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Abstract 

Automation and digitalization solutions in the field of small molecule synthesis face new 
challenges for chemical reaction analysis, especially in the field of high-performance liquid 
chromatography (HPLC). Chromatographic data remains locked in vendors’ hardware and 
software components limiting their potential in automated workflows and contradicting to FAIR 
data principles (findability, accessibility, interoperability, reuse), which enable chemometrics and 
data science applications. In this work, we present an open-source Python project called MOCCA 
(Multivariate Online Contextual Chromatographic Analysis) for the analysis of open-format 
HPLC–DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data 
analysis features including a peak deconvolution routine which allows for automated 
deconvolution of known signals even if overlapped with signals of unexpected impurities or side 
products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to 
validate MOCCA’s data analysis features; (ii) a reaction kinetics study on a Knoevenagel 
condensation reaction demonstrating MOCCA’s peak deconvolution feature; (iii) a closed-loop 
optimization study for the alkylation of 2-pyridone highlighting MOCCA’s potential to obviate the 
need for human control during data analysis; (iv) a well plate screening of categorical reaction 
parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected 
cyanohydrins where MOCCA tracks all known and unknown signals. These studies emphasize 
how MOCCA enables its users to make data-based decisions in synthesis workflows with different 
degrees of automation by providing actionable analytics. By publishing MOCCA as a Python 
package together with this work, we envision an open-source community project for 
chromatographic data analysis with the potential of further advancing its scope and capabilities. 
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1. Introduction 

Synthetic chemistry enables discovery of new chemical reactivity, access to new molecules of 
interest, and development of corresponding chemical processes. Ever more demanding 
regulatory and sustainability requirements on small molecules’ synthesis and development make 
this endeavor complex and cost-intensive.1–5 Increasing emphasis is given to automation and 
digitalization in synthetic chemistry in order to address today’s complex challenges while 
decreasing development time and cost.6–8 Automation approaches aim to facilitate chemical 
synthesis while increasing its safety, robustness and efficiency.9–11 Digitalization approaches 
focus mainly on reducing the number of synthetic experiments until a given goal is reached by 
predicting experimental outcomes or molecular properties. For that, data science techniques are 
applied on existing data for experimental design and decision making.12–15 In both areas, 
generalization to the complexity and diversity of chemical reaction processes remains the main 
challenge. As stated by Hein and co-workers,16 “automation isn’t automatic”, and automated 
experimental setups are too often tailored to a given synthetic problem.17–19 Digitalized 
approaches towards ML design algorithms suffer from a highly unstructured data foundation in 
literature, since data was not collected and reported with data science applications in mind.20 
Therefore, recent approaches focus on the community-based standardization of synthetic lab data 
(Open Reaction Database), increasing the robustness of experimental protocols against noise, or 
the augmentation of literature data by systematic experiments performed by automated 
machines.21–24 
 
Interestingly, chemical reaction analysis has received less attention in recent automation and 
digitalization efforts, in spite of its importance for the overall synthetic process.25 Analytical raw 
data generation and analysis remain locked in vendor-specific proprietary hardware and software 
components, especially in the field of high-performance liquid chromatography (HPLC), a 
standard analytical method for chemical reaction analysis. Most HPLC systems in both academic 
and industrial research labs are equipped with photodiode array detectors (DAD) which record 
full UV-Vis spectra at every chromatogram time point. For analysis, the dimensionality of the 
HPLC–DAD data is classically reduced to chromatograms, i.e., absorbance at a single 
wavelength as a function of retention time. Most workflows access chromatogram analysis results 
by vendor software in the form of peak tables. In extreme cases, a full HPLC–DAD raw data array 
is recorded only to extract one value out of a peak table, e.g., the area of the product signal while 
all of the other information is discarded. This is incongruous with modern data-centered 
automation and digitalization approaches. 
 
