the isolated calculations are sent to individual WCNs (see Fig. 10 top). Once

all calculations are finished, the results of the isolated runs are stored in a database

directory. Subsequent calculation steps can be started on the basis of the stored

results. After the isolated runs have finished, the parallel FaT cycles start. For

this purpose, FDE calculations are sent to the individual WCNs. The individual

FDE calculations are based on the densities stored in the database from the isolated

runs. Note that on each WCN for the FDE calculation, a different subsystem is

considered to be active while a specific set of other subsystems are considered set to

be the frozen environment subsystems. The choice for these subsystems is depicted

in Fig. 11 for all types of tasks employed in this article. We note that, while we
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have hand-picked the environment systems in this study, this is a task which can be

trivially automated via, for example, distance criteria. After all FDE calculations on

all WCNs have finished, only the electron densities of each active system is stored

in the database. These active system electron densities serve as starting point for

the next parallel FaT cycle. We perform three such cycles as is generally enough

to obtain converged properties (see Fig. 6). After the parallel FaT has converged

for each system, individual FDEu-TDDFT calculations are sent to the WCNs. As

in the parallel FaT runs, a different subsystem is considered to be the active one

on each WCN (see Fig. 10 bottom). In each FDEu-TDDFT calculation, uncoupled

excitation energies, transition moments and transition charges [see Eq. (41)] are

determined for each excitation and are stored on disk. The position vector of the

atoms is stored along with the transition charges. Next, FDEc tasks are sent to

the WCNs to obtain the couplings of the excited states for all requested pairs of

subsystems. The couplings are also stored on disk. Finally, after all FDEu and

FDEc runs have finished, the Hamilton-like matrix H from Eq. (25) is assembled in

a separate Python program by initializing its diagonal with the uncoupled excitation

energies of each subsystem. The inter-subsytem blocks are then either read from disk

SCF SCF SCF
WCN 1 WCN 2 WCN N

...

FDE FDEFDE
WCN 1 WCN 2 WCN N

...

Database

WCN 1 WCN 2 WCN N
...FDEu FDEuFDEu

1. Isolated SCF runs

3. Parallel FDEu-TDDFT
and TC

5. Assemble Coupling Matrix 
with FDEc and TC couplings

6. Diagonalze Coupling Matrix
and Evaluate Coupled
Transition Moments

WCN 1 WCN 2 WCN N
...FDEc FDEc FDEc4. Parallel FDEc-TDDFT

for H blocks

2. Parallel Freeze-and-Thaw
Cycles

Figure 10: Worklow of parallel FDE-TDDFT calculation. For a more detailed description
see the main text.
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Figure 11: Schematic depiction of the choice of the environment systems in the calculations
for the porphine nanotubes where each row represents one ring consisting of 32 porphine
molecules. In FDE and FDEu calculations there is only a single active system. All
subsystems of the same ring and both adjacent rings are chosen as environment systems,
i.e. for A being the active system, all blue, yellow and red systems would be environment
systems. In FDEc calculations there are two active systems. All subsystems of the same
ring of both subsystems and in turn all adjacent rings are chosen as environment systems
(having an effect on the couplings via the non-additive kernels). That is, for B and C
being active systems, all depicted subsystems are chosen as environment systems and for
C and D being the active systems, all yellow, red and green subsystems would be chosen
as environment systems.

for FDEc couplings, calculated in parallel according to Eq. (42) for TC couplings,

or neglected depending on the requested coupling pattern. The H-matrix is then

diagonalized and coupled transition moments are evaluated from its eigenvectors and

uncoupled transition moments.

4.2.5 Ten-Layer Porphine Nanotube

For the calculation on the ten-layer model, we used a heterogenous mixture of

machines equipped with 528 GB of main memory and (i) a dual AMD EPYC

7552 48-core processor (10 machines) or (ii) a Intel(R) Xeon(R) E5-2696 v4 44-

core processor (5 machines). The Python program for the H-matrix assembly and

diagonalization was run on one of the nodes with a dual AMD EPYC 7552 48-core

processor. As can be seen from Fig. 10, we employed 320 Serestipy instances, where
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each instance used 3 CPU cores and 20 GB of main memory. Therefore, in total we

utilized 960 CPU cores (distributed over 15 machines) for the overall calculation.

As can be seen from Tab. 1, the overall computational time needed for the calculation

(including ground-state and excited-state calculations) of the ten-layer model is

about 19 hours. The parallel FaT cycles (7.86 hours) and parallel FDEu calculations

(9.11 hours) take ca. 41% and 48% of the overall computation time, respectively.

The parallel isolated SCF and FDEc calculations only take a minor portion of the

overall calculation time. Likewise, the calculation of the TC couplings as well as the

H-matrix assembly and diagonalization took a negligible part of the computation

time. We note that, in principle, the overall computation time will not increase for

larger system sizes provided that additional WCNs are available, as we do not include

all subsystems in the environment of each individual FDE calculation (see Fig. 11). In

case enough computational resources are available, corresponding to enough WCNs to

perform the parallel calculations simultaneously, the overall calculation can be scaled

horizontally according to the system size. In case not enough hardware is available

to perform all parallel calculations in an acceptable time frame it is still possible

Table 1: Total wall-clock timings (h) for the different steps in the ten-layer porphine
nanotube calculation. For more detail about each step see Fig. 10. For the FDEc step,
24 · 24 · 608 = 350, 208 overall excitonic couplings have been calculated. The H-matrix
assembly includes the calculation of TC charge couplings of 8,816 subsystem pairs totaling
24 · 24 · 8, 816 = 5, 078, 016 excitonic couplings.

Calculation Time, h

Isolated SCFs 1.16
FaT Cycle 1 2.54
FaT Cycle 2 2.65
FaT Cycle 3 2.67
FDEu step 9.11
FDEc step 0.91
H-matrix assembly/diagonalization 0.14

Total 19.18
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Figure 12: Comparison of the uncoupled absorption spectra of all 320 monomers of the
ten-layer porphin nanotube and the coupled one.

to perform batch-wise parallel calculations. This will of course increase the overall

computational time, but is still computationally more efficient than serial calculations

that can only be scaled vertically. As has been mentioned before, each WCN used

only 3 CPU cores and 20 GB of main memory, thus, the parallel calculations can be

carried out on rather inexpensive commodity hardware and would still achieve an

acceptable time scale.

Next, we consider the coupled absorption spectrum of the porphin nanotubes. In

Fig. 12, we compare the sum of uncoupled absorption spectra of all monomers to

the coupled absorption spectra. We find a strong blue shift in excitation energies of

about 1.6 eV (corresponding to 80 nanometers in this wavelength regime), which

holds true for the main band in particular. The blue shift is most likely due to the

face-to-face arrangement of identical monomers, which leads to a shift to shorter

wavelengths of the allowed one of the coupled excitations. Inspecting the oscillator

strengths of the uncoupled spectra, we find that the largest individual oscillator

strength belongs to the corresponding excitations labeled as B and C in Fig. 7. Going

over to the coupled spectra, however, these couple into very few transitions with very
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large oscillator strengths. Those excitations with oscillator strengths larger than 100

a.u. are listed in the table of Fig. 12. This is an important sanity check because

it provides evidence that the invididual excitations on all monomers were, in fact,

coupled to yield excitations with such high intensity.

5 Conclusion

In this article, we have presented the Serestipy software as an add-on for the

quantum-chemistry program Serenity. Serestipy enables parallel large-scale

subsystem density-functional theory calculations by providing the interface between

Serenity and modern HPC architecture. Serestipy is open-source and available

on GitHub [122].

We have introduced two closely-related approximate coupling strategies in the context

of subsystem TDDFT. The starting point is a subsystem DFT variant of the simplified

TDDFT approach originally devised by Grimme and co-workers [53, 54]. For the sec-

ond approach, we have reformulated the couplings obtained from simplified subsystem

TDDFT in terms of atomic transition charges to fit more seamlessly into the massively-

parallel framework. The equivalence of two strategies was shown both analytically

in Sec. S1 of the appendix and numerically in Section 4.2.3. The transition-charge

couplings were in good agreement with those obtained using subsystem TDDFT for

intermediate inter-subsystem distances for which Coulomb contributions dominate

the subsystem interaction. For close distances, however, larger deviations occurred

most likely due to more pronounced non-classical interactions such as correlation

which cannot be described using these approximate couplings.

Testing the Serestipy framework, we have contrasted the serial and parallel FaT

approaches for clusters of 30 water molecules. Here, we demonstrated the convergence
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advantage that the parallel approach can have. While producing a larger computa-

tional overhead on a single compute node, the parallel approach is computationally

more efficient in cases where more than one compute node can be used. This opens

the possibility to overcome hardware limitations that can hinder efficient serial calcu-

lations. In addition, the parallelism provided by the Serestipy software allows for

more efficient horizontal scaling of QC applications, while running serial calculations

can only be enhanced by vertical scaling of the available HPC infrastructure.

As an application of the Serestipy framework, we have considered a model system

of porphine rings which are arranged in ten layers. This system consists of 12,160

atoms corresponding to 264,960 basis functions for the production-level triple-zeta

basis we have employed. The description of the subsystem interaction in subsystem

DFT results in a formal linear scaling (for a more detailed discussion of the scaling

behavior, see, for instance, Ref. [29]). This allowed us to only include a limited

number of environment systems in the FDE and FDE-TDDFT calculations. While

these were hand-picked in this study, this task might be readily automatized based

on, for example, simple distance criteria. We proposed and used transition charges

to approximate subsystem TDDFT couplings for fragments of intermediate distance.

We have broken down the overall computation time of less than one day into the

parallel FaT ground-state part as well as the excited state parts including FDEu- and

FDEc-TDDFT. We have furthermore obtained an absorption spectrum by coupling

24 uncoupled excitations on each subsystem totaling 7,680 overall excitations. This

work paves the way to large-scale applications of FDE-TDDFT for excited states of

systems of challenging size. One can think of, for example, excitation-energy transfer

in chlorosome light-harvesting antennae from green sulfur bacteria [123].

We are convinced that the full potential of subsystem DFT can only be reached by
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employing the parallel ansatz. In this respect, we think that Serenity in combination

with Serestipy provides a highly valuable tool for vastly extending the applicability

of subsystem DFT. Additionally, in combination with subsystem TDDFT gradients

it opens the possibility for efficient applications such as investigating excited-state

dynamics of very large (bio)molecular systems in the future.

Supporting Information

Equivalence of atomic transition charge couplings and simplified subsystem TDDFT;

comparison of couplings presented in the main text to transition-dipole couplings;

technical details of the Serestipy program.
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Patrick Eschenbach, Lars Hellmann, Kevin Klahr, Anja Massolle, Niklas

Niemeyer, Anton Rikus, David Schnieders, Johannes Tölle, Jan Patrick Unsle-

ber, Johannes Neugebauer. qcserenity/serenity: Release 1.4.0, 2021.

[31] Tomasz Adam Weso lowski, Arieh Warshel. Frozen density functional approach

for ab initio calculations of solvated molecules. J. Phys. Chem., 97(30) (1993)

8050–8053.

[32] Mark E. Casida, Tomasz A. Weso lowski. Generalization of the kohn–sham

equations with constrained electron density formalism and its time-dependent

response theory formulation. Int. J. Quantum Chem., 96(6) (2004) 577–588.

[33] Tomasz A Weso lowski. Hydrogen-bonding-induced shifts of the excitation

energies in nucleic acid bases: an interplay between electrostatic and electron

density overlap effects. J. Am. Chem. Soc., 126(37) (2004) 11444–11445.

43



[34] Johannes Neugebauer. Couplings between electronic transitions in a subsystem

formulation of time-dependent density functional theory. J. Chem. Phys.,

126(13) (2007) 134116.

[35] Johannes Tölle, Johannes Neugebauer. The seamless connection of local and

collective excited states in subsystem time-dependent density functional theory.

J. Phys. Chem. Lett., 13 (2022) 1003–1018.

[36] M. Iannuzzi, B. Kirchner, J. Hutter. Density functional embedding for molecular

systems. Chem. Phys. Lett, 421(1) (2006) 16–20.

[37] K. Kiewisch, C. R. Jacob, L. Visscher. Quantum-Chemical Electron Densities

of Proteins and of Selected Protein Sites from Subsystem Density Functional

Theory. J. Chem. Theory Comput., 9(5) (2013) 2425–2440.

[38] T. Hrenar, H.-J. Werner, G. Rauhut. Accurate calculation of anharmonic

vibrational frequencies of medium sized molecules using local coupled cluster

methods. J. Chem. Phys., 126(13) (2007) 134108.

[39] G. Rauhut, B. Hartke. Modeling of high-order many-mode terms in the expan-

sion of multidimensional potential energy surfaces: Application to vibrational

spectra. J. Chem. Phys., 131(1) (2009) 014108.

[40] M. Sparta, M. B. Hansen, E. Matito, D. Toffoli, O. Christiansen. Using

Electronic Energy Derivative Information in Automated Potential Energy

Surface Construction for Vibrational Calculations. J. Chem. Theory Comput.,

6(10) (2010) 3162–3175.

[41] C. König, M. B. Hansen, I. H. Godtliebsen, O. Christiansen. FALCON: A

method for flexible adaptation of local coordinates of nuclei. J. Chem. Phys.,

144(7) (2016) 074108.

44



[42] G. Schmitz, D. G. Artiukhin, O. Christiansen. Approximate High Mode

Coupling Potentials using Gaussian Process Regression and Adaptive Density

Guided Sampling. J. Chem. Phys., 150(13) (2019) 131102.

[43] D. G. Artiukhin, E. L. Klinting, C. König, O. Christiansen. Adaptive Density-

Guided Approach to Double Incremental Potential Energy Surface Construction.

J. Chem. Phys., 152(19) (2020) 194105.

[44] Markus Reiher, Johannes Neugebauer. A mode-selective quantum chemical

method for tracking molecular vibrations applied to functionalized carbon

nanotubes. J. Chem. Phys., 118(4) (2003) 1634–1641.

[45] Thomas Weymuth, Moritz P Haag, Karin Kiewisch, Sandra Luber, Stephan

Schenk, Christoph R Jacob, Carmen Herrmann, Johannes Neugebauer, Markus

Reiher. Movipac: Vibrational spectroscopy with a robust meta-program for

massively parallel standard and inverse calculations. J. Comput. Chem., 33(27)

(2012) 2186–2198.

[46] C. Herrmann, J. Neugebauer, M. Reiher. Finding a needle in a haystack: direct

determination of vibrational signatures in complex systems. New J. Chem., 31

(2007) 818–831.

[47] S. Luber, M. Iannuzzi, J. Hutter. Raman spectra from ab initio molecular

dynamics and its application to liquid S-methyloxirane. J. Chem. Phys., 141(9)

(2014) 094503.

[48] Ryan M Richard, John M Herbert. A generalized many-body expansion and

a unified view of fragment-based methods in electronic structure theory. J.

Chem. Phys., 137(6) (2012) 064113.

[49] Ryan M Richard, John M Herbert. Many-body expansion with overlapping

45



fragments: Analysis of two approaches. J. Chem. Theory Comput., 9(3) (2013)

1408–1416.

[50] Daniel Schmitt-Monreal, Christoph R Jacob. Frozen-density embedding-based

many-body expansions. Int. J. Quantum Chem., 120(21) (2020) e26228.

[51] Daniel Schmitt-Monreal, Christoph R Jacob. Density-based many-body ex-

pansion as an efficient and accurate quantum-chemical fragmentation method:

Application to water clusters. J. Chem. Theory Comput., 17(7) (2021) 4144–

4156.

[52] Linus Scholz, Johannes Neugebauer. Protein response effects on cofactor

excitation energies from first principles: Augmenting subsystem time-dependent

density-functional theory with many-body expansion techniques. J. Chem.

Theory Comput., 17(10) (2021) 6105–6121.

[53] Stefan Grimme. A simplified tamm-dancoff density functional approach for the

electronic excitation spectra of very large molecules. J. Chem. Phys., 138(24)

(2013) 244104.

[54] Christoph Bannwarth, Stefan Grimme. A simplified time-dependent density

functional theory approach for electronic ultraviolet and circular dichroism

spectra of very large molecules. Comput. Theor. Chem., 1040 (2014) 45–53.

[55] Christoph R. Jacob, Johannes Neugebauer. Subsystem density-functional

theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci., 4(4) (2014) 325–362.

[56] Tomasz A Weso lowski, Sapana Shedge, Xiuwen Zhou. Frozen-density embed-

ding strategy for multilevel simulations of electronic structure. Chem. Rev.,

115(12) (2015) 5891–5928.

46



[57] P. Hohenberg, W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136 (1964)

B864–B871.

[58] R.G. Parr, Y. Weitao. Density-Functional Theory of Atoms and Molecules.

International Series of Monographs on Chemistry. Oxford University Press,

1994.

[59] Walter Kohn, Lu Jeu Sham. Self-consistent equations including exchange and

correlation effects. Phys. Rev., 140(4A) (1965) A1133.

[60] R. van Leeuwen, E. J. Baerends. Exchange-correlation potential with correct

asymptotic behavior. Phys. Rev. A, 49 (1994) 2421–2431.

[61] Q. Wu, W. Yang. A direct optimization method for calculating density func-

tionals and exchange–correlation potentials from electron densities. J. Chem.

Phys., 118(6) (2003) 2498–2509.

[62] O. Roncero, M. P. de Lara-Castells, P. Villarreal, F. Flores, J. Ortega, M. Pa-

niagua, A. Aguado. An inversion technique for the calculation of embedding

potentials. J. Chem. Phys., 129 (2008) 184104.

[63] Samuel Fux, Christoph R Jacob, Johannes Neugebauer, Lucas Visscher, Markus

Reiher. Accurate frozen-density embedding potentials as a first step towards

a subsystem description of covalent bonds. J. Chem. Phys., 132(16) (2010)

164101.

[64] J. D. Goodpaster and N. Ananth and F. R. Manby and T. F. Miller III. Exact

nonadditive kinetic potentials for embedded density functional theory. J. Chem.

Phys., 133 (2010) 084103.

[65] C. Huang, M. Pavone, E. A. Carter. Quantum mechanical embedding theory

based on a unique embedding potential. J. Chem. Phys., 134 (2011) 154110.

47



[66] Xing Zhang, Emily A. Carter. Kohn-sham potentials from electron densities

using a matrix representation within finite atomic orbital basis sets. J. Chem.

Phys., 148(3) (2018) 034105.

[67] Y. Shi, A. Wasserman. Inverse Kohn–Sham Density Functional Theory:

Progress and Challenges. J. Phys. Chem. Lett., 12(22) (2021) 5308–5318.

[68] David Schnieders, Johannes Neugebauer. Accurate embedding through po-

tential reconstruction: A comparison of different strategies. J. Chem. Phys.,

149(5) (2018) 054103.

[69] Frederick R. Manby, Martina Stella, Jason D. Goodpaster, Thomas F. Miller.

A simple, exact density-functional-theory embedding scheme. J. Chem. Theory

Comput., 8(8) (2012) 2564–2568.
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