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Abstract

We implemented a screening algorithm for one-electron-three-center (1e3c) overlap

integrals over contracted gaussian-type orbitals (CGTOs) into the Q-Chem program

package. The respective bounds were derived using shell-bounding gaussians (SBGs)

and the Obara-Saika recurrence relations. Using integral screening, we reduced the

computational scaling of the Gaussians On Surface Tesserae Simulate HYdrostatic

Pressure (GOSTSHYP) model in terms of calculation time and memory usage to a

linear relationship with the tesserae used to discretize the surface area. Further code
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improvements allowed for additional performance boosts. To demonstrate the better

performance, we calculated the compressebility of fullerenes up to C180, where we were

originally limited to C40 due to the high RAM usage of GOSTSHYP.
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Introduction

Over the past decades high pressure chemistry has made significant progress in fields such

as organic synthesis, biochemistry, materials science and spectroscopy.1–5 While enormous

progress has been made in experimental setups, especially using diamond-anvil cells,1–4 an-

other driving force in high pressure chemistry is the synergy between experiment and the-

ory.6–15 Pressure is most commonly modeled by manipulating box parameters16–22 in calcu-

lations with periodic boundary conditions, which, e.g., allowed the description of pressure-

induced changes in crystal structures.6,23–29

Since pressure is a macroscopic phenomenon, its description in electronic structure theory for

single atoms or molecules is not straightforward. The simplest method to describe the effect

of pressure on a single molecule is by adding external forces to its nuclear gradient.15,30,31

The oldest method using this approach is the Generalized Force-Modified Potential Energy

Surface (G-FMPES) method,31 in which forces pull each atom towards the molecular cen-

troid. With the eXtended Hydrostastatic Compression Force Field (X-HCFF) method30

we recently proposed a new mechanochemical model, which obtains the required forces by

the classical definition of hydrostatic pressure acting on the van der Waals (VDW) surface

of a molecule. The great advantage of the X-HCFF method is that it allows to apply a

user-defined pressure, rather than a guess. An established alternative to mechanochemical

approaches is the eXtreme Pressure Polarizable Continuum Model (XP-PCM),32–34 which

simulates the Pauli repulsion of a molecule’s electron gas with a surrounding medium. Pres-

sure is then applied by shrinking the molecule-shaped cavity, while the pressure acting on a

system is quantified as the negative partial derivative of the electronic energy with respect

to the volume.

Recently, we proposed the GOSTSHYP method,35 which, similar to X-HCFF, uses an

ansatz based on a Lebedev grid, to generate the discretized VDW surface and ultimately the

cavity. However, GOSTSHYP is more sophisticated than X-HCFF in that a pressure poten-
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tial term is directly added to the molecular Hamiltonian. This potential term is calculated

as a large number of one-electron-three-center (1e3c) overlap integrals between gaussian po-

tentials, located on the discretized VDW surface, and the electron gas. The number of 1e3c

overlap integrals formally scales as O(n2
bsf ·ntess), where nbsf is the number of basis functions

and ntess is the number of tesserae used to discretize the VDW sphere. Unfortunately, even

for small molecules, hundreds of tesserae are needed, which severely increases the computa-

tional cost, both with regard to memory and calculation time.35

The classical approach in quantum chemistry to reduce calculation times for large amounts

of integrals is to employ a pre-screening algorithm based on integral bounds. This is a stan-

dard approach in all quantum chemistry packages, where Self-Consistent Field (SCF) calcu-

lations are heavily bottlenecked by the large amount of electron repulsion integrals (ERIs).

Traditionally, ERI screening algorithms are based on the Cauchy-Schwarz inequality,36,37

however, in recent years more efficient bounds were developed, e.g. by using multipole ex-

pansions.38–41 While most development of integral bounds focuses on ERIs,38–46 Thompson

and Ochsenfeld recently proposed a rather general bound formalism, applicable to various

one- and multielectron integrals, based on space partitioning.42

Another type of integrals leading to steep computational scaling are effective core poten-

tial (ECP) overlap integrals, due to them containing spherical projectors. Over the last

years a few screening procedures were developed for ECPs.47–49 Most notably, McKenzie

et al. implemented a powerful screening algorithm for 1e3c ECP integrals based on shell-

bounding gaussians (SBGs) in the Q-Chem software package, formally reducing the scaling

from O(n2
bsfN) to O(N), where N is the number of ECPs.47,50 The bounds for unprojected

ECP integrals, as derived by McKenzie et al., are equivalent to bounds for 1e3c integrals

with a mid center s-type gaussian function, as used to calculate the GOSTSHYP pressure

potential. Since 1e3c integrals with up to f-type mid center gaussian-type orbitals (GTOs)

are needed to calculate the GOSTSHYP gradient, we found it the natural choice to use the
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bounds derived by McKenzie et al. as a basis to screen 1e3c overlap integrals, by generalizing

these bounds for mid-center GTOs with arbitrary angular momentum using the Obara-Saika

recurrence relations (RRs).51 This allows us to reduce the scaling of GOSTSHYP to O(ntess).

The rest of the paper is structured as follows: In section 2 we describe the theory behind

GOSTSHYP and SBG-based bounds and afterwards show our approach to using the bounds

by McKenzie et al. for screening 1e3c overlap integrals over GTOs . In section 3 we shortly

describe specifics of our implementation into the Q-Chem program package,50 followed by the

discussion of a small benchmark, showing the improvements in calculation time, in section

4. To demonstrate the improved applicability of GOSTSHYP to large molecules, in the

last section we present compressibilities for fullerenes up to C180, where we were previoulsly

restricted to C40 due to memory limitations.35
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Theory

The purpose of this section is a brief recapitulation of the GOSTSHYP model, the intro-

duction of the notation and the derivation of the bounds used to screen the 1e3c overlap

integrals used in this work.

An overview of the GOSTSHYP model

In the GOSTSHYP model, pressure is applied to a molecular system by adding a distortion

potential term Ep to the Hamiltonian.35 Ep is calculated as the sum of contractions of the

density matrix D and 1e3c overlap integrals between the system’s basis functions ϕi and

gaussian pressure potentials Gj(r)

Ep =
∑
j

∑
ab

Dab⟨ϕa|Gj(r)|ϕb⟩. (1)

The potential Gj(r) is located at the center rj of tessera j determined by a Lebedev

Grid ,52 discretizing the system’s VDW surface. Gj(r) takes the form

Gj(r) = pj exp (−ωj(r − rj)
2) = pjG̃j. (2)

The exponents ωj are chosen such that the pressure potentials form a continuous field

around the system under consideration, with ωj =
π ln 2
Aj

, where Aj is the area of the tessera

j. The amplitudes pj are obtained by considering a force equilibrium between an outer force,

Fouter = Aj · P , scaling with the pressure P and acting perpendicular to the surface Aj, and

the restoring force of the electron gas, Finner = ∂Ep

∂rj
· nj, in direction of the surface normal

vector nj

AjP =
∑
ab

Dab pj

(
nx

∂

∂xj

⟨ϕa| G̃j |ϕb⟩+ ny
∂

∂yj
⟨ϕa| G̃j |ϕb⟩+ nz

∂

∂zj
⟨ϕa| G̃j |ϕb⟩

)
, (3)
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leading to

pj =
AjP∑

abDabFj,ab

, (4)

with the force term Fj,ab being determined by overlap integrals with p-type pressure

gaussians,

Fj,ab = 2ωj

(
nx ⟨ϕa| (x− xj)G̃j |ϕb⟩+ ny ⟨ϕa| (y − yj)G̃j |ϕb⟩+ nz ⟨ϕa| (z − zj)G̃j |ϕb⟩

)
. (5)

The calculation of the overlap matrices Gj and F j with elements Gj,ab = ⟨ϕa| G̃j |ϕb⟩

and Fj,ab causes the formal scaling of O(n2
bsf ·ntess) for GOSTSHYP. The Fock contribution

can be obtained as the derivative ∂Ep

∂Dab
and the analytical nuclear gradient as the derivative

of Ep with respect to the nuclear coordinates, leading to overlap integrals with up to f-type

pressure gaussians. The interested reader is kindly referred to ref. 35 for the analytical

expressions. Since up to f-type orbitals are needed to calculate the GOSTSHYP gradient,

we had to generalize the expressions of McKenzie et al. for mid center GTOs with arbitrary

angular momentum to use them in GOSTSHYP.

Notation

An unnormalized primitive gaussian-type orbital (GTO) is given as

|a] = (x− Ax)
ax(y − Ay)

ay(z − Az)
az exp (−α|r −A|2), (6)

where AT = (Ax, Ay, Az) is its center, α its exponent, a = ax + ay + az its total an-

gular momentum and aT = (ax, ay, az) its angular momentum vector .47 GTOs are usually

grouped in a shell |a], denoted by nonbold writing, which contain all GTOs with the same

center, total angular momentum and exponent, only differing in the composition of their

angular momentum vector. A contracted gaussian-type orbital (CGTO) is built as a linear
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combination from primitives

|a⟩ =
na∑
i

ci|a]i, (7)

where ci are the contraction coefficients and na is the number of contracted primitives.

Thus, a two-center integral of CGTOs is a sum of integrals between primitives:

⟨a|b⟩ =
na,nb∑
i,j

cicj[ai|bj]. (8)

A shell-bounding gaussian (SBG) |̊a] is an s-type GTO that bounds a primitive shell

|a],47 so that

|̊a] ≥ ||a]| ∀ |a] ∈ |a]. (9)

The SBG is always positive and is described as

|̊a] = Na exp(−α̃(r −A)2), (10)

with the effective exponent α̃ = α(1− σa) and

Na =

(
a

2eασa

)a
2

. (11)

σa is an arbitrary parameter that is used to minimize the bound.

Bound equations using shell-bounding gaussian

The following recapitulates the bound derivations of McKenzie et al..47 While originally

derived for ECP integrals,47 the bound equations are also valid for 1e3c overlap integrals

with a mid center s-type GTO.

Using eq. 9, a 1e3c integral of primitive GTOs [a|s|b] with an s-type mid center GTO |s],

which also describes a shell composed of a single GTO and thus is written nonbold, can be

bound as:
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|[a|s|b]| ≤ [̊a|s|̊b] ∀ |a], |b] ∈ |a], |b]. (12)

This allows to screen all integrals between the two shells |a] and |b] over |s] by calculating

one bound. Using the Gaussian Product Relation and Hölder’s Inequality, the bound can be

separated into

[̊a|s|̊b] ≤ [̊a|s]∞ [̊b], (13)

where [̊a|s]∞ is the essential supremum of the product of |̊a] and |s] and b̊ the spatial

integral of b̊. Eq. 13 can be made independent of the particular shell |b] by minimizing with

respect to σb, setting b to the highest available angular momentum b̂ and β to the smallest

exponent β̌ in the basis set. The result is

[̊b]max =

(
(b̂+ 3)b̂+3(π/3)3

(2e)b̂β̌ b̂+3

)
. (14)

The bound [B2] to eq. 13 is then obtained by minimizing [̊a|s]∞ with respect to σa

[B2] = Na exp

(
− α̃γ(A−C)2

α̃ + γ

)
, (15)

with

σa =
a(α + γ)2

2α( γ2(A−C)2 + a(α + γ))
. (16)

The 1e3c integrals thus can be screened by comparing [B2] with an arbitrary threshold

τ :

|[a|s|b]| ≤ [B2][̊b]max ≤ τ ∀ |a], |b] ∈ |a], |b]. (17)

This will lead to a list of shell triplets containing nonzero overlap integrals, which then can
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be screened again using the more expensive three-center bound equation, which is obtained

by directly evaluating eq. 12, using previously calculated effective exponents:

[B3] = [̊a|s|̊b] (18)

While bounds for CGTO integrals could be obtained straightforwardly using eq. 7, the

following equation strongly reduces the computational cost:47

⟨B3⟩ ≤ ⟨̊a⟩⟨̊b⟩[̊ǎ|š|̊b̌], (19)

with

⟨̊a⟩ =
na∑
i

|cai |Nia (20)

and

[̊ǎ|š|̊b̌] =

(
π
ˇ̃ζ

)(3/2)

exp
(
− ˇ̃α(A− S)2 − ˇ̃β(B − S)2 + ˇ̃ζ ˇ̃R2

)
, (21)

where ˇ̃ζ = ˇ̃α + ˇ̃β + γ̌ and ˇ̃R = (ˇ̃α(A − S) + ˇ̃β(B − S))/ ˇ̃ζ. ˇ̃α denotes the usage of the

smallest effective exponents within the CGTO and γ is the exponent of |s].

Using this approach allowed McKenzie et al. to reduce the scaling of ECP integrals from

from O(n2
nbsfN) to O(N), where N is the number of ECPs.47

Recurrence relations

Equations that allow to express integrals of an angular momentum l in terms of a sum

over integrals with lower angular momentum are called RRs. By using RRs, integrals with

arbitrary angular momenta can be efficiently computed as linear combinations of integrals

over s-type GTOs. The general RR for a 1-electron-3-center integral was derived by Obara

and Saika as51

10



[a|c + 1i|b] = (Qi − Ci)[a|c|b] +
1

2(α + β + γ)
Ni(a)[a − 1i|c|b]

+
1

2(α + β + γ)
Ni(b)[a|c|b − 1i] +

1

2(α + β + γ)
Ni(c)[a|c − 1i|b]. (22)

where Q = αA+βB+γC
α+β+γ

. The notation |a−1i] denotes a GTO with an angular momentum

vector reduced by one in the spatial direction of i compared to |a]. Ni(a), Ni(b) and Ni(c)

correspond to sums of Kronecker Deltas and are evaluated for an exemplary d-function as