Commercial software solutions from Virscidian (Analytical Studio26) or ACD/Labs (Katalyst D2D, 
Spectrus27) have already filled the gap of modern multivariate raw data analysis. However, as 
commercial products, they provide limited flexibility in workflow implementation. For example, 
Virscidian had to implement a construct called expressions in their software to allow the user to 
extract relevant information in a customizable and flexible manner. The analytical chemistry 
community is also adopting multivariate data analysis, but code availability is limited.28–31 For 
example, S. Arase et al. explored with the Shimadzu Corporation as an HPLC instrument vendor 
the potential of HPLC–DAD data in the context of peak deconvolution.32 
 
In this work, we present the open-source Python project MOCCA (Multivariate Online Contextual 
Chromatographic Analysis), which enables the direct processing and analysis of HPLC–DAD raw 
data in Python, the de-facto standard programming/scripting language for data science projects 
in chemistry.33–36 As a ready-to-use Python package, it is easily implemented into existing 
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automated and non-automated workflows. By making the Pythonic library of data analysis toolkits 
accessible, MOCCA enables its users to develop new and powerful data analysis features. Here, 
we present a peak deconvolution feature that allows for automated deconvolution and 
quantification of known signals which overlap with signals of unexpected impurities. This 
overcomes a common limitation of available commercial software: the requirement for manual 
control of the automatic integration routine to account for overlapping peaks. With this feature 
implemented, MOCCA could play a major role towards autonomous labs by providing open 
actionable analytics, i.e., enabling data-based decisions without human intervention or control by 
putting HPLC–DAD data in the correct context for analysis.19 
 
Other open projects exist for chromatogram analysis, e.g., HappyTools37 and Aston38 in Python 
or chromatographR39 in R. The authors of the alsace package for R emphasized the potential of 
DAD data for metabolomics profiling.40 Notably, Jason Hein and co-workers recently developed a 
Python-based automated data processing routine and made the code available online.41 Based 
on these ongoing efforts, we envision MOCCA to serve as a basis for a joint community effort 
towards an open multivariate analytical raw data analysis toolkit.  
 
MOCCA serves as a plug-and-play module and is not restrained by a specific project scope. To 
highlight MOCCA’s general applicability and versatility for chemical reaction analysis, we 
introduce and investigate MOCCA’s data analysis features in four different case studies. First, the 
features are validated using a large set of simulated chromatograms including overlapping signals 
for a quantitative investigation of the peak deconvolution feature. Then, the potential of MOCCA 
and its peak deconvolution feature is highlighted in an experimental reaction kinetics study on a 
Knoevenagel condensation reaction. In the third study, MOCCA is employed in a closed-loop 
process optimization for the alkylation of 2-pyridone where the peak deconvolution feature keeps 
the optimization cycle running despite the signal of an unexpected side product signal overlaps 
with the product signal. Finally, a newly developed cyanation of aryl halides is presented and 
categorical reaction parameters are screened on a well plate with MOCCA tracking all known and 
unknown signals. 
 
 

2. Methods 

Our proposed analytical workflow employing the MOCCA package in automated, semi-automated 
or non-automated workflows is shown in Figure 1. In research labs, HPLC systems from a number 
of different vendors are used in combination with corresponding vendor-specific control software. 
The HPLC–DAD raw data (time–wavelength absorbance array) are typically stored in proprietary 
formats inaccessible to the user. To obtain open, non-proprietary HPLC–DAD raw data files, each 
of the softwares has its own native raw data export routine. Therefore, MOCCA includes raw data 
parsers for data exported from Agilent’s ChemStation, Shimadzu’s LabSolutions and Water’s 
Empower software. However, we highly encourage, if possible, exporting to standardized and 
metadata-enriched data formats such as the Allotrope data format,42 for which a parser is 
implemented in the MOCCA package. These standardized data formats ensure the 
implementation of FAIR (findability, accessibility, interoperability, reuse) principles in analytical 
data and promote reuse of data for future scientific projects (details in SI section S2).43 
 
After parsing the exported data in Python, HPLC–DAD raw datasets are analyzed by MOCCA. 
An automated procedure extracts relevant information for a specific scientific question from the 
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information-rich analysis results. The obtained structured (tabular) datasets are used for data-
based decision making. 
 

