
The most compact search space is not always the most efficient: A case

study on maximizing solid rocket fuel packing fraction via constrained

Bayesian optimization

Sterling G. Bairda,∗, Jason R. Halla,b, Taylor D. Sparksa

aDepartment of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84108, USA
bNorthrop Grumman Innovation Systems, 9160 UT-83, Corinne, UT 84307

Abstract

Would you rather search for a line inside a cube
or a point inside a square? This type of solution de-
generacy often exists in physics-based simulations
and wet-lab experiments, but constraining these de-
generacies is often unsupported or difficult to im-
plement in many optimization packages, requiring
additional time and expertise. So, are the possible
improvements in efficiency worth the cost of imple-
mentation? We demonstrate that the compactness
of a search space (to what extent and how degen-
erate solutions and non-solutions are removed) can
significantly affect Bayesian optimization search ef-
ficiency via the Ax platform. We use a physics-based particle packing simulation with seven to nine
tunable parameters, depending on the search space compactness, that represent three truncated, dis-
crete log-normal distributions of particle sizes. This physics-based simulation exhibits three qualitatively
different degeneracy types: size-invariance, compositional-invariance, and permutation-invariance. We
assess a total of eight search space types which range from none up to all three constraint types imposed
simultaneously. We find that leaving the search space unconstrained leads to a large variance in the out-
come and that on average, the most constrained search space is not always the most efficient. Likewise,
the least constrained search space is not always the least efficient. We recommend that optimization
practitioners in the physical sciences carefully consider the impact of removing search space degeneracies
on search efficiency before running expensive optimization campaigns.

Keywords: constrained Bayesian optimization, constrained adaptive design, concurrency scheduler,
Ax platform, particle packing fraction, machine learning invariance

∗Corresponding author.
Email addresses: sterling.baird@utah.edu (Sterling

G. Baird), sparks@eng.utah.edu (Taylor D. Sparks)

1. Introduction

Materials informatics tasks are characterized by
small, sparse, noisy, multi-scale, heterogeneous,
and high-dimensional datasets [1]. The search
spaces associated with these tasks are often non-
linearly correlated, discrete, and/or non-linearly

1

constrained. Some representative examples are
dopant concentration interactions, experimental in-
strument limitations, and adherence to chemical
parsimony (i.e. the unlikelihood of finding materi-
als with more than 5 or 6 elements present), respec-
tively. Due to small/expensive-to-sample datasets,
Bayesian optimization (BO) is often chosen for ma-
terials discovery and process optimization problems
[2–11] for its excellent search efficiency. BO is an
adaptive design technique that involves leveraging
prior belief about the solution to a problem and
updating the belief in the context of new infor-
mation. One of the greatest strengths of Bayesian
models via e.g. Gaussian processes is the elegant
trade-off between exploitation (high-performance)
and exploration (high-uncertainty) through acqui-
sition functions1.

BO has been used to create and adaptively re-
fine surrogate models for physics-based simulations
whether acting directly as the surrogate model
[2, 4, 5, 9, 13–21] or tuning hyperparameters of a
surrogate model [3, 22] among other applications
such as experimental discovery [7, 9, 11] and crystal
structure prediction [23–26]. A review of Bayesian
optimization applied to materials science in general
is given in Kotthoff et al. [27].

A non-exhaustive list of popular global optimiza-
tion schemes, in order of (typically) increasing ef-
ficiency, is given: manual tuning, grid search, ran-
dom sampling, Sobol sampling, genetic algorithms,
and BO. For inexpensive evaluations (hundreds of
thousands of evaluations), random or Sobol sam-
pling is typically preferred. For moderately ex-
pensive evaluations (tens of thousands of evalua-
tions), genetic algorithms are typically preferred.
Finally, for expensive-to-evaluate functions (hun-
dreds to thousands of evaluations), BO is typically
preferred. Exact BO scales poorly with dataset
size, for which less efficient but more computation-
ally tractable genetic algorithms are used. Like-
wise, for its straightforward implementation and

1“Acquisition functions are mathematical techniques
that guide how the parameter space should be explored dur-
ing Bayesian optimization. They use the predicted mean
and predicted variance generated by the Gaussian process
model” [12].

low computational requirements, pseudo-random
sampling is preferred for large datasets. Grid-based
searches in high dimensional spaces tend to be inef-
ficient due to systematic sparse regions in the center
of hyperboxes that make up the high-dimensional
grid. Manual tuning by humans can often lead to
local optimization and inefficient searches.

Recently Liang et al. [28] benchmarked Bayesian
optimization techniques for several materials sci-
ence tasks. They raised awareness of the utility
of anisotropic kernels over isotropic kernels. They
found that certain algorithms may perform well
on certain tasks while performing poorly on oth-
ers, highlighting the need for a careful task-based
choice of models. In addition, they mentioned the
computational advantages of random forest models
relative to Gaussian processes despite being slightly
less efficient overall.

Similar to Liang et al. [28], Hickman et al. [29]
observed the effect of model choice and task on
single- and multi-objective search efficiency, except
with a constraint imposed. Hickman et al. [29] per-
formed tests on analytical objective functions and
emulators (i.e. models) trained on experimental
data and demonstrate favorable performance of the
Gryffin and Dragonfly optimization packages un-
der constrained conditions.

It is well-known in the mathematical program-
ming (optimization) community that problem for-
mulations can introduce degeneracy or symme-
try [30]. Moreover, alternate model formulations
that break symmetry/degeneracy are essential for
many integer programming (optimization) algo-
rithms. Much effort in the operations research com-
munity focuses on how to model problems to avoid
degeneracy/symmetry and how these features can
impact algorithm performance. In a similar vein,
we devote attention to avoiding degeneracy and
symmetry in a materials-specific context.

Here, we focus on a single adaptive design
method and a single task (maximizing volume frac-
tion of physics-based particle packing simulations)
with up to three simultaneous constraints and in-
stead seek to determine the effect of search space
choices on efficiency. In this work, we pose the
question:

2

How does creating an irreducible repre-
sentation for an adaptive design search
space affect search efficiency for small
search budgets and noisy objective func-
tions?

Solid rocket fuel propellants consist of several
different types of particles (i.e. a formulation),
where the size mean and standard deviation gen-
erally follow a log-normal distribution and are con-
trolled by milling parameters and milling time, re-
spectively. In particular, longer milling times tend
towards lower standard deviations. High packing
fractions are important when increased stability of
solid rocket fuels is desired. Physics-based simula-
tions are often used prior to experimental synthesis
due to the energetic nature of the formulation con-
stituents (in particular, ammonium perchlorate),
made soberingly apparent in the PEPCON disas-
ter in 1988, a chemical explosion that caused two
fatalities, hundreds of injuries, and ∼$100 million
worth of damage [31].

While necessary and useful, physics-based simu-
lations are often expensive. In addition to increas-
ing approximately with the square of the number
of particles, computational runtime for a converged
particle packing simulation can vary by orders of
magnitude (e.g. 20 CPU min to 20+ CPU hours)
as a function of frictional force computations which
in turn depend on surface contact area. In general,
an appropriate combination of small and large par-
ticles leads to additional surface contact area com-
pared to homogeneous particle sizes and high pack-
ing fractions. Incidentally, the simulations which
are most favorable in terms of high packing frac-
tions are also the most expensive in terms of com-
putational runtime. However, this is not mutually
exclusive - computationally expensive simulations
can also lead to undesired, low packing fractions.
These points suggest the need for efficient optimiza-
tion of the simulation search space.

