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Understanding the solution-phase behaviour of organic semiconducting polymers is important for

systematically improving the performance of devices based on solution-processed thin �lms of these

molecules. Conventional polymer theory predicts that polymer conformations become more compact

as solvent quality decreases, but recent experiments have shown the high-performance organic-

semiconducting polymer P(NDI2OD-T2) to form extended rod-like aggregates much larger than

a single chain in poor solvents, with the formation of these extended aggregates correlated with

enhanced electron mobility in �lms deposited from these solutions. We explain the unexpected

formation of extended aggregates using a novel coarse-grained simulation model of P(NDI2OD-T2)

that we have developed to study the e�ect of solvent quality on its solution-phase behaviour. In poor

solvents, we �nd that aggregation through only a few monomers gives e�ectively inseparable chains,

leading to the formation of extended structures of partially overlapping chains via non-equilibrium

assembly. This behaviour requires that multi-chain aggregation occurs faster than chain folding,

which we show is the case for the chain lengths and concentrations shown experimentally to form rod-

like aggregates. This kinetically controlled process introduces a dependence of aggregate structure

on concentration, chain length, and chain �exibility, which we show is able to reconcile experimental

�ndings and is generalisable to the solution-phase assembly of other semi�exible polymers.

1 Introduction

Organic semiconductors (OSCs) have a number of advantages
over conventional inorganic semiconductors for the fabrication of
lightweight, flexible, and low-cost electronic devices. These ad-
vantages stem to a large extent from their ability to be processed
from solution1 using inexpensive printing methods.2 However,
the final thin-film microstructure is difficult to predict, particu-
larly for semiconducting polymers, and has been found to depend
on many factors, including the monomer chemical structure,3–7

molecular weight,8,9 solvent,10–15 solution concentration,16,17

and dissolution temperature18 as well as non-equilibrium pro-
cesses during or post deposition.14,19 Device performance is
closely tied to this microstructure.7,10,20–27 Thus, the systematic
design of molecules and processing conditions to achieve good
performance is challenging.
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A better understanding of the factors that control the solution-
phase morphology of semiconducting polymers can potentially
help to systematically improve device performance, as this
morphology has been correlated with thin-film structure, and
with device performance.9–11,18 For the high-performance semi-
conducting polymer poly[N,N’-bis(2-octyldodecyl)naphthalene-
1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bithiophene)
(P(NDI2OD-T2)), also known as N2200, the formation of large
rod-like aggregates has been observed experimentally in poor
solvents such as toluene and xylene, and has been shown to be
associated with increased electron mobility in films deposited
from these solutions.10 In these poor solvents, P(NDI2OD-T2)
(Mn = 31.2 kDa, polydispersity = 2.1) was shown, via UV-vis
spectroscopy, to aggregate extensively.10 However, counter to
a conventional understanding on solution-phase aggregation of
flexible polymers, which predicts Rg to decrease with decreasing
solvent quality,28 these aggregates were shown, using small-
angle X-ray scattering (SAXS), to have a radius of gyration Rg

larger than that of a single chain, suggestive of the formation of
extended multi-chain structures that are not predicted by existing
theories.10 This result contrasts with conclusions from a previous
study of P(NDI2OD-T2) which, based on the lack of dependence
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on polymer concentration of the spectral shift in poor solvents
and analytical centrifugation measurements, suggested that
aggregation behaviour in toluene is a single-chain process caused
by chain collapse and folding.12 Notably, these experiments
were conducted at a much lower concentration than the SAXS
measurements (up to 1 g/L,12 versus 5 g/L for the SAXS
experiments10), as well as using significantly longer chains (118,
181, or 1105 kDa in ref. 12 versus 31 kDa in ref. 10), which may
explain the reported discrepancy. Indeed, multi-chain aggrega-
tion has been observed for other semiconducting polymers such
as MEH-PPV,29 PffBT4T-2DT, D-DPP3T-EH, and PffBT4T-2OD,18

with concentration- and molecular-weight-dependent effects
observed but not fully explained.

The solution-phase conformations and dynamics of flexible
polymers are generally well understood.28 The conformation of
a single flexible polymer chain in solution shows predictable scal-
ing with chain length, with a scaling exponent determined by the
solvent quality, i.e. the relative strength of the polymer–polymer,
solvent–solvent, and polymer–solvent interactions. In a good sol-
vent, in which polymer–solvent attractions dominate, the chain is
in an extended conformation, whereas a more compact, collapsed
structure is formed under poor solvent conditions in order to min-
imise unfavourable interactions with the solvent or to maximise
favourable intramolecular polymer interactions. Metrics such as
the radius of gyration (Rg) are therefore expected to decrease as
solvent quality decreases and chains become more compact. This
behaviour has been observed in a number of simulation studies
of sufficiently flexible single chains, with a transition from an ex-
tended coil to collapsed globule structure observed with decreas-
ing solvent quality.30–32