 

Figure 1. Proposed analytical workflow starting with HPLC systems controlled by vendor-specific 
software. HPLC–DAD raw data are exported in non-proprietary and open data formats, preferably, 
a metadata-enriched standardized format (Allotrope) implementing FAIR data principles. After 
parsing in Python, HPLC–DAD datasets are analyzed in context to each other by MOCCA. From 
the analysis results, structured datasets are generated for data-based decision making. 
 
A summary of the single data analysis features of the MOCCA package is presented in Figure 2 
(details in SI sections S3 and S4). The features are assigned to three hierarchy levels: the raw 
data level, the aggregate data level, and the user or automated workflow interaction level. On the 
raw data level, most features are known from common vendor software and include raw data 
preprocessing with baseline correction as well as peak picking and integration. Other features like 
the algorithms for peak purity checking and peak deconvolution extend most vendor software 
capabilities. These two features are discussed and validated in detail in the following sections. 
On the aggregate data level, information is created by analyzing datasets in context to each other. 
By mimicking and automating routine steps a scientist would perform in the lab, compound and 
calibration libraries are created to allow for peak assignment and peak quantification. Moreover, 
MOCCA allows for the automated handling of internal standards for retention time correction as 
well as for relative quantification. Finally, interaction with the tool takes place on the highest 
hierarchy level, which provides control over certain settings of the data analysis and provides 
interactive reports on the analysis. The reports include the most crucial information for the user, 
such as chromatogram visualizations and peak tables (examples in chromatogram report in HTML 
SI files). 
 

 

Figure 2. Summary of the data analysis features implemented in MOCCA.  

HPLC system Open raw data files Open raw data analysis

Raw data export Parsing in Python

Decision making

Extraction of

relevant information
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3. Results and Discussion 

3.1 Validation of data analysis features in simulated chromatograms 
Collecting large-scale experimental HPLC–DAD data for validation is time-consuming and 
inefficient. Moreover, experimental datasets with overlapping signals do not provide a ground 
truth against which deconvolution results can be quantitatively compared to. To solve this 
problem, we turned to the Chromatography Analysis and Design Toolkit (CADET), a tool that 
simulates retention processes on LC separation columns.44 With CADET, a wide variety of elution 
profiles can be simulated (including non-gaussian shapes) while taking into account non-linear 
retention effects of co-eluting analytes. 
 
To imitate a real situation and systematically explore the limitations of MOCCA’s peak 
deconvolution feature, chromatograms with two compounds (a known main compound and an 
unknown impurity) were generated in-silico. The resulting retention profiles were enriched with 
compound-specific UV-Vis spectra to obtain synthetic HPLC–DAD datasets. The similarity of UV-
Vis spectra of the main compound and the impurity were varied in three levels of correlation 
coefficients r, high (r  0.86), medium (r  0.47) and low (r  −0.06). To obtain statistically relevant 
results, we simulated 1000 different chromatograms and enriched them with UV-Vis spectra of 
each similarity level resulting in 3000 HPLC–DAD datasets (details in SI section S7). These 
synthetic raw data were fed into MOCCA for data analysis. This allowed for the testing and 
validation of all other features shown in Figure 2.  
 
The obtained results were assigned to four possible categories: (i) separate peaks where the 
simulated pair of retention profiles is baseline-separated and the peak purity checker labels the 
two peaks as pure; (ii) successful deconvolution of an overlapping signal where the main 
compound is correctly assigned and quantified; (iii) unsuccessful deconvolution where the peak 
is labelled as impure but the deconvolution feature is not able to assign the main compound 
correctly; (iv) no trigger of the peak deconvolution feature due to the peak purity check returning 
a false positive result. In general, cases (i) and (ii) are considered as desired outcomes, while 
cases (iii) and (iv) are considered as misinterpretations (examples in SI section S7). Table 1 
summarizes the obtained results highlighting that a vast majority of the simulated cases were 
processed correctly while almost all of the failing cases are attributed to category (iv). 
 
Table 1. Results of the MOCCA analysis of synthetic HPLC–DAD data assigned to the following 
categories: (i) retention profiles of main compound and impurity were baseline-separated and 
analyzed correctly; (ii) overlapping retention profiles where the peak deconvolution feature was 
triggered and the main compound was identified and quantified, (iii) peak deconvolution feature 
was triggered for the overlapping signal but the main compound could not be identified, (iv) the 
signals were overlapping but were not labelled as impure by the peak purity checker. 

 UV-Vis spectral similarity 

Result category High Medium Low 

(i) 86 86 86 

(ii) 794 868 890 

(iii) 2 0 0 

(iv) 118 46 24 
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Cases of the category (iv) are not attributed to a failure of the peak deconvolution feature, but 
rather to a permissive peak purity checker returning false positive outcomes on strongly co-eluting 
signals. These cases cannot be solved analytically and the only solution would be the 
development of an HPLC method with higher chromatographic resolution to separate (at least 
partially) the elution profiles. MOCCA enables a shift towards shorter gradient times and faster 
sample processing, but the category (iv) failure rate shows that the user is still required to have 
expertise in HPLC method development to balance method time vs. chromatographic resolution.45 
 
For a quantitative investigation of the devonvolution results, we looked at the results assigned to 
category (ii) and compared them to the ground truth. For all three levels of spectral similarity, the 
median quantification error was smaller than 2%, while the third quartile error ranged around 6% 
(examples and details in SI section S7). The results obtained validate that MOCCA’s 
deconvolution feature works robustly enough for typical lab screenings, but should be treated with 
caution for regulated environments and process development scenarios where lower margins of 
error are required. 
 
3.2 Kinetics study of Knoevenagel condensation reactions 
A reaction kinetics study of a Knoevenagel condensation, a well-established test reaction,46,47 was 
conducted to highlight the potential of MOCCA’s peak deconvolution feature. Benzaldehydes (1a–
c) were simultaneously reacted with malononitrile (2) to their corresponding 
benzylidenemalonitriles (3a–c) in the same reaction mixture (Scheme 1). 
 

 

Scheme 1. Knoevenagel condensation reactions of benzaldehyde (1a), 4-methoxybenzaldehyde 
(1b) and 4-(dimethylamino)benzaldehyde (1c) with malononitrile (2) in methanol (MeOH) to yield 
benzylidenemalononitriles 3a–c. 
 
Reactions were performed in an HPLC vial in a temperature-controlled (25 °C) autosampler and 
reaction progress was followed via reversed-phase HPLC with different gradient lengths. Five 
different HPLC methods were developed with gradient lengths of 0.5 min, 0.75 min, 1.0 min, 
1.5 min, and 2.5 min (water/acetonitrile 95:5 → 0:100 v/v) to induce different degrees of overlap 
between the substrate signals. For quantification, calibration curves were recorded for all 
substrates with all HPLC methods. These measurements were used to validate the quantification 
features of MOCCA in the case of pure and baseline-separated signals against traditional manual 
data analysis. The results of both analysis methods correlated very precisely (details in SI 
section S5). 
 
Two competition experiments were performed: malononitrile (2) was reacted with two (1a, 1b), 
and with three (1a–c) benzaldehyde substrates, respectively. For data analysis, benzaldehyde 
(1a) was treated as the main compound, i.e., only its calibration runs were added to MOCCA for 
quantitative analysis while the functionalized benzaldehydes 1b and 1c were treated as 
“unknown” impurities. Figure 3a and Figure 3b illustrate results from the two competition 
experiments. The top panels show the different degrees of signal overlap induced by the gradient 
variation. Here, the peak purity check feature correctly labelled the peaks as pure for the long 
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gradient (green background area) and correctly labelled the overlapping peaks as impure for the 
short gradients (red background area). In the latter cases, the peak deconvolution feature was 
triggered. As a first step of the deconvolution routine, a principal component analysis is performed 
on the absorbance array of an impure peak to estimate the number of overlapping components. 
With this number as an input, a newly developed iterative algorithm using parallel factor analysis 
(PARAFAC)48 is employed for deconvolution (details in SI section S4). The bottom panels in 
Figure 3 show the deconvolution results for the peaks recorded with a gradient length of 0.5 min. 
 

 

Figure 3. a) Results of the competition experiment with two benzaldehydes (1a and 1b). b) 
Results of the competition experiment with three benzaldehydes (1a–c). Top: Chromatographic 
signals of the benzaldehydes using different gradient lengths. MOCCA indicates results of purity 
checks (green passed, red failed) and centers of retention profiles modelled by the deconvolution 
algorithm (vertical black dashed lines). Bottom: Deconvolution results of the overlapping signal 
recorded with a gradient length of 0.5 min. The modelled retention profiles (left, colored lines) 
described the retention profile of the impure peak (black dashed line). The modelled UV-Vis traces 
(right, colored lines) correspond to the UV-Vis spectra of the benzaldehydes as exemplified for 
1a (black dashed line). 
 
To investigate the ability of MOCCA to automatically recognize impure peaks and decompose a 
known signal from co-eluting impurities, reaction progress was followed by sampling out of the 
same reaction vessel repeating each of the five HPLC methods iteratively (details in SI 
section S6). The resulting reaction kinetics plots of the main compound benzaldehyde (1a) are 
shown in Figure 4 and exhibit the expected second-order kinetics.46,49. As expected from the 
simulation study, the results of chromatograms with baseline-separated signals agree with the 
results of chromatograms where signals were heavily overlapping. The deconvolution feature 
successfully identified the benzaldehyde (1a) signal in all given impure peaks and returned 
modelled peaks for quantification. 

2.5 min 0.5 min1.0 min
Gradient lengtha)

Deconvolution

b)
2.5 min 0.5 min1.0 min

Gradient length

1a

1b 1a

1b

1a

1b

1c
1a

1b 1c

Deconvolution
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Figure 4. Second-order reaction kinetics plots of benzaldehyde (1a) in the Knoevenagel 
condensation recorded with five different HPLC methods employing varying gradient lengths. a) 
Competition experiment with two benzaldehydes (1a and 1b). b) Competition experiment with 
with three benzaldehydes (1a–c). 
 
3.3 Closed-loop optimization of the alkylation of 2-pyridone 
Closed-loop optimization studies have gained tremendous attention in recent years due to their 
relevance for chemical discovery as well as process optimization.50–54 In such closed-loop 
processes, the optimization platform runs without human intervention and control of HPLC data 
analysis. Here, the peak purity check and peak deconvolution feature of MOCCA are of particular 
interest. Overlapping peaks or inaccurate integration routines (examples in SI section S5) lead to 
wrong analytical results fed back to the experimental design algorithm. The setup of the closed-
loop optimization platform of this study is shown in Figure 5. For the experimental design, we 
employed a Python package called Experimental Design via Bayesian Optimization (EDBO) 
published by Doyle and co-workers.55 The suggested optimization parameter values were fed into 
a LabVIEW program controlling a microfluidic droplet platform, which was developed in the 
Jensen group for the simultaneous screening of both categorical and continuous reaction 
parameters.56–60 After reaction in an oscillatory droplet reactor, the droplet was diluted with 
acetonitrile and moved to an internal injection valve (0.02 μL injection volume) to inject a sample 
directly on a reversed-phase separation column of the HPLC system. The HPLC system 
automatically exported HPLC–DAD raw data for MOCCA data analysis after each run. The 
optimization objective, as well as process control parameters were extracted from the MOCCA 
analysis results via a project-specific script.  

a)

b)
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Figure 5. Closed-loop optimization cycle employed in this work. Blue: Experimental Design via 
Bayesian Optimization (EDBO) Python package from the Doyle group55 and translation of the 
suggested parameters to a LabVIEW experimental protocol. Yellow: Experimental execution by 
a microfluidic reactor platform employing an oscillatory droplet reactor design. 0.02 μL HPLC 
samples are taken out of the droplet after diltution with acetonitrile. Green: HPLC system with a 
photodiode array detector (DAD) and an automated HPLC–DAD raw data export routine. Red: 
Data analysis by the MOCCA tool and a project-specific script for the extraction of objective values 
and process control values. 
 
As a test reaction, we examined the alkylation of 2-pyridone (4) using 1-iodobutane (5) to yield 
the two regioisomers 1-butylpyridone (6) and 2-butoxypyridine (7). As shown in Scheme 2, the 
optimization was performed on two continuous variables, the reaction time (10–60 min) and 
temperature (35–100 °C). Additionally, two categorical optimization parameters were screened: 
the base (1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,1,3,3-tetramethylguanidine (TMG), N,N-
diisopropylethylamine (DIPEA)) and the solvent (n-butanol, N,N-dimethylformamide (DMF), 
toluene). The maximization of the yield of 1-butylpyridone (6) served as the objective function for 
the optimization. For quantification, the desired product 6 was calibrated relative to an internal 
standard in an automatic fashion by the platform (details in SI section S8).  

EDBO

Microfluidic droplet platform

Python-to-LabVIEW 
parameter translation

HPLC system

Droplet dilution and 0.02 μL 
internal injection valve

Automated HPLC–DAD raw 
data export

Extraction of objective 
values and controls

MOCCA

Closed-Loop 
Optimization 
Cycle
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Scheme 2. Optimization campaign on the alkylation of 2-pyridone (4) with 1-iodobutane (5) 
yielding 1-butylpyridone (6). The domain space of the optimization campaign spans over two 
continuous variables, reaction time (low boundary: 10 min, high boundary: 60 min) and 
temperature (low boundary: 35 °C, high boundary: 100 °C), as well as two categorical variables, 
identity of base (DBU, TMG, DIPEA) and solvent (DMF, toluene, n-butanol). The objective value 
of the optimization is the yield of 6. Two side products were identified with 2-butoxypyridine (7) 
and butylated DBU (8). 
 
The optimization cycle was run with a batch size of one, i.e., the feedback loop was closed after 
each experiment. At any point during the optimization campaign, the user was able to extract 
MOCCA reports to follow the optimization process. Figure 6a summarizes the results of the 
optimization campaign. The optimal conditions found for the reaction were DBU in toluene for 
60 min at 100 °C. We validated the obtained optimization results with batch reactions that 
screened all categorical parameter combinations at 35 °C and 100 °C (details in SI section S8). 
For all reactions with DBU, the HPLC signal of an unexpected side product, butylated DBU (8), 
started overlapping with the signal of the calibrated product 6, whose yield served as the objective 
value for the optimization. Figure 6b shows the chromatogram of the reaction at optimal conditions 
with the impure peak at ~1.7 min resulting from an overlap of signals from 6 and 8.  As shown in 
Figure 6c, MOCCA was able to deconvolute this impure peak in an automated fashion and to feed 
back corrected yields to the design algorithm EDBO. This highlights MOCCA’s ability to keep 
closed-loop cycles running even when unexpected co-elution of calibrated signals occurs in the 
HPLC analysis.   
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Figure 6. Results of the closed-loop optimization on the alkylation of 2-pyridone (4). a) Objective 
values as a function of optimizer choices in each round. Top: Objective value (yield of 6) with 
marker shape indicating the chosen solvent and marker color indicating the chosen base; middle: 
Chosen reaction temperature; bottom: Chosen reaction time. b) Chromatogram of the reaction 
under optimal conditions with an impure product peak (~1.7 min). c) Modelled retention profiles 
(dashed line: impure peak) and UV-Vis spectra (dashed line: UV-Vis spectrum of 6) of the product 
6 (yellow) and the unexpected impurity 8 (blue). 
 