Ni(1j + 1k) = Ni(1j) +Ni(1k) = δij + δik. After ’shifting’ the coordinate origin to the mid

center shell to be consistent with the bound equations of McKenzie et al.,47 a 1e3c integral

with bra and ket SBGs |̊a] and |̊b] becomes

[̊a|c + 1i |̊b] = R̃i [̊a|c|̊b] +
1

2ζ̃
Ni(c)[̊a|c− 1i |̊b], (23)

where the two middle terms in eq. 22 vanish since Ni(0) = 0. The corresponding two-center

RR relation is obtained by replacing b with the identity:

[̊a|c + 1i] = P̃i [̊a|c] +
1

2κ̃
Ni(c)[̊a|c− 1i], (24)

where P̃ = α̃(A−C)
α̃+γ

and κ̃ = α̃ + γ.

Bounds for 1e3c overlap integrals

We generalized the previously shown bounds for an arbitrary mid center CGTO using the

Obara-Saika RRs,51 using the ansatz:

[a|c|b] ≤ |[̊a|cmax |̊b]|, (25)

where |cmax] is the GTO in the shell |c] maximizing the integral. Thus, as in the algorithm

of McKenzie et al., only one bound has to be calculated to screen all 1e3c integrals of the
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shells |a], |b] and |c]. In a shell, all exponents are equal and accordingly the Obara-Saika

equations (eq 22-24) will only differ in the Cartesian part. Thus the angular momentum

vector cmax of |cmax] is purely pointing towards P̃i, the maximum component of |P̃ |, and

can be written in the Obara-Saika notation as a sum of c 1i vectors

cmax =
c∑

n=1

1n,i = 11,i + 12,i + · · ·+ 1c,i = c · 1i i ∈ x, y, z, (26)

where i is the angular direction of the maximum component. To apply eq. 13, we now

have to evaluate the integral [̊a|cmax]. Applying eq. 24 once leads to

[̊a|cmax] = |P̃i|[̊a|(c− 1)1i] +
Ni((c− 1)1i))

2κ̃
[̊a|(c− 2)1i], (27)

which, using the relation Ni(1i + 1j) = Ni(1i) +Ni(1j),
51 can be simplified to

|[̊a|cmax]| = |P̃i|[̊a|(c− 1)1i] +
c− 1

2κ̃
[̊a|(c− 2)1i]. (28)

Applying Eq. 24 k = c/2 times will lead to

[̊a|cmax] =η|P̃i|k [̊a|(c− k)1i] + η
|P̃i|k−1

2κ̃
[̊a|(c− k − 1)1i]

+ · · ·+ η
|P̃i|

(2κ̃)k−1
[̊a|(c− k − 2)1i] + η

1

(2κ̃)k
[̊a|(c− 2k)1i] (29)

=η|P̃i|k [̊a|(c− k)1i] + η
|P̃i|k−1

2κ̃
[̊a|(c− k − 1)1i]

+ · · ·+ |P̃i|
(2κ̃)k−1

[̊a|1i] + η
1

(2κ̃)k
[̊a|0 · 1i] (30)

where the prefactor η is individual for each term and arises from the combination of equal

terms and the (c − 1) multiplicator. To reduce all integrals to s-type integrals, the RR has

to be applied again, up to k times to the most left, k− 1 times to the second most left term,

and so on:
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[̊a|cmax] = η|P̃i|2k [̊a|sc] + η
|P̃i|2(k−1)

2κ̃
[̊a|sc] + · · ·+ η

|P̃i|2

(2κ̃)k−1
[̊a|sc] + η

1

(2κ̃)k
[̊a|sc] (31)

Here |sc] denotes an s-type primitive with the center and exponent of |c]. Since 2k = c

the integral is expressed in the sum

[̊a|cmax] =
∑

0≤k≤ c
2

η
|P̃i|c−2k

(2κ̃)k
[̊a|sc] (32)

To determine the prefactor η one has to think of the RR as a two case combinatory

problem, where the first case will reduce the angular momentum by one and the second case

will reduce the angular momentum by two and multiply the result with m − 1, where m is

the angular momentum of the specific integral the RR is applied to. Thus, the total number

of paths which lead to a term specified by k in eq. 32 will be c− k, where k is the number

of times the second case was chosen. Consequently the number of possibilities to create a

term k is given by the binomial coefficient
(
c−k
k

)
.

The prefactor of a specific term will depend on the specific angular momenta for which the

second case was applied, since they define the m − 1 multiplicator. Accordingly, the deter-

mination of the exact prefactor η is not trivial. However one can easily define a maximum

prefactor ηmax
k for each term by assuming that the second case is always applied to the

highest possible angular momentum integral:

ηmax
k =

k−1∏
m=0

(c− 1− 2m)

(
c− k

k

)
> ηk. (33)

Using ηmax
k , the final bounds equation can be obtained by evaluating [̊a|sc]∞ as

[B2]c = ρ2(c)[B2] =

 ∑
0≤k≤ c

2

k−1∏
m=0

(c− 1− 2m)

(
c− k

k

)
|P̃i|c−2k

(2κ̃)k

 [B2], (34)

where ρ2(c) is the bound correction factor for the angular momentum c. The 3-center bound
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equation can be derived analogously, using eq. 22 to evaluate eq. 25, yielding:

[B3]c = ρ3(c)[B3] =

 ∑
0≤k≤ c

2

k−1∏
m=0

(c− 1− 2m)

(
c− k

k

)
|R̃i|c−2k

(2ζ̃)k

 [B3]. (35)

where ρ3(c) is the bound correction factor for the angular momentum c.
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Implementation

As in the original GOSTSHYP implementation,35 we implemented our screening algorithm

together with additional code improvements in the Q-Chem50 program package. The inte-

gral screening algorithm is located in libqints, Q-Chem’s new integral library, and is generally

applicable to 1e3c overlap integrals of gaussian functions. The screening algorithm is embed-

ded into a 1e3c overlap integral engine, allowing to calculate specified chunks of the overlap

matrix, which avoids the need to allocate memory for the complete overlap matrix. Addi-

tional code improvements were implemented directly into the GOSTSHYP model located

in libdistort, a library concerned with modeling molecules under distortion potentials. Our

code improvements were part of the Q-Chem 5.4.2 update.

The implementation of the screening algorithm follows the structure of the implementa-

tion of the ECP screener by McKenzie et al..47 The general workflow of the overlap integral

engine is shown in scheme 1. First, the basis constant [b̂max] is calculated. Then a chunk of

the overlap matrix is specified, for which the shell bounds [B2], effective components α̃ and

contractions ⟨â⟩ are calculated. These shells are then processed in batches, where for each

batch a list of non-negligible integrals is created using the [B2] bounds. Afterwards, listed

integrals are compared to the tighter [B3] bounds and non-negligible integrals are evaluated

using the Obara-Saika RRs.51

The general bounds, eqs. 34 and 35, contain a binomial coefficient, making them ex-

pensive to calculate. Therefore, we calculated and implemented the explicit ηk for integrals

containing mid center p, d and f shells, which is the highest mid center angular momentum

occurring in overlap integrals in GOSTSHYP.35 The explicit bound correction factors ρ(c)

are shown in tab. 1.

The new integral engine allowed further code improvements. In the original implemen-

tation of GOSTSHYP, only the force matrix F (eq. 5) was kept in memory during a SCF

calculation, which led to a significant demand of RAM. Our implementation allows to cal-
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Create chunks
 of 3c matrix

calculate

For all shellpairs and

calculate

in chunk

Form batches from chunk

create B2-list for shell triplets in batch

create B3-list for shell triplets in B2-list

calculate integrals for 
shell triplets in B3-list

for all
batches

for all
chunks

Scheme 1: Function of new 1e3c overlap integral engine with embedded integral screening.

Table 1: Derived explicit bound corrections for mid center p, d and f shells, for use in eqs.
34 and 35.

c ρ2(c) ρ3(c)

p P̃ R̃

d 3
2κ

+ P̃ 2 3
2ζ̃

+ R̃2

f P̃ 3 + 9
2κ
P̃ R̃3 + 9

2ζ
R̃

culate the full overlap matrices G and F in slices Gj and F j and store them compressed

as sparse matrices containing only non-negligible integrals. This allowed us to speed up cal-

culations by additionally storing the 1e3c overlap matrix in memory, while still significantly

reducing the RAM usage of GOSTSHYP. Furthermore, using sparse matrices speeds up the

calculation of the energy and Fock contribution as well as the amplitudes by reducing the

number of operations needed to perform the respective matrix algebra. Since the calculation

of energy contributions (eq. 1) and amplitudes (eq. 4) can be performed separately for each

tessera j, we also parallelized those calculations, which yielded an additional performance

boost.

As a drawback, the integral screening introduces numerical instabilities, caused by the defi-

nition of the pressure amplitudes pj (eq. 4). Since the amplitudes scale with the inverse of

the contraction of the density with F j, for small overlaps, the error introduced by the inte-

gral screening will become large and in the extreme case the screening will lead to a division
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by zero. To prevent this, we embedded the screening of integrals involved on building F j

into an algorithm which ensures that a precision of at least 8 significant digits is kept after

integral screening. For this purpose, the integrals are screened with a threshold of 10−18

and afterwards the largest absolute in F j has to be at least eight orders of magnitude larger

than the smallest absolute. If this condition is not fulfilled, the integrals are recomputed

iteratively until the condition is fulfilled, whereby the thresh is lowered by three orders of

magnitude in each iteration.

A similar problem is found in the calculation of the energy contribution, where small overlaps

in the matrix elements Gj are multiplied with a large amplitude pj. In this case, the intro-

duced error by integral screening might be significantly larger than expected from a chosen

threshold. This is prevented by including amplitudes larger 105 a.u. into the integrals and

recalculating Gj for this tessera.

These procedures make the influence of screening thresholds on calculation times hardly

predictable and might actually increase the calculation time for larger thresholds. Thus,

we decided to set the threshold for screening integrals building Gj to 10−14 and make the

screening threshold not changeable for the user. The thresholds were chosen such that

the differences in the Fock contribution, amplitudes and gradient contribution were below

10−12 a.u. compared to the original implementation for our test cases of H2, H2O and LiH at

a pressure of 50 GPa with a scaling factor of the atomic VDW radii of 1.2 and 302 tesserae

per atom. To asses the impact of our integral screening and the chosen thresholds, we mea-

sured the timing for the calculation of the GOSTSHYP matrices of n-dodecane, where the

calculation time was reduced from 60.3 s to 25.3 s, when running on one thread.

To check the deviations caused by the screening algorithm and to show the overall reduction

in computational cost, we performed a benchmark, which will be discussed in the following

section.
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Benchmark

To evaluate the performance of the updated GOSTSHYP code, we conducted a benchmark

containing geometry optimizations for 31 small to medium-sized molecules, shown in table

2, at pressures of 10, 35, 60, 85 and 110 GPa. All optimizations were performed at the

HF/cc-pVDZ53–58 level of theory using the Direct Inversion in Iterative Subspace (DIIS)

algorithm.59 Each calculation was performed once with the original implementation in Q-

Chem 5.4.1 and once with the updated implementation (development version of Q-Chem

5.4.2), totalling 310 calculations. Calculations were performed on a workstation equipped

with an Intel Core i7-8700K with 6 cores and 12 threads running at a clock speed of 3.7 GHz,

using all available threads. The scripts to perform and evaluate the benchmark have been

uploaded to GitHub. 1

Table 2: Molecules contained in the benchmark set, with the corresponding number of basis
functions nbsf using the cc-pVDZ basis set.

molecule nbsf molecule nbsf molecule nbsf molecule nbsf

annulene 342 cysteine 137 hydrogen 10 nitrobenzene 151
ammonia 29 d-glucose 228 isohexane 154 n-tetradecane 346
asparagine 166 d-mannose 228 leucine 191 octane 202
benzene 114 d-ribose 190 methane 34 oxygen 28
benzothiophene 160 dithioformic acid 60 methanol 48 p-xylol 162
carbon dioxide 42 formic acid 52 methionine 185 t-butyl-ethane 154
carbon disulfide 50 hexane 154 n-dodecane 298 water 24
CHBrClF 78 histidine 199 n-hexadecane 394

We first conducted all calculations with a VDW sphere scaling factor of 1.0. However, we

found severe convergence problems. In particular, 156 optimizations in total stopped due to

reaching the limit of SCF cycles. We found the problematic SCF convergence to be linked to

the appearance of negative amplitudes pj. Those are nonphysical artifacts and can appear

on edges of the Lebvedev grid, where two VDW spheres overlap.35 The contribution of

negative amplitudes to the pressure potential term Ep, eq. 1, and consequently to the Fock

1Code available at https://github.com/zellerf/gostshyp-542-benchmark
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matrix is omitted in our code. Thus, if the number of negative amplitudes changes during

the SCF procedure, the Fock matrix will change uncontinuously. This will introduce errors

in the new Fock guess matrices and thus cause problematic convergence. Since negative

amplitudes are far more likely to appear for small VDW-scaling factors, we recalculated the

benchmark set with a scaling factor of 1.5, which reduced the number of calculations reaching

the limit of SCF cycles to 12. In the case of the appearance of many negative amplitudes in

a GOSTSHYP calculation we consequently suggest the increase of the scaling factor or the

reduction of the DIIS subspace. In the following only calculations with a scaling factor of

1.5 are discussed.

Figs. 1 a-d show the average computation time per SCF cycle and gradient calculation,

using our new screened GOSTSHYP implementation versus the original implementation.

Since unscreened GOSTSHYP formally scales as O(n2
bsf · ntess), regression lines for plots of

calculation times and RAM usage vs. t nbsf (Figs. 1a, c, e) were fitted using a quadratic

model, while in the corresponding plots vs. ntess (Figs. 1b, d, f) a linear model was used.

Figs. 1b, 1d and 1f show that calculation times and RAM usage are rather well described by

a linear relationship to ntess for the new implementation. Since nbsf , as ntess, is correlated

with the system size, calculation times and RAM usage should also show a linear relation-

ship in the new implementation, when plotted vs. nnbsf . It should be noted that the fits

vs. nbsf for the new implementation still contain a significant quadratic component for SCF

and gradient times (figs. 1a and 1c). However, while GOSTSHYP is the most time consum-

ing step, SCF and gradient calculations also contain the calculation of ERIs, which scale

asymptotically to O(n2
bsf ),

60 leading to a polynomial relation. We are therefore confident to

propose a reduction in scaling from O(n2
bsf · ntess) to O(ntess) for GOSTSHYP. It should be

noted that calculation times and RAM usage are still heavily dependent on the chosen basis

set which will determine the slope of the linear scaling.

To asses the error introduced by the integral screening we compared the energy difference
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Figure 1: Calculation times using the screened and unscreened codes for SCF (a,b) and
gradient computations (c,d) plotted against number of basis functions nbsf (left) and number
of tesserae ntess (right). The graphs e and f show the maximum RAM usage. Since in
the previous implementation no sparse matrices were used, the mem usage can be directly
calculated from ntess and nbsf and thus no regression line was drawn. Shaded areas are
within the root-mean-square deviation (RMSE).
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between converged optimizations with the old and new implementations. As can be seen

in fig. 2a, in all cases the energy difference is far below the set energy change convergence

criterion of 10−6 a.u.. Accordingly, the error introduced by integral screening in GOSTSHYP

can be assumed to be negligible.
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Figure 2: Deviations in energy for geometry optimization calculations with different maxi-
mum number of SCF cycles. The straight line marks the convergence criterion for the energy
change in a geometry optimization. Unconverged calculations are masked.

21



Calculating the molecular volume of Fullerenes
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Figure 3: Compressibilities of fullerenes calculated by the relative reduction of the electron
density from a GOSTSHYP calculation compared to the relaxed density.

When we presented the GOSTSHYPmodel,35 we calculated the compressibility of fullerenes

up to C40, by investigating the reduction in volume of the respective electron gas. Calcula-

tions for larger fullerenes were not possible, due to the originally steep scaling of RAM usage.

After re-investigating those calculations we found an error in our submission script for C36

and C40, where the electron densities in these calculations were not compressed by the correct

pressure. Within this work we corrected those mistakes and expanded our investigation to

larger fullerenes, most notably C180 demonstrating the reduction of computational cost for

GOSTSHYP. The calculated compressibilities for pressures up to 100 GPa are shown in fig.

3. All fullerenes exhibit similar compressibilities, with the slight trend of larger fullerenes

being less compressible. Unsurprisingly, C60 is the least compressible fullerene.
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Conclusion and Outlook

In this paper we presented bounds for a screening algorithm for 1e3c overlap integrals over

CGTOs. We used this screening algorithm, together with additional code improvements,

to reduce the computational scaling of our recently proposed GOSTSHYP35 method from

O(n2
bsf · ntess) to O(ntess). This allowed us to investigate significantly larger molecules, such

as C180, than with the original implementation. However, due to the sheer amount of addi-

tional integrals to be computed, GOSTSHYP still remains rather expensive in comparison to

a pressure-free HF/DFT calculation. Therefore, future development will be devoted to mod-

ifications of the GOSTSHYP model to reduce the amount of integrals needed to calculate the

Fock and gradient contributions. To allow users to balance computational time and memory

usage, we also plan the implementation of a ’low memory’ algorithm for GOSTSHYP.
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Supporting Information Available

xyz files for fullerenes and molecules of the benchmark.
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(36) Häser, M.; Ahlrichs, R. Improvements on the direct SCF method. Journal of Compu-

tational Chemistry 1989, 10, 104–111.

(37) Whitten, J. L. Coulombic potential energy integrals and approximations. The Journal

of Chemical Physics 1973, 4496, 4496–4501.

(38) Lambrecht, D. S.; Doser, B.; Ochsenfeld, C. Rigorous integral screening for electron

correlation methods. Journal of Chemical Physics 2005, 123, 184102.

(39) Doser, B.; Lambrecht, D. S.; Kussmann, J.; Ochsenfeld, C. Linear-scaling atomic

orbital-based second-order Møller-Plesset perturbation theory by rigorous integral

screening criteria. Journal of Chemical Physics 2009, 130, 064107.

(40) Maurer, S. A.; Lambrecht, D. S.; Flaig, D.; Ochsenfeld, C. Distance-dependent Schwarz-

based integral estimates for two-electron integrals: Reliable tightness vs. Rigorous upper

bounds. Journal of Chemical Physics 2012, 136, 144107.

(41) Maurer, S. A.; Lambrecht, D. S.; Kussmann, J.; Ochsenfeld, C. Efficient distance-

including integral screening in linear-scaling Møller-Plesset perturbation theory. Jour-

nal of Chemical Physics 2013, 138, 014101.

(42) Thompson, T. H.; Ochsenfeld, C. Integral partition bounds for fast and effective screen-

ing of general one-, two-, and many-electron integrals. Journal of Chemical Physics

2019, 150, 044101.

(43) Barca, G. M.; Loos, P. F. Three- and four-electron integrals involving Gaussian gemi-

nals: Fundamental integrals, upper bounds, and recurrence relations. Journal of Chem-

ical Physics 2017, 147, 024103.

28



(44) Hollman, D. S.; Schaefer, H. F.; Valeev, E. F. A tight distance-dependent estimator

for screening three-center Coulomb integrals over Gaussian basis functions. Journal of

Chemical Physics 2015, 142, 154106.

(45) Irmler, A.; Pauly, F. Multipole-based distance-dependent screening of Coulomb inte-

grals. Journal of Chemical Physics 2019, 151, 084111.

(46) Ye, H. Z.; Berkelbach, T. C. Tight distance-dependent estimators for screening two-

center and three-center short-range Coulomb integrals over Gaussian basis functions.

Journal of Chemical Physics 2021, 155, 124106.

(47) McKenzie, S. C.; Epifanovsky, E.; Barca, G. M.; Gilbert, A. T.; Gill, P. M. Efficient

Method for Calculating Effective Core Potential Integrals. Journal of Physical Chem-

istry A 2018, 122, 3066–3075.

(48) Shaw, R. A.; Hill, J. G. Prescreening and efficiency in the evaluation of integrals over

ab initio effective core potentials. Journal of Chemical Physics 2017, 147, 074108.

(49) Song, C.; Wang, L. P.; Sachse, T.; Preiß, J.; Presselt, M.; Mart́ınez, T. J. Efficient im-

plementation of effective core potential integrals and gradients on graphical processing

units. Journal of Chemical Physics 2015, 143, 014114.

(50) Epifanovsky, E. et al. Software for the frontiers of quantum chemistry: An overview

of developments in the Q-Chem 5 package. Journal of Chemical Physics 2021, 155,

084801.

(51) Obara, S.; Saika, A. Efficient recursive computation of molecular integrals over Carte-

sian Gaussian functions. The Journal of Chemical Physics 1985, 84, 3963–3974.

(52) Lange, A. W.; Herbert, J. M. Polarizable continuum reaction-field solvation models

affording smooth potential energy surfaces. Journal of Physical Chemistry Letters 2010,

1, 556–561.

29



(53) Balabanov, N. B.; Peterson, K. A. Systematically convergent basis sets for transition

metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. Jour-

nal of Chemical Physics 2005, 123, 064107.

(54) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular cal-

culations. III. The atoms aluminum through argon. The Journal of Chemical Physics

1993, 98, 1358–1371.

(55) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular cal-

culations. V. Core-valence basis sets for boron through neon. The Journal of Chemical

Physics 1995, 103, 4572–4585.

(56) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular cal-

culations. IX. The atoms gallium through krypton. The Journal of Chemical Physics

1998, 1358–1371.

(57) Hartree, D. R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field

Part I Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical

Society 1928, 24, 89–110.

(58) Hartree, D. R.; Hartree, W. Self-consistent field, with exchange, for beryllium. Proceed-

ings of the Royal Society of London. Series A - Mathematical and Physical Sciences

1935, 150, 9–33.

(59) Pulay, P. Improved SCF convergence acceleration. Journal of Computational Chemistry

1982, 3, 556–560.

(60) Strout, D. L.; Scuseria, G. E. A quantitative study of the scaling properties of the

Hartree–Fock method. The Journal of Chemical Physics 1995, 102, 8448–8452.

30