In prior work [32], several iterations of adaptive
design (also referred to as sequential learning) con-
sisting of exploratory data analysis were followed
by a classification-based approach. For the latter,
rather than perform regression and take candidates
with the best numerical predictions, solutions were

classified based on their likelihood of being “ex-
traordinary” [33], meaning falling in a top x% of all
candidates in terms of performance. This resulted
in 13 330 packing simulations and and a maximum
packing fraction of 0.826. In this work, we instead
focus on a small search budget with no pre-existing
training data and carry out concurrency-limited2

BO to maximize packing fraction using low-fidelity
(noisy) packing simulations which mimics common
materials informatics datasets and tasks. We em-
phasize that the packing fractions reported in [32]
should not be compared directly with the packing
fractions reported in this work. This is due to sig-
nificant differences in how the distributions were
parameterized and translated into ParPack simu-
lation input files. See Appendix B and Section S1
for discussion and other content related to the dif-
ferences. Another significant difference arises from
the use of far fewer number of particles in this work
(25 000 instead of 1.5× 106). See Section S3 for the
convergence behavior of volume fraction vs. num-
ber of particles which shows an initial steep rise in
the mean volume fraction.

2. Methods

We seek to maximize particle packing fraction,
fvolFrac, (Section 2.1) subject to any combination
(including none) of up to three invariance con-
straint types totaling eight search spaces. Each
search space represents the same unique solutions
but with varying levels of degeneracy/symmetry
(Sections 2.1 and 2.2). The optimization problem
is summarized as:

max
fvolFrac

fvolFrac(X̃, S, P)

s.t. size invariance constraint,

composition invariance constraint,

permutation invariance constraint(s)

where X̃ and S represent log-normal size distri-
bution parameters and P represents the fractional

2Concurrency refers to multiple processes occurring si-
multaneously without explicitly depending on each other.

3

prevalence of each of three particle types, totalling
seven, eight, or nine degrees of freedom depend-
ing on the combination of constraints. Detailed in-
formation regarding the constraints is provided in
Appendix A.

We also describe our Bayesian optimization
strategy in Section 2.3. Finally, we describe our
validation setup involving running repeat simula-
tions using the parameter combinations predicted
as best for each search space in Section 2.4.

2.1. Particle Packing Simulations

The simulations involve dropping particles sam-
pled from a predefined distribution of particle sizes
inside of a cylinder at randomized locations [32].
Theoretical details of the particle packing simula-
tions are given in Davis and Carter [34] and Webb
and Davis [35], for which a summary is provided in
the second paragraph of the motivation section in
Hall et al. [32]. A proprietary Windows executable
for ParPack was used. While the executable is not
made available, the functions and scripts provided
at https://github.com/sparks-baird/bayes-

opt-particle-packing can be adapted to other
problems or used as a reference for custom imple-
mentations. Additionally, we describe qualitative
differences between the representation of particle
distributions in this work vs. prior work [32] in
Appendix B.

2.2. Reducible and Irreducible Search Spaces

In this work, a reducible search space is a search
space that exhibits identical solutions for different
parameterizations that can be collapsed to a single
solution and a single parameterization (i.e. an ir-
reducible search space) through reparameterization
or imposition of constraints. Baird et al. [36] found
that mapping symmetrically related sets of param-
eters to an irreducible representation (i.e. a funda-
mental zone in crystallographic terms3) exhibited

3A fundamental zone in crystallography, which contains
only one parameter combination out of a set of symmetri-
cally related parameter combinations (e.g. crystal misorien-
tation and/or grain boundary plane normal directions)

distinct advantages related to accuracy and compu-
tational efficiency of distance calculations4. Similar
to the crystallographic representation, reducibility
in this work focuses on leveraging domain knowl-
edge about the relationship between input parame-
ters of an otherwise “black-box” objective function
to restrict the search space through reparameter-
ization. Examples are a simulation that exhibits
size invariance (e.g. unitless simulations) [37, 38]
(referred to as “size”), a set of parameters that is
represented as a composition or formulation (i.e.
Al2O3 ≡ 0.4Al + 0.6O where 0.4 + 0.6 = 1.0)
[39–50] (referred to as “comp”), or a set of pa-
rameters that exhibits permutation invariance (e.g.
Al2O3 ≡ O3Al2) [36, 40, 51] (referred to as “or-
der”). A ubiquitous example exists in image pro-
cessing, where machine learning algorithms often
rely on data augmentation to account for rotational
invariance [52], a type of invariance which is not ad-
dressed in this work. When no additional param-
eter constraints other than lower and upper limits
are used, we refer to this as “Bounds-only”.

We note that the reparameterizations and impo-
sition of constraints in this work are separate from
(usually) lossy dimensionality reduction techniques
such as Uniform Manifold Approximation and Pro-
jection [53] or t-distributed stochastic neighbor em-
beddings [54] in that only redundant information is
lost5 and parameters retain domain-specific, inter-
pretable meaning.

The Ax SearchSpace objects corresponding to
each of the eight search spaces explored in this work
are given in Section S8.

A summary of the 9 original simulation param-
eters and the bounds used in this work are given
in Table 1. See Appendix A for additional de-
tails of the reparameterizations applied and con-
straints imposed in this work. A visual summary
of these constraints and their corresponding degen-

4The symmetry degeneracy is separate from the inclu-
sion or exclusion of a degenerate dimension via rigid prin-
cipal component analysis transformation which did not sig-
nificantly impact model accuracy

5“Only redundant information is lost” assumes that the
constraints imposed are consistent with the actual behavior
of the objective function.

4

https://github.com/sparks-baird/bayes-opt-particle-packing
https://github.com/sparks-baird/bayes-opt-particle-packing

(a) Bound constraints only (b) r1 = x̃1
x̃3

, r2 = x̃2
x̃3

(c) Bound constraints only (d) p1 + p2 ≤ 1.0 (e) p1 + p2 + p3 = 1.0

(f) Bound constraints only (g) s1 < s2 < s3

Figure 1: Simple visualization examples of how imposing various types of constraints affects the solution space and search
dimensions. Irreducible (b,d,e,g) and reducible (a,c,f) search spaces for size (b,a), compositional (d,e,c), and permutation
(g,f) invariance constraints are given. Solutions are given in red, and the search space bounds are given in black. In
the top row, applying the size-invariance constraint to a line solution in a cube (b) reduces the search space to a point
solution in a square (a). Note how the bounds have changed. In the middle row, applying a linear equality compositional
constraint to a line solution in a cube (c) results in a point solution on a triangle embedded in a cube (e). This requires
an additional rigid transformation to represent it in only two dimensions. Also in the middle row, reparameterizing the
linear equality compositional constraint as a linear inequality constraint and imposing that on a line solution in a cube
(c) results in a point solution in a triangle (d), albeit with some distortion introduced. In the bottom row, imposing two
permutation-invariance constraints on a set of symmetric point solutions in a cube (f) reduces the search space to a smaller
polyhedron and a single point solution (g).

5

Table 1: Summary of 9 non-reparameterized simulation pa-
rameters and their bounds. x̃i, si, and pi correspond to
log-normal mean, log-normal standard deviation, and frac-
tional prevalence (i.e. composition) for each of the three
particle distributions.

Name Min Max

x̃1 1 5
x̃2 1 5
x̃3 1 5
s1 0.1 1
s2 0.1 1
s3 0.1 1
p1 0 1
p2 0 1
p3 0 1

erate search spaces are given in Figure 1.

2.3. Adaptive Experimentation Platform and Ray-
Tune

While many excellent packages for BO exist, we
choose Meta’s (formerly Facebook) Adaptive Ex-
perimentation (Ax) platform for “its relative ease-
of-use, modularity, developer support, and model
sophistication” [22] and refer to this as Ax. In
prior work [22], a high-dimensional scheme named
sparse axis-aligned subspaces Bayesian optimiza-
tion (SAASBO) was used to optimize 23 hyper-
parameters within a design budget of 100 itera-
tions and demonstrated superior performance over
a more traditional (default) Bayesian optimization
approach. Here, we use the default BO model,
Gaussian process expected improvement (GPEI) to

limit the computational expense6.

We refer to the GPEI implementation within the
Ax platform as GPEI.7 As the name suggests, GPEI
uses a Gaussian process surrogate model in con-
junction with the expected improvement acquisi-
tion function. Gaussian process regression is a non-
parametric Bayesian regression method that can be
thought of as fitting an infinite-dimensional multi-
variate normal distribution to observed data. The
expected improvement acquisition function assists
in selecting the next point(s) to evaluate in a way
that manages the trade-off between exploitation of
candidates with high predicted performance and
exploration of regions with high uncertainty. In
the GPEI model, a Matern 5/2 kernel is used by de-
fault which allows for somewhat less smooth behav-
ior than the radial basis function. Parameters are
mapped to a range between 0 and 1 and the objec-
tive values are standardized (subtract mean, divide
by standard deviation) per default transformation
behavior within Ax, and parameter constraints are
imposed as hard constraints. With BoTorch as the
backend for Ax, Ax leverages auto-differentiation
to perform gradient-enhanced optimization of ac-
quisition functions. Finally, maximum a-posteriori
estimation is used on the marginal log likelihood
during acquisition function optimization. For ad-
ditional details, please see Balandat et al. [55].

10 Sobol iterations precede 90 Bayesian opti-
mization iterations. All Sobol iterations were re-
quired to be completed before moving on to the

6SAASBO is computationally expensive especially for
larger design budgets. Normally, this would be fine for ex-
pensive simulations and experiments as well as comprehen-
sive benchmarking (this work); however, we are limited to
using a Windows executable to run the simulations with no
set timeline for a corresponding Linux executable. Running
parallelized repeat campaigns using University of Utah’s
Center for High-Performance Computing (CHPC) resources
is straightforward using Linux software, but we are subject
to additional constraints (i.e. fewer resources) when using
Windows. Thus, a full campaign running 10×90×8 = 7200
SAASBO iterations might require several months of usage
on CHPC’s Beehive (Windows) machine compared with a
few weeks of usage using GPEI iterations.

7Generally, when referring to theory, we refer to the full
name or abbreviation, and when referring to the model as
implemented within Ax we use code formatting.

6

Bayesian optimization iterations. Alternatively,
setting the number of Sobol iterations to the de-
fault of twice the number of parameters and/or re-
ducing min_observed_trials (i.e. able to evalu-
ate second step trials before completing first step)
may have been appropriate choices which we do not
expect to significantly impact the findings in this
study.

In this work, we use a scheduler method (first
in, first out) for the Bayesian optimization trials.
A maximum of five workers were made available to
the scheduler, and candidate generation had addi-
tional CPU RAM resources available.

Because trial runtimes can vary between a few
CPU minutes to over a CPU day as a function of
the trial parameters, using a scheduler algorithm
with multiple CPUs is likely more efficient in terms
of clock time8 than sequential optimization and
batch optimization. Sequential optimization is a
straightforward implementation where only one it-
eration runs at a time, and candidate generation for
the next iteration does not occur until the results
from the previous iteration are available. Batch op-
timization, by contrast allows for multiple trials to
run in parallel and necessitates using conditioning9

or similar to generate a batch of candidates. Batch
optimization is related to scheduler optimization
in that multiple trials can run simultaneously, but
is better suited for tasks where runtimes within a
batch are approximately similar. This is because
all trials within a batch have to complete before
moving onto the next batch iteration which can
result in poor utilization of the compute devices
(e.g. CPU cores left in an idle state). A scheduler
mitigates this issue by generating new candidates
and assigning them to “workers” (i.e. CPU cores)
as soon as one is available. During the generation

8Clock time is the real time between start and finish
rather than the total CPU time used (possibly across mul-
tiple devices).

9Because joint acquisition is not always tractable, con-
ditioning is often used such that later suggestions are con-
ditioned on the predicted outcomes of earlier suggestions
in the batch. See Appendix F.2 of Balandat et al. [55] for
two types of conditioning: sequential greedy approaches and
“fantasy” models. See also Wilson et al. [56].

step, all currently available data (including recently
completed trials) is considered. The scheduler can
be thought of as a manager that dynamically as-
signs tasks of varying difficulties to employees to
maximize throughput.

More sophisticated scheduling algorithms also
exist, for which we refer the reader to the Ray-
Tune Trial Schedulers documentation. These types
of scheduling algorithms can be applied to any com-
bination of offline/online10 and computational/ex-
perimental tasks, especially when there are multi-
ple “workers” (e.g. CPUs, robots, experimental-
ists); however, the most straightforward and per-
haps most ubiquitous application of scheduler al-
gorithms is for online computational optimization
tasks (e.g. simulations). Likewise, readers may be
interested in the many state-of-the-art search algo-
rithms supported via the RayTune interface.

2.4. Validation

Each optimization campaign is repeated 10 times
(each using a unique, fixed seed for the random
number generator) with the fixed design budget
and setup as described in Section 2.3. The best in-
sample predictions11 are validated by running the
particle packing simulation for the best candidate
50 times, for which the mean and standard devia-
tion are calculated. We run repeats of the simula-
tions using the best-predicted parameters because
the calculated packing fraction is non-negligibly
stochastic for the relatively low number of parti-
cles used. In other words, the objective function
is noisy. This validation of best in-sample predic-
tions allows us to provide a fair comparison of the
effect of each representation on search efficiency rel-
ative to each other. This validation step is cen-
tral to the findings of this study in determining the
efficiency of search spaces. If the mean validated
packing fraction for a given optimization campaign

10Offline vs. online adaptive design can be thought of
as whether or not a script needs to be restarted multiple
times or is closed-loop where all iterations can be run to
completion without exiting the script.

11In-sample predictions (meaning predictions for trials
that completed) are used rather than the raw observed data
due to noise in the latter.

7

https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html

Figure 2: Packing fraction mean and standard deviation
of validated results using 50 repeat runs for each of the 8
search space types and 5 seeded optimization campaigns,
sorted by decreasing mean packing fraction. On average,
the search space with the greatest number of constraints is
not always the most efficient. Likewise, the search space
with the least number of constraints is not always the least
efficient. When “order” and “size” appear together, there
is only a single order constraint due to an incompatibility
described in Appendix A.1.

is higher than that of another optimization cam-
paign, use of this validation approach bolsters our
confidence that, on average, the former campaign
is more efficient.

See Figure S7 for details related to the conver-
gence behavior of the particle packing simulations
as a function of particle size for a specific high-cost
set of parameters.

As an additional perspective, leave-one-out
cross-validation is performed for each final opti-
mization dataset and visualized via parity plots
(Figure S25).

3. Results and Discussion

We present predicted and validated outcomes
(Section 3.1) and interpretable model characteris-
tics for the eight search spaces (Section 3.2).

3.1. Effect of Search Space Irreducibility on Effi-
ciency

The predicted and validated outcomes do not al-
ways align with each other. For example, while “or-

der” and “comp/size” both rank highly in terms of
predicted and validated outcomes, “comp/order”
ranks highly in terms of validated outcomes but
lower in terms of predicted outcomes. Likewise,
“size/order” ranks highly in terms of predicted out-
comes but is the lowest in terms of mean validated
performance. In situations where the validation
is much more expensive or infeasible to perform,
optimization practitioners must carefully consider
whether they can “trust” the best in-sample pre-
dictions when the objective function is subject to
large levels of noise. We think it is likely that in a
reduced-noise environment, the predicted and vali-
dated out will be better aligned.

We also think it is likely that use of data aug-
mentation as described in Appendix A.3 will re-
sult in better performance than the order con-
straint; implementation difficulties and limitations
of a data augmentation approach are discussed in
Appendix A.3.

Individual optimization results for each of the
seeded runs is given in Section S5.

3.2. Interpretable Model Characteristics

In this subsection, we probe some interpretable
characteristics of the GPEI model through feature
importances (Section 3.2.1) and 2D contours for
two of the compositional variables (Section 3.2.2).
Particle size distribution visualizations are given in
Section S3.1) and leave-one-out cross-validation re-
sults are provided in Section S6. Plots with addi-
tional information for particle size distribution vi-
sualizations, feature importances, and 2D contours
are given in Sections S1, S4 and S7, respectively.

3.2.1. Feature Importances

Average feature importances12 across 10 seeded
runs are given in Figure 4. Note that each search
space is characterized by different sets of features,
ranging from seven to nine total features.

One of the characteristics that stands out is the
large standard deviations for many of the features.
In other words, separate optimization runs did not
necessarily assign the same features as being most

12Feature importances are based on based on the inverse
lengthscales of an anisotropic Gaussian kernel.

8

(a) Bound constraints only

(b) Composition reparameterization (c) Size reparameterization (d) Order constraint

(e) Composition and size reparame-
terizations

(f) Composition reparameterization
and order constraint

(g) Size reparameterization and or-
der constraint

(h) Composition and size reparam-
eterizations and order constraint

Figure 3: Best objective vs. iteration for eight search spaces using GPEI. By default, Ax uses the the best in-sample
predictions rather than the noisy measured values unless a reasonable fit is not obtained.

9

important, and this behavior was observed across
many search spaces.

We would have expected that for search spaces
with the best predicted and validated outcomes,
the feature importances would have tighter stan-
dard deviations than others; however, this does not
appear to be the case.

Individual feature importances based on the fit-
ted, inverse lengthscales of the anisotropic Gaus-
sian kernels for for seeds 10, 11, 12, 13, and 14 are
given in Section S4.

3.2.2. 2D Contours through Parameter Space

2D contour plots of comp2 (y-axis) vs. comp1 (x-
axis) for each of the eight search spaces (rows) and
each of the first five (out of a total of 10) seeded
optimization runs are given in Figure 5. Only the
first five are shown for brevity.

We notice that search spaces involving the size
constraint tend to have greater local distortions to
the predicted landscape relative search spaces with-
out the size constraint. This may be due to the
nonlinear transformation involved with implement-
ing the size constraint. There are also several cases
where a local distribution of datapoints exhibits a
linear behavior. This could be due to a greater fo-
cus on exploitation rather than exploration as the
optimization progresses.

2D contours through parameter space with ad-
ditional features such as estimated standard devia-
tion error for seeds 10, 11, 12, 13, and 14 are given
in Section S7.

4. Future Work

A number of questions may be interesting to ex-
plore in future work:

• What is the effect of irreducibility for high-
dimensional optimization (i.e. 20+ parame-
ters)?

• To what extent can multi-fidelity optimization
reduce total search cost? [6]

• In a reduced noise environment (i.e. bet-
ter convergence through a larger number of

dropped simulation particles), do the inter-
pretable model characteristics follow more con-
sistent trends across repeated campaigns?

• Do the results generalize to optimization of
model accuracy (i.e. without regard to high-
performance)? (e.g. via Negative Integrated
Posterior Variance acquisition function13)

• Do the results generalize to wetlab experi-
ments (as opposed to physics-based simula-
tion)?

• How do these findings compare to other op-
timization algorithms (e.g. random search,
genetic algorithms, random forest based BO
[57])?

• Do larger datasets follow the same trend?

• Is there a significant difference in search effi-
ciency when using a predefined list of candi-
dates (i.e. supply candidates sampled from an
irreducible search space)?

• How does search space reducibility scale to
multi-objective problems?

• Does replacing the Bayesian model with
SAASBO perform better on average and/or
change the ranking results?

• Will applying a (e.g. log) transform to the
scale parameters when using the size repa-
rameterization improve the optimization re-
sults?

• Could using a heteroskedastic noise assump-
tion improve the performance of the size-
reparameterized search space?

• Could regularization terms or optimization
algorithms geared towards ill-posed inverse
problems mitigate degeneracy issues?

13For Negative Integrated Posterior Variance acquisition
function usage in Ax, see https://github.com/facebook/

Ax/issues/930

10

https://github.com/facebook/Ax/issues/930
https://github.com/facebook/Ax/issues/930

(a) Bound constraints only

(b) Composition reparameteriza-
tion

(c) Size reparameterization (d) Order constraint

(e) Composition and size repa-
rameterizations

(f) Composition reparameteriza-
tion and order constraint

(g) Size reparameterization and
order constraint

(h) Composition and size repa-
rameterizations and order con-
straint

Figure 4: Average feature importances for the eight search spaces across 10 seeded optimization runs using GPEI with
standard deviations as error bars.

11

B
ou

n
d
s-

on
ly

C
om

p
S
iz

e
O

rd
er

C
om

p
/S

iz
e

C
om

p
/O

rd
er

S
iz

e/
O

rd
er

A
ll

Figure 5: 2D contour plots of comp2 (y-axis) vs. comp1 (x-axis) for each of the eight search spaces (rows) and each of the
five seeded optimization runs using GPEI.

12

5. Conclusion

We show that, on average, the most compact
search space is not the most efficient for a physics-
based simulation. Likewise, the least compact
search space is not always the least efficient. Likely
due to the high-noise objective function, best in-
sample predictions and validated outcomes did not
always align when compared across optimization
campaigns. Average GPEI feature importances
were characterized by large standard deviations for
all search spaces, making it difficult to interpret.
We caution optimization practitioners to care-
fully assess the influence of linear and non-linear
constraints or reparameterizations on their search
spaces, especially when expensive physics-based
simulations or wetlab experiments and noisy objec-
tives are involved. Pairing efficient search spaces
with state-of-the-art optimization algorithms has
the potential to dramatically improve optimization
success relative to more standard approaches.

Appendix A Reparameterizations and
Constraints

A.1 Size Invariance

An example of a scaling or size invariant objec-
tive function is given in Eq. (1):

fvolFrac(X̃, S, P)=fvolFrac(aX̃, S, P), a>0 (1)

where X̃, S, P , a, and fvolFrac(·) represent vector of
log-normal medians (scale parameters), vector of
log-normal shape parameters, vector of fractional
prevalence (i.e. composition) for each particle, a
positive, real-valued constant, and volume fraction
function/simulation, respectively.

Reparameterizations for the log-normal mean are
given in Eq. (2):

rx̃,i =
x̃i

x̃n

∀ i ∈ {1,n-1} (2)

where x̃i and n represent log-normal median of the
i-th particle (scale parameter) and number of par-
ticles, respectively.

Log-normal standard deviations are used as-is.

When size invariance and the order constraint are
applied simultaneously, only the first two standard
deviations are included in the order constraint.

A.2 Compositional Constraint

The linear equality compositional constraint is
given in Eq. (3):

n∑
i=1

xi=1 (3)

where xi and n represent fractional prevalence of
the i-th particle and number of particles, respec-
tively.

However, linear equality constraints are not di-
rectly supported by most optimization packages14

due to the difficulty of sampling from slices in
higher-dimensional spaces (e.g. a triangle embed-
ded in three dimensions, where a triangle naturally
has zero volume). A straightforward solution is to
reparameterize a linear equality constraint, albeit
with some distortion of the original search space,
as a linear inequality constraint [?] as Eq. (4):

n−1∑
i=1

pi≤1 (4)

where pi and n represent fractional prevalence of
the i-th particle and number of particles, respec-
tively.

This is subject to the additional constraint that
Eq. (5):

pn=1-
n−1∑
i=1

pi (5)

where pn, pi, and n represent fractional prevalence
of the n-th particle, fractional prevalence of the i-th
particle, and number of particles, respectively.

14Supporting linear equality constraints is on Meta’s
Adaptive Experimentation Platform wishlist. Linear equal-
ity constraints are, however, supported on the Adaptive Ex-
perimentation dependency, BoTorch, via proper sampling
from a d-simplex. See https://github.com/facebook/Ax

/issues/903 for additional context.

13

https://github.com/facebook/Ax/issues/903
https://github.com/facebook/Ax/issues/903

A.3 Permutation Invariance

An example of permutation invariance is given in
Eq. (6):(

fvolFrac [x̃1, x̃2, x̃3, s1, s2, s3, p1, p2, p3]=
fvolFrac [x̃2, x̃1, x̃3, s2, s1, s3, p2, p1, p3]

)
(6)

where x̃, s, p, and fvolFrac[·] represent log-normal
median (scale parameter), log-normal shape pa-
rameter, fractional prevalence, and volume fraction
function/simulation, respectively.

One option to address the degeneracy here is to
impose an order constraint Eq. (7):

si ≤ si+1 ∀ i ∈ {i,n-1} (7)

where si and n represent log-normal shape param-
eter of the i-th particle and number of particles,
respectively.

An alternative, though not particularly amenable
to BO (at least when data scaling is an issue) and
in general intractable when the number of per-
mutations is large, is to perform data augmenta-
tion in the original search space by including the
repeat permutation data at “no additional cost”.
Additionally, we did not choose to perform data
augmentation due to the difficulty of simultane-
ously implementing all three reparameterizations/-
constraints within an AxSearch first in, first out
scheduler framework. While possible using much
lower level and custom implementations, there is
an additional concern related to the simultaneous
implementation of a size reparameterization, data
augmentation, and bound constraints; in order for
the bound constraints on the reparameterized mean
and standard deviation parameters to encompass
all possible values, the bounds must be extended
to include extreme ratios for each reparameterized
value (e.g. [1.0

5.0
, 5.0
1.0

] rather than [1.0
1.0

, 5.0
1.0

] in the case
where x̃3 = 1.0). Thus, it becomes difficult to de-
convolve the direct effect of the data augmentation
with the indirect effect on the size reparameteriza-
tion bounds.

By contrast, when using an order constraint to-
gether with the size reparameterization, bound in-
flation can be avoided by applying the order con-
straint to only the first two standard deviations

rather than all three. As mentioned, the practi-
cal implementation of data augmentation for this
work’s optimization task is not straightforward and
is of limited use in terms of combinatorial explosion
when many variables are involved as well as data
scaling limitations. This results in a high-cost sce-
nario for possibly murky results and applicability to
a more limited range of tasks (i.e. small data, few
variables in the permutation constraint). Thus, we
choose to focus on order constraints in this work.
However, the effect of using data augmentation vs.
order constraints on search space efficiency in com-
bination with other constraints may be an interest-
ing topic for future study.

Appendix B Differences Between This
Work and Prior Work (Parti-
cle Size Distributions)

We note that the datasets in Hall et al. [32] used
a positive linear relationship between mass frac-
tion and particle size, which is opposite to what
is described in Fig. 2 of Hall et al. [32] due to
an error in how the distributions were processed
in internal scripts. We formalize the representa-
tion of particle size distributions in this work as
truncated log-normal distributions. We emphasize
that there is little to no correspondence between
the parameters reported in this work and that of
Hall et al. [32] due to the differences in distribu-
tion sampling. For a comparison of Hall et al. [32]
vs. this work, see Figure S1 and Figure S2, respec-
tively. To avoid any ambiguity, we define our pa-
rameters as scale and shape (or s) as used within
scipy.stats.lognormal via e.g.:

lognorm.pdf(x, shape , scale=scale)

Infinite random sampling from the log-normal dis-
tribution as defined by the scale parameter results
in an empirical distribution whose median is equal
to scale.

We provide representative examples of the trun-
cated distributions sampled in this work in Fig-
ure S2, as well as log-normal distributions de-
rived from grid-sampled parameter combinations
Figures S3 and S4 based on the search bounds in

14

Table 1 to give a better sense of distributions sam-
pled in this work. Additionally, we demonstrate the
convergence behavior of volume fraction as a func-
tion of number of particles per simulation in Sec-
tion S3. There is a moderate run-to-run variation
for simulations using this distribution and 25 000
particles Figure S7.

Glossary

BO Bayesian optimization 2, 3, 6, 10, 14

GPEI Gaussian process expected improvement 6,
9, 11–13

SAASBO sparse axis-aligned subspaces Bayesian
optimization 6, 10

Conflicts of Interest

There are no conflicts of interest to declare.

Acknowledgement

We thank Max Balandat, Lena Kashtelyan,
David Eriksson, and Bernard Beckermann for dis-
cussions related to use of the Ax platform and im-
plementation of constraints. We thank Victoria K.
Baird for discussions related to solid rocket fuels.
We thank Ramsey Issa for checking the manuscript.
Plots were produced via Plotly [58] and Ax’s plot-
ting wrapper functions. Several tables were format-
ted via an online formatter [59] and the auto-paper
methodology [60] was used. Figures 1 and S3–S6
were produced via Mathematica. This work was
supported by the National Science Foundation un-
der Grant No. DMR-1651668.

CRediT Statement

Taylor D. Sparks: Supervision, Project admin-
istration, Funding acquisition, Resources, Writing
- Review & Editing. Sterling G. Baird: Super-
vision, Project administration, Conceptualization,
Methodology, Software, Validation, Formal analy-
sis, Investigation, Writing - Original Draft, Writing
- Review & Editing, Visualization. Jason R. Hall:

Project administration, Software, Validation, In-
vestigation, Writing - Original Draft, Writing - Re-
view & Editing

Data Availability

There is no external data associated with this
study.

The processed data required to reproduce these
findings is available to download from https://gi

thub.com/sparks-baird/bayes-opt-particle

-packing as v1.0.0.
The code required to reproduce these findings is

hosted at https://github.com/sparks-baird/

bayes-opt-particle-packing as v1.0.0.
For questions, concerns, or discussion, please

open an issue using the GitHub issue tracker at
https://github.com/sparks-baird/bayes-op

t-particle-packing/issues.

References

[1] B. Meredig, Five High-Impact Research Ar-
eas in Machine Learning for Materials Sci-
ence, Chemistry of Materials 31 (2019) 9579–
9581. doi:10.1021/acs.chemmater.9b04078.
arXiv:1704.06439.

[2] R. Dong, Y. Dan, X. Li, J. Hu, Inverse Design
of Composite Metal Oxide Optical Materials
based on Deep Transfer Learning, Compu-
tational Materials Science 188 (2021) 110166.
doi:10.1016/j.commatsci.2020.110166.
arXiv:2008.10618.

[3] R. Espinosa, H. Ponce, J. Ortiz-Medina, A
3D orthogonal vision-based band-gap predic-
tion using deep learning: A proof of concept,
Computational Materials Science 202 (2022)
110967. doi:10.1016/j.commatsci.2021.110
967.

[4] S. Ju, T. Shiga, L. Feng, Z. Hou, K. Tsuda,
J. Shiomi, Designing Nanostructures for
Phonon Transport via Bayesian Optimization,
Phys. Rev. X 7 (2017) 021024. doi:10.1103/
PhysRevX.7.021024.

15

https://www.tablesgenerator.com/
https://github.com/sparks-baird/auto-paper
https://github.com/sparks-baird/auto-paper
https://github.com/sparks-baird/bayes-opt-particle-packing
https://github.com/sparks-baird/bayes-opt-particle-packing
https://github.com/sparks-baird/bayes-opt-particle-packing
https://github.com/sparks-baird/bayes-opt-particle-packing/tree/1.0.0
https://github.com/sparks-baird/bayes-opt-particle-packing
https://github.com/sparks-baird/bayes-opt-particle-packing
https://github.com/sparks-baird/bayes-opt-particle-packing/tree/1.0.0
https://github.com/sparks-baird/bayes-opt-particle-packing/issues
https://github.com/sparks-baird/bayes-opt-particle-packing/issues
http://dx.doi.org/10.1021/acs.chemmater.9b04078
http://arxiv.org/abs/1704.06439
http://dx.doi.org/10.1016/j.commatsci.2020.110166
http://arxiv.org/abs/2008.10618
http://dx.doi.org/10.1016/j.commatsci.2021.110967
http://dx.doi.org/10.1016/j.commatsci.2021.110967
http://dx.doi.org/10.1103/PhysRevX.7.021024
http://dx.doi.org/10.1103/PhysRevX.7.021024

[5] M. Karasuyama, H. Kasugai, T. Tamura,
K. Shitara, Computational design of sta-
ble and highly ion-conductive materials using
multi-objective bayesian optimization: Case
studies on diffusion of oxygen and lithium,
Computational Materials Science 184 (2020)
109927. doi:10.1016/j.commatsci.2020.109
927.

[6] A. Palizhati, S. B. Torrisi, M. Aykol, S. K.
Suram, J. S. Hummelshøj, J. H. Montoya,
Agents for sequential learning using multiple-
fidelity data, Sci Rep 12 (2022) 4694. doi:10
.1038/s41598-022-08413-8.

[7] A. Sakurai, K. Yada, T. Simomura, S. Ju,
M. Kashiwagi, H. Okada, T. Nagao, K. Tsuda,
J. Shiomi, Ultranarrow-Band Wavelength-
Selective Thermal Emission with Aperi-
odic Multilayered Metamaterials Designed by
Bayesian Optimization, ACS Cent. Sci. 5
(2019) 319–326. doi:10.1021/acscentsci.8
b00802.

[8] B. J. Shields, J. Stevens, J. Li, M. Parasram,
F. Damani, J. I. M. Alvarado, J. M. Janey,
R. P. Adams, A. G. Doyle, Bayesian reaction
optimization as a tool for chemical synthesis,
Nature 590 (2021) 89–96. doi:10.1038/s415
86-021-03213-y.

[9] A. Talapatra, S. Boluki, T. Duong, X. Qian,
E. Dougherty, R. Arróyave, Autonomous effi-
cient experiment design for materials discov-
ery with Bayesian model averaging, Physi-
cal Review Materials 2 (2018) 113803. doi:10
.1103/PhysRevMaterials.2.113803.
arXiv:1803.05460.

[10] Y. K. Wakabayashi, T. Otsuka, Y. Krock-
enberger, H. Sawada, Y. Taniyasu, H. Ya-
mamoto, Bayesian optimization with experi-
mental failure for high-throughput materials
growth, 2022. arXiv:2204.05452.

[11] Y. K. Wakabayashi, T. Otsuka, Y. Krock-
enberger, H. Sawada, Y. Taniyasu, H. Ya-
mamoto, Machine-learning-assisted thin-film
growth: Bayesian optimization in molecular

beam epitaxy of SrRuO3 thin films, APL Ma-
terials 7 (2019) 101114. doi:10.1063/1.5123
019. arXiv:1908.00739.

[12] M. Kuhn, Acquisition functions,
https://tune.tidymodels.org/articles/acquisition%5ffunctions.html,
2022.

[13] G. Agarwal, H. A. Doan, L. A. Robert-
son, L. Zhang, R. S. Assary, Discovery
of Energy Storage Molecular Materials Us-
ing Quantum Chemistry-Guided Multiobjec-
tive Bayesian Optimization, Chem. Mater. 33
(2021) 8133–8144. doi:10.1021/acs.chemma
ter.1c02040.

[14] H. C. Herbol, W. Hu, P. Frazier, P. Clancy,
M. Poloczek, Efficient search of compositional
space for hybrid organic–inorganic perovskites
via Bayesian optimization, npj Comput Mater
4 (2018) 1–7. doi:10.1038/s41524-018-010
6-7.

[15] R. Jalem, K. Kanamori, I. Takeuchi,
M. Nakayama, H. Yamasaki, T. Saito,
Bayesian-Driven First-Principles Calcula-
tions for Accelerating Exploration of Fast
Ion Conductors for Rechargeable Bat-
tery Application, Sci Rep 8 (2018) 5845.
doi:10.1038/s41598-018-23852-y.

[16] J. Järvi, P. Rinke, M. Todorović, Detecting
stable adsorbates of (1S)-camphor on Cu(111)
with Bayesian optimization, Beilstein J. Nan-
otechnol. 11 (2020) 1577–1589. doi:10.3762/
bjnano.11.140.

[17] J. K. Pedersen, C. M. Clausen, O. A. Krysiak,
B. Xiao, T. A. A. Batchelor, T. Löffler,
V. A. Mints, L. Banko, M. Arenz, A. Sa-
van, W. Schuhmann, A. Ludwig, J. Rossmeisl,
Bayesian Optimization of High-Entropy Alloy
Compositions for Electrocatalytic Oxygen Re-
duction**, Angewandte Chemie 133 (2021)
24346–24354. doi:10.1002/ange.202108116.

[18] W. Ye, X. Lei, M. Aykol, J. H. Montoya,
Novel inorganic crystal structures predicted
using autonomous simulation agents, Sci Data

16

http://dx.doi.org/10.1016/j.commatsci.2020.109927
http://dx.doi.org/10.1016/j.commatsci.2020.109927
http://dx.doi.org/10.1038/s41598-022-08413-8
http://dx.doi.org/10.1038/s41598-022-08413-8
http://dx.doi.org/10.1021/acscentsci.8b00802
http://dx.doi.org/10.1021/acscentsci.8b00802
http://dx.doi.org/10.1038/s41586-021-03213-y
http://dx.doi.org/10.1038/s41586-021-03213-y
http://dx.doi.org/10.1103/PhysRevMaterials.2.113803
http://dx.doi.org/10.1103/PhysRevMaterials.2.113803
http://arxiv.org/abs/1803.05460
http://arxiv.org/abs/2204.05452
http://dx.doi.org/10.1063/1.5123019
http://dx.doi.org/10.1063/1.5123019
http://arxiv.org/abs/1908.00739
http://dx.doi.org/10.1021/acs.chemmater.1c02040
http://dx.doi.org/10.1021/acs.chemmater.1c02040
http://dx.doi.org/10.1038/s41524-018-0106-7
http://dx.doi.org/10.1038/s41524-018-0106-7
http://dx.doi.org/10.1038/s41598-018-23852-y
http://dx.doi.org/10.3762/bjnano.11.140
http://dx.doi.org/10.3762/bjnano.11.140
http://dx.doi.org/10.1002/ange.202108116

9 (2022) 302. doi:10.1038/s41597-022-014
38-8.

[19] M. Yu, S. Yang, C. Wu, N. Marom, Machine
learning the Hubbard U parameter in DFT+U
using Bayesian optimization, npj Comput
Mater 6 (2020) 1–6. doi:10.1038/s41524-0
20-00446-9.

[20] Y. Zhang, D. W. Apley, W. Chen, Bayesian
Optimization for Materials Design with Mixed
Quantitative and Qualitative Variables, Sci
Rep 10 (2020) 4924. doi:10.1038/s41598-020
-60652-9.

[21] Y. Zuo, M. Qin, C. Chen, W. Ye, X. Li, J. Luo,
S. P. Ong, Accelerating Materials Discovery
with Bayesian Optimization and Graph Deep
Learning, 2021. doi:10.48550/arXiv.2104.
10242. arXiv:2104.10242.

[22] S. G. Baird, M. Liu, T. D. Sparks, High-
dimensional Bayesian Optimization of Hy-
perparameters for an Attention-based Net-
work to Predict Materials Property: A
Case Study on CrabNet using Ax and
SAASBO, arXiv:2203.12597 [cond-mat]
(2022). arXiv:2203.12597.

[23] G. Cheng, X.-G. Gong, W.-J. Yin, Crystal
structure prediction by combining graph net-
work and optimization algorithm, Nat Com-
mun 13 (2022) 1492. doi:10.1038/s41467-0
22-29241-4.

[24] T. Yamashita, S. Kanehira, N. Sato, H. Kino,
K. Terayama, H. Sawahata, T. Sato, F. Ut-
suno, K. Tsuda, T. Miyake, T. Oguchi,
CrySPY: A crystal structure prediction tool
accelerated by machine learning, Science and
Technology of Advanced Materials: Methods
1 (2021) 87–97. doi:10.1080/27660400.202
1.1943171.

[25] T. Yamashita, N. Sato, H. Kino, T. Miyake,
K. Tsuda, T. Oguchi, Crystal structure pre-
diction accelerated by Bayesian optimization,
Phys. Rev. Materials 2 (2018) 013803. doi:10
.1103/PhysRevMaterials.2.013803.

[26] T. Yamashita, H. Kino, K. Tsuda, T. Miyake,
T. Oguchi, Hybrid algorithm of Bayesian opti-
mization and evolutionary algorithm in crystal
structure prediction, Science and Technology
of Advanced Materials: Methods 2 (2022) 67–
74. doi:10.1080/27660400.2022.2055987.

[27] L. Kotthoff, H. Wahab, P. Johnson, Bayesian
Optimization in Materials Science: A Sur-
vey, 2021. doi:10.48550/arXiv.2108.00002.
arXiv:2108.00002.

[28] Q. Liang, A. E. Gongora, Z. Ren, A. Tiiho-
nen, Z. Liu, S. Sun, J. R. Deneault, D. Bash,
F. Mekki-Berrada, S. A. Khan, K. Hip-
palgaonkar, B. Maruyama, K. A. Brown,
J. Fisher III, T. Buonassisi, Benchmark-
ing the performance of Bayesian optimization
across multiple experimental materials science
domains, npj Comput Mater 7 (2021) 188.
doi:10.1038/s41524-021-00656-9.

[29] R. J. Hickman, M. Aldeghi, F. Häse,
A. Aspuru-Guzik, Bayesian optimization with
known experimental and design constraints
for chemistry applications, arXiv:2203.17241
[cond-mat] (2022). arXiv:2203.17241.

[30] L. Biegler, 4. Concepts of constrained opti-
mization, in: Nonlinear Programming, 2010,
pp. 63–90. doi:10.1137/1.9780898719383.ch
4.

[31] J. Reed, Analysis of the Accidental Explosion
at Pepcon, Henderson, Nevada, May 4, 1988,
Technical Report SAND-88-2902, 6610302,
1988. doi:10.2172/6610302.

[32] J. R. Hall, S. K. Kauwe, T. D. Sparks, Sequen-
tial Machine Learning Applications of Parti-
cle Packing with Large Size Variations, In-
tegr Mater Manuf Innov 10 (2021) 559–567.
doi:10.1007/s40192-021-00230-7.

[33] S. K. Kauwe, J. Graser, R. Murdock, T. D.
Sparks, Can machine learning find extraor-
dinary materials?, Computational Materials
Science 174 (2020). doi:10.1016/j.commatsc
i.2019.109498.

17

http://dx.doi.org/10.1038/s41597-022-01438-8
http://dx.doi.org/10.1038/s41597-022-01438-8
http://dx.doi.org/10.1038/s41524-020-00446-9
http://dx.doi.org/10.1038/s41524-020-00446-9
http://dx.doi.org/10.1038/s41598-020-60652-9
http://dx.doi.org/10.1038/s41598-020-60652-9
http://dx.doi.org/10.48550/arXiv.2104.10242
http://dx.doi.org/10.48550/arXiv.2104.10242
http://arxiv.org/abs/2104.10242
http://arxiv.org/abs/2203.12597
http://dx.doi.org/10.1038/s41467-022-29241-4
http://dx.doi.org/10.1038/s41467-022-29241-4
http://dx.doi.org/10.1080/27660400.2021.1943171
http://dx.doi.org/10.1080/27660400.2021.1943171
http://dx.doi.org/10.1103/PhysRevMaterials.2.013803
http://dx.doi.org/10.1103/PhysRevMaterials.2.013803
http://dx.doi.org/10.1080/27660400.2022.2055987
http://dx.doi.org/10.48550/arXiv.2108.00002
http://arxiv.org/abs/2108.00002
http://dx.doi.org/10.1038/s41524-021-00656-9
http://arxiv.org/abs/2203.17241
http://dx.doi.org/10.1137/1.9780898719383.ch4
http://dx.doi.org/10.1137/1.9780898719383.ch4
http://dx.doi.org/10.2172/6610302
http://dx.doi.org/10.1007/s40192-021-00230-7
http://dx.doi.org/10.1016/j.commatsci.2019.109498
http://dx.doi.org/10.1016/j.commatsci.2019.109498

[34] I. L. Davis, R. G. Carter, Random parti-
cle packing by reduced dimension algorithms,
Journal of Applied Physics 67 (1990) 1022–
1029. doi:10.1063/1.345785.

[35] M. Webb, I. L. Davis, Random particle pack-
ing with large particle size variations using
reduced-dimension algorithms, Powder Tech-
nology 167 (2006) 10–19. doi:10.1016/j.powt
ec.2006.06.003.

[36] S. G. Baird, E. R. Homer, D. T. Fullwood,
O. K. Johnson, Five degree-of-freedom prop-
erty interpolation of arbitrary grain bound-
aries via Voronoi fundamental zone frame-
work, Computational Materials Science 200
(2021) 110756. doi:10.1016/j.commatsci.20
21.110756.

[37] K. J. DeMille, A. D. Spear, Convolutional neu-
ral networks for expediting the determination
of minimum volume requirements for studies of
microstructurally small cracks, Part I: Model
implementation and predictions, Computa-
tional Materials Science 207 (2022) 111290.
doi:10.1016/j.commatsci.2022.111290.

[38] L. Onsager, Crystal Statistics. I. A Two-
Dimensional Model with an Order-Disorder
Transition, Phys. Rev. 65 (1944) 117–149.
doi:10.1103/PhysRev.65.117.

[39] E. Sevgen, E. Kim, B. Folie, V. Rivera,
J. Koeller, E. Rosenthal, A. Jacobs, J. Ling,
Toward Predictive Chemical Deformulation
Enabled by Deep Generative Neural Networks,
Ind. Eng. Chem. Res. 60 (2021) 14176–14184.
doi:10.1021/acs.iecr.1c00634.

[40] A. Y.-T. Wang, S. K. Kauwe, R. J. Mur-
dock, D. Sparks, Compositionally-Restricted
Attention-Based Network for Materials Prop-
erty Predictions, npj Computational Materi-
als (2021) 33. doi:10.1038/s41524-021-005
45-1.

[41] C. Chen, S. P. Ong, AtomSets as a hierarchi-
cal transfer learning framework for small and
large materials datasets, npj Comput Mater 7

(2021) 173. doi:10.1038/s41524-021-00639
-w.

[42] A. Dunn, Q. Wang, A. Ganose, D. Dopp,
A. Jain, Benchmarking materials property
prediction methods: The Matbench test set
and Automatminer reference algorithm, npj
Comput Mater 6 (2020) 138. doi:10.1038/s4
1524-020-00406-3.

[43] A. R. Falkowski, S. K. Kauwe, T. D.
Sparks, Optimizing Fractional Compositions
to Achieve Extraordinary Properties, Integr
Mater Manuf Innov 10 (2021) 689–695. doi:10
.1007/s40192-021-00242-3.

[44] R. E. A. Goodall, A. A. Lee, Predicting
materials properties without crystal structure:
Deep representation learning from stoichiome-
try, Nat Commun 11 (2020) 6280. doi:10.103
8/s41467-020-19964-7.

[45] V. Gupta, K. Choudhary, F. Tavazza,
C. Campbell, W.-k. Liao, A. Choudhary,
A. Agrawal, Cross-property deep transfer
learning framework for enhanced predictive
analytics on small materials data, Nat Com-
mun 12 (2021) 6595. doi:10.1038/s41467-0
21-26921-5.

[46] D. Jha, L. Ward, A. Paul, W.-k. Liao,
A. Choudhary, C. Wolverton, A. Agrawal, El-
emNet: Deep Learning the Chemistry of Ma-
terials From Only Elemental Composition, Sci
Rep 8 (2018) 17593. doi:10.1038/s41598-018
-35934-y.

[47] D. Jha, K. Choudhary, F. Tavazza, W.-k.
Liao, A. Choudhary, C. Campbell, A. Agrawal,
Enhancing materials property prediction by
leveraging computational and experimental
data using deep transfer learning, Nat Com-
mun 10 (2019) 5316. doi:10.1038/s41467-0
19-13297-w.

[48] B. Meredig, A. Agrawal, S. Kirklin, J. E.
Saal, J. W. Doak, A. Thompson, K. Zhang,
A. Choudhary, C. Wolverton, Combina-
torial screening for new materials in un-
constrained composition space with machine

18

http://dx.doi.org/10.1063/1.345785
http://dx.doi.org/10.1016/j.powtec.2006.06.003
http://dx.doi.org/10.1016/j.powtec.2006.06.003
http://dx.doi.org/10.1016/j.commatsci.2021.110756
http://dx.doi.org/10.1016/j.commatsci.2021.110756
http://dx.doi.org/10.1016/j.commatsci.2022.111290
http://dx.doi.org/10.1103/PhysRev.65.117
http://dx.doi.org/10.1021/acs.iecr.1c00634
http://dx.doi.org/10.1038/s41524-021-00545-1
http://dx.doi.org/10.1038/s41524-021-00545-1
http://dx.doi.org/10.1038/s41524-021-00639-w
http://dx.doi.org/10.1038/s41524-021-00639-w
http://dx.doi.org/10.1038/s41524-020-00406-3
http://dx.doi.org/10.1038/s41524-020-00406-3
http://dx.doi.org/10.1007/s40192-021-00242-3
http://dx.doi.org/10.1007/s40192-021-00242-3
http://dx.doi.org/10.1038/s41467-020-19964-7
http://dx.doi.org/10.1038/s41467-020-19964-7
http://dx.doi.org/10.1038/s41467-021-26921-5
http://dx.doi.org/10.1038/s41467-021-26921-5
http://dx.doi.org/10.1038/s41598-018-35934-y
http://dx.doi.org/10.1038/s41598-018-35934-y
http://dx.doi.org/10.1038/s41467-019-13297-w
http://dx.doi.org/10.1038/s41467-019-13297-w

learning, Phys. Rev. B 89 (2014) 094104.
doi:10.1103/PhysRevB.89.094104.

[49] A. Vasylenko, D. Antypov, V. Gusev,
M. Gaultois, M. Dyer, M. Rosseinsky, Element
Selection for Functional Materials Discovery
by Integrated Machine Learning of Atomic
Contributions to Properties, Preprint, In Re-
view, 2022. doi:10.21203/rs.3.rs-1334648
/v1.

[50] L. Ward, A general-purpose machine learning
framework for predicting, npj Computational
Materials (2016) 7.

[51] S. G. Baird, K. M. Jablonka, M. D. Alver-
son, H. M. Sayeed, M. F. Khan, C. Seeg-
miller, B. Smit, T. D. Sparks, Xtal2png: A
Python package for representing crystal struc-
ture as PNG files, JOSS 7 (2022) 4528.
doi:10.21105/joss.04528.

[52] A. Géron, Hands-on Machine Learning with
Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intel-
ligent Systems, “ O’Reilly Media, Inc.”, 2019.

[53] L. McInnes, J. Healy, J. Melville, UMAP: Uni-
form Manifold Approximation and Projection
for Dimension Reduction, arXiv:1802.03426
[cs, stat] (2020). arXiv:1802.03426.

[54] L. Van der Maaten, G. Hinton, Visualizing
data using t-SNE., Journal of machine learn-
ing research 9 (2008).

[55] M. Balandat, B. Karrer, D. R. Jiang,
S. Daulton, B. Letham, A. G. Wilson,
E. Bakshy, BoTorch: A Framework for Ef-
ficient Monte-Carlo Bayesian Optimization,
arXiv:1910.06403 [cs, math, stat] (2020).
arXiv:1910.06403.

[56] J. T. Wilson, F. Hutter, M. P. Deisenroth,
Maximizing acquisition functions for Bayesian
optimization, arXiv:1805.10196 [cs, stat]
(2018). arXiv:1805.10196.

[57] K. Hanaoka, Comparison of Conceptually Dif-
ferent Multi-Objective Bayesian Optimization

Methods for Material Design Problems, Ma-
terials Today Communications (2022) 103440.
doi:10.1016/j.mtcomm.2022.103440.

[58] P. T. Inc., Collaborative data science,
https://plot.ly, 2015.

[59] Create LaTeX tables online – TablesGener-
ator.com, https://www.tablesgenerator.com/,
2021.

[60] S. Baird, Auto-paper,
https://github.com/sparks-baird/auto-paper,
2021.

19

http://dx.doi.org/10.1103/PhysRevB.89.094104
http://dx.doi.org/10.21203/rs.3.rs-1334648/v1
http://dx.doi.org/10.21203/rs.3.rs-1334648/v1
http://dx.doi.org/10.21105/joss.04528
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1805.10196
http://dx.doi.org/10.1016/j.mtcomm.2022.103440

	Introduction
	Methods
	Particle Packing Simulations
	Reducible and Irreducible Search Spaces
	Adaptive Experimentation Platform and RayTune
	Validation

	Results and Discussion
	Effect of Search Space Irreducibility on Efficiency
	Interpretable Model Characteristics
	Feature Importances
	2D Contours through Parameter Space

	Future Work
	Conclusion
	Reparameterizations and Constraints
	Size Invariance
	Compositional Constraint
	Permutation Invariance

	Differences Between This Work and Prior Work (Particle Size Distributions)
	Glossary