3.4 Palladium-catalyzed cyanation of aryl halides 
With this study, we highlight MOCCA’s application for the analysis of HPLC–DAD data originating 
from a novel palladium-catalyzed cyanation of aryl halides, where side products were unknown. 
Palladium-catalyzed cyanation reactions are a prominent and well-investigated reaction class.61–

63 They proceed via oxidative addition of an aryl halide to a Pd(0)/ligand complex, subsequent 
halide/cyanide exchange, followed by a reductive elimination which closes the catalytic cycle.64 A 
particular challenge with this reaction class resides in the rapid deactivation of the catalytically 
active palladium species in the presence of excess amounts of cyanide.65,66 To overcome this 
issue, many procedures were developed with the aim of keeping a low effective concentration of 
cyanide in solution. Common strategies include the use of hardly soluble metal salts,67–69 
employing cyanide transfer agents,70 and the slow addition of TMSCN71 or acetone 
cyanohydrin.72,73 The use of butyronitrile in combination with a nickel catalyst allows for cyanide 
release through a reverse hydrocyanation reaction.74 
 
Giumond et al.73 developed a protocol for palladium and nickel catalyzed cyanation reactions to 
overcome upscaling issues associated with the use of metal cyanides under heterogeneous 
conditions.68,75–77 A homogeneous reaction is obtained by adding acetone cyanohydrin via syringe 
pump to a solution of the substrate, a palladium catalyst, a ligand, and N,N-diisopropylethylamine 
(DIPEA) in isopropyl alcohol or n-butanol (Scheme 3a).73 Based on these results, we envisioned 
to make use of O-protected cyanohydrins as cyanation reagents which release cyanide in situ 
upon deprotection (Scheme 3b). This approach maintains a fully homogeneous liquid system but 
the need for slow reagent addition is avoided.  
 

a) b)

c)

6

8

6 8

6 + 8
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Scheme 3. a) Palladium-catalyzed cyanation of aryl chlorides developed by Guimond et al. based 
on the slow addition of acetone cyanohydrin via syringe pump.73 b) Newly developed cyanation 
method using protected cyanohydrins (PG: protecting group) for in situ release of cyanide. 
 
To investigate our proposed synthetic strategy, we prepared a number of protected cyanide-
releasing agents 10a–10g (Figure 7b). In situ deprotection by transesterification or TMS cleavage 
yields acetone cyanohydrin or lactonitrile which rapidly eliminate the cyanide required for cross-
coupling. We screened suitable reaction conditions for the conversion of 2-chlorotoluene (9) to 
o-tolunitrile (11) in a 96 well plate (Figure 7a) by combining these reagents with one of three 
different ligands (Figure 7d), XPhos, tBuXPhos, or CM-Phos, and one of four different bases 
(Figure 7c), DBU, TMG, 4-dimethylaminopyridine (DMAP), or DIPEA (details in SI section S9). 
The choice of ligands and [Pd(cinnamyl)Cl]2 as the catalyst precursor was based on previous 
literature reports.73,78–80 
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Figure 7. a) Reaction conditions for the well plate screening of the cyanation of 2-chlorotoluene 
(9) yielding o-tolunitrile (11) using palladium(π-cinnamyl) chloride dimer as the catalyst precursor. 
b) Screened O-protected cyanohydrins. c) Screened bases. d) Screened ligands. e) Yield of o-
tolunitrile (11) in dependency on the employed protected cyanide-releasing agent 10 as well as 
the chosen ligand and base. CPME: cyclopentyl methyl ether; Bz: benzoyl group; Ac: acetyl 
group; TMS: trimethylsilyl group. 
 
After the reaction was run under the given conditions and subsequent internal standard addition, 
samples of the reactions were subjected to HPLC analysis. The HPLC–DAD raw data were 
exported as text files. MOCCA analysis allowed to follow product and substrate concentrations 
and, importantly, unknown signals over the datasets, thus supporting the identification of side 
products and impurities (example in SI section S9). These data were used for heatmap 
visualization in Python using standard toolkits (Plotly81). For example, the obtained yields of o-
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tolunitrile (11) are visualized based on their location in the well plate (Figure 7e). This again 
highlights the potential of moving HPLC–DAD data analysis to Python with its powerful package 
library for data analysis and visualization. 
 
As discussed above, a successful reaction requires the release of cyanide anions to proceed at 
a rate that is sufficient to be productive but not outpace the catalyst turnover. This rate is controlled 
through the rates of deprotection of the cyanide-releasing agents 10, which were examined 
experimentally for a better understanding of our results (details in SI section S9). The screening 
provided three parameter combinations with yields >90% indicating a good harmonization 
between cyanide release and turnover, the TMG/XPhos base–ligand combination with the 
precursor 10c, DMAP/XPhos with 10e, and DMAP/XPhos with 10f. The outcome of these 
experiments together with a selection of the other experiments were verified by repeating the 
reactions in standard reaction flasks (details in SI section S9). For other parameter combinations, 
e.g., when using trifluoroacetylated cyanohydrin 10g, the release of cyanide is too fast, leading to 
a quick catalyst deactivation. In contrast, a slow release of cyanide is observed with the use of 
DIPEA, a weak base, leading to low conversions (detailed mechanistic discussion in SI 
section S9). 
 
HPLC analysis represents a typical bottleneck in well plate-based screenings. Typically, HPLC 
methods are developed to be as short as possible for maximum throughput while resolving all 
known compounds. When screening categorical variables like ligands or bases, unexpected side 
products often overlap with known signals in the chromatogram. This also happened in the 
described screening campaign, but MOCCA reliably deconvoluted these overlapping peaks and 
enabled an efficient data analysis without the need for HPLC method optimization or resorting to 
multiplexing techniques (examples and details in SI section S9).82,83 
 
 

4. Conclusions 

In this work, we have presented MOCCA, an open-source Python project, for the comprehensive 
analysis of HPLC–DAD raw data. Compared to typical data analysis methodologies on one signal 
wavelength, the analysis of the full time–wavelength absorbance array gives multiple advantages. 
These include robust peak assignment and quantification, as well as peak purity checks and the 
deconvolution of overlapping peaks. We investigated MOCCA in four case studies, (i) a simulation 
study, (ii) a reaction kinetics study, (iii) a closed-loop optimization, (iv) a well plate screening and 
demonstrated MOCCA’s broad applicability and the benefit of moving chromatographic data 
analysis to an open environment like Python. 
 
In this spirit, we envision MOCCA becoming a community project with a significant user base 
eager to adapt, curate, and further advance the tool. With community support, MOCCA can 
overcome limitations of vendor software especially with regard to FAIR data principles and 
implementation in automated workflows. The development of additional data analysis features 
such as the implementation of a mass spectrometry module could extend the scope of the tool by 
adding orthogonal analysis dimensions. Another interesting development could be a connection 
MOCCA to chemical structure representations, or even to chemical reaction entries in electronic 
lab notebooks. This would make synthetic chemistry data and the corresponding analytical data 
directly accessible for machine learning in data science applications. 
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To enable new users to implement MOCCA easily in their labs, we packaged MOCCA and 
published it in the Python Package Index (PyPI). For a quick start, example JupyterLab notebooks 
together with the corresponding HPLC–DAD datasets are provided in the notebooks folder of the 
package’s GitHub repository.84 This includes a tutorial as well as the complete data analysis of 
the well plate screening presented in this manuscript. 
 
 

Supporting Information 

Supporting Information (PDF): Additional details to all presented case studies, description how 
to extract HPLC–DAD raw data from vendor control software of major vendors, technical details 
to MOCCA’s data analysis features, NMR spectra of O-protected cyanohydrins. 
 
Supplementary Files (HTML): MOCCA reports for the data analysis of the well plate screening 
(cyanation of aryl halides). 
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