However, semiconducting polymers typically have stiffer semi-
flexible backbones, which, coupled with the more anisotropic
shape and interactions imparted by the conjugated backbone,
means that the aggregate structure may deviate from that pre-
dicted for flexible chains. (See ref. 33 for a more comprehensive
review of the behaviour of semiflexbile polymers in dilute solu-
tions.) Indeed, for both single-30–32 and multi-chain34 systems,
both the backbone stiffness and solvent quality have been shown
to be important for predicting the types of structures formed by
semiflexible polymers. For single chains (i.e. in very dilute so-
lution), as chain stiffness increases, different structures, such as
hairpins or toroids, take the place of disordered globules in poorer
solvents, with the exact structure depending on both the solvent
quality and chain flexibility.30–32,35,36

At higher concentrations where multiple chains are able to in-
teract, bundles of fully overlapping chains, rather than collapsed
globules, are expected for semiflexible polymers in a poor sol-
vent due to the unfavourable bending energy. Indeed, Monte
Carlo simulations have shown the equilibrium structure of multi-
chain aggregates in a poor solvent to shift from a disordered
globular morphology to fully overlapped twisted or folded rod-
like bundles as the chain stiffness is increased.34 However, al-
though these fully overlapped bundles are expected to be the
equilibrium structure under these conditions, due to maximis-
ing favourable polymer–polymer interactions while minimising
unfavourable polymer–solvent interactions and bending energy,

such structures would not lead to rod-like aggregates significantly
longer than a single chain. Thus, the known equilibrium solution-
phase behaviour of semiflexible polymers is not consistent with
experimental observations on P(NDI2OD-T2).10

While a multitude of studies have examined single-chain be-
haviour using simulations30–32,35–39 or theory,40–44 those exam-
ining multi-chain systems, which are more relevant for the be-
haviour of realistic OSC systems in which chains are rarely so
isolated, are less common. Although solution-phase molecular
simulations of multi-chain systems of semiconducting polymers
are relatively rare, owing to the need for often prohibitively large
systems to explicitly account for solvent, especially for long poly-
mer chains, studies examining OSC solubility using all-atom (AA)
molecular simulation methods can be found. Some45–47 have
used mean-field solution theories such as the Flory–Huggins the-
ory, in which simulations of short oligomers were used to estimate
the Flory–Huggins parameter, which is used as a measure of sol-
vent quality and thus the propensity for aggregation. Others48,49

have examined the aggregation mechanism and effect of solvent
and polymer properties, again using short chains or implicit sol-
vent models. While these studies provide valuable insights into
some of the many factors affecting the solution-phase morphol-
ogy, the Flory–Huggins theory provides a fairly simplistic model of
the effects of polymer chain length and the relative strength of the
solvent–solvent, solvent–polymer, and polymer–polymer interac-
tions on solubility; it does not capture the roles of chain stiffness
and conformation and so cannot account for extended aggregates
expected for P(NDI2OD-T2). Other simulation studies that have
more accurately calculated solubility through free energy pertur-
bation methods,49 and examined aggregation mechanisms and
the effect of various molecular properties on the solution-phase
behaviour,48,49 have not been able to reach experimental chain
lengths and have generally considered only the equilibrium be-
haviour as the time scales relevant to the kinetic processes are
generally not accessible to detailed AA models.50

In this work we have developed a systematically coarse-grained
(CG) model of P(NDI2OD-T2) in order to investigate the re-
ported formation of large extended aggregates in poor solvents,10

to reconcile discrepancies between experimental findings on the
solution-phase morphology of this polymer in such solvents,10,12

and, more broadly, to clarify the general factors that control the
solution-phase morphology of semiconducting polymers. By com-
bining atoms with correlated motion into a single CG site, and
accounting implicitly for the solvent, the number of degrees of
freedom of the system can be greatly reduced. This allows access
to polymer length and time scales on the order of those studied
experimentally. A similar model has previously been developed
for the commonly studied semiconducting polymer P3HT51 and
used to accurately predict the experimental solution-phase con-
formation of this polymer, giving results consistent with a more
computationally expensive AA model and experiment.

The CG model of P(NDI2OD-T2) was parameterised to repro-
duce the structural properties of an AA system. The methods
used to parametrise and simulate the AA model are described
in Section 2.1, while those for the CG model are given in Sec-
tions 2.2 and 2.3. The behaviour of the parameterised CG model
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of P(NDI2OD-T2) in simulations under conditions corresponding
to varying solvent qualities is described in Section 3. The types
of aggregates formed under different solvent conditions are ex-
amined in Section 3.1 and are related to the aggregate structure
to the strength of intermolecular interactions and the persistence
of aggregates composed of partially overlapping chains in Sec-
tion 3.2. Finally, the kinetics of the competing effects of single-
chain folding and multi-chain aggregation, and how these may
vary with concentration, molecular weight, and chain flexibility,
are considered in Section 3.3.

2 Methods

All simulations were conducted using molecular dynamics (MD)
with the LAMMPS software package,52–55 and analysis and visu-
alisation using OVITO56 and VMD.57 In all cases, the temperature
was 300 K and, where relevant, the pressure was 1 atm.

2.1 All-atom simulations

2.1.1 Parameterisation of all-atom model

As many semiconducting polymers such as P(NDI2OD-T2) have a
relatively rigid backbone and extended conjugation, their bonded
parameters – particular between conjugated units – and charges
are not expected to be accurately captured by general-purpose
molecular-dynamics force fields.58 To accurately model these sys-
tems, certain parameters must therefore be determined for the
specific molecules of interest. Here we have based our param-
eterisation on the OPLS force field,59–65 as it has been shown
to accurately describe structural and thermodynamic properties
of several small-molecule OSCs66,67 and many organic liquids,
which are commonly used as solvents for OSCs. We note that
a previous AA model of P(NDI2OD-T2) has been parameterised
with the AMBER force field,45 but, to the best of our knowledge,
no OPLS parameters exist for this polymer.

We have followed a parameterisation procedure previously
used to obtain OPLS parameters for a wide variety of semicon-
ducting polymers.48 In all cases, van der Waals parameters were
taken directly from the OPLS force field for equivalent atom
types.59–65 Atomic partial charges were obtained from quantum-
chemical calculations, as described in the ESI in Section S1, with
the side-chains truncated to methyl groups after the tertiary car-
bon (i.e. R−CH2−CH−(CH3)2, where R is the monomer back-
bone). Note that although P(NDI2OD-T2) is typically repre-
sented as having a naphthalene diimide (NDI)–bithiophene (bTh)
backbone, we separated the bTh group into two thiophene (Th)
groups and modelled the monomer as Th–NDI–Th, as shown in
Fig. 1, in order to increase its symmetry, allowing for a simpler
and more general parameterisation. Within the polymer, the same
structure will be obtained, with the only differences being in the
structure of the terminal monomers (ESI Fig. S1 compares the
two structures).

Most bonded parameters for bond lengths, angles, and dihe-
drals were taken directly from the OPLS force field for equivalent
atom types,59–65 while the equilibrium bond lengths and angles
were obtained from the quantum-chemistry optimised geometry
of the monomer. The exceptions were the bond stretching po-
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Fig. 1 Chemical structure of the P(NDI2OD-T2) monomer with the CG

model overlaid. CG sites are labelled (1�7) and coloured by their site

type. To preserve the backbone geometry of the AA representation, two

di�erent site types for the thiophenes (1 and 7) and imides (2 and 6) were

de�ned, which have the same non-bonded and bond length parameters,

but di�erent bond angle parameters. Note that the terminal methyl group

of one of the side-chains was not included in the coarse-graining in order

to reduce the number of site types and to facilitate parameterisation.

tential between NDI and Th groups and the NDI–Th and Th–Th
dihedral potentials. These potentials were parameterised explic-
itly as they are important for modelling the semiflexibility of the
backbone and were not expected to be accurately captured by
existing OPLS parameters. They were calculated using a series
of constrained quantum-chemical geometry optimisations as de-
scribed in ref. 48 and ESI Section S1. All parameters used for the
AA simulations in this work are tabulated in the ESI, Section S13.

2.1.2 All-atom solution–phase simulation

The non-bonded interactions for the CG model of P(NDI2OD-
T2) were parameterised from AA simulations of symmetric
P(NDI2OD-T2) monomers in o-dichlorobenzene (DCB) at a con-
centration of ≈55 g/L (18 monomers, 2937 solvent molecules).
The CG bonded parameters were parameterised based on AA
simulations of P(NDI2OD-T2) trimers in DCB, so as to include
the bonds between monomers, at the same concentration as the
monomer simulations (8 trimers, 3229 DCB molecules). Note
that this concentration is substantially higher than both those in
experiments of P(NDI2OD-T2) aggregation10,12 and used later in
the CG simulations (5–10 g/L). This higher concentration was
used to obtain good statistics for the configurational distributions
needed for the coarse-graining procedure at a reasonable compu-
tational expense. The parameters described above for P(NDI2OD-
T2) were used, along with unmodified OPLS parameters59–65

for the solvent (see ESI, Section S13). DCB was chosen as the
solvent based on solution-phase UV–visible spectroscopy data of
P(NDI2OD-T2),10,12 which indicate little aggregation, guarantee-
ing a homogeneous system as required by the coarse-graining pro-
cess.

A truncated and shifted Lennard-Jones (LJ) potential with a
cutoff of 11 Å was used in the AA simulations, consistent with
the parameterisation of the OPLS force field.59,65 The simula-
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tions were carried out at constant temperature and pressure us-
ing a Nosé–Hoover thermostat68,69 and barostat. Electrostatic
interactions were calculated using the particle–particle particle–
mesh (PPPM) method.70 Hydrogen-containing bond lengths were
constrained to their equilibrium lengths using the SHAKE algo-
rithm,71 and a timestep of 2 fs was used.72 More details of the
simulation methods are given in the ESI, Section S2.

2.2 Coarse-grained model parameterisation

The CG representation of P(NDI2OD-T2) is given in Fig. 1, in
which each spherical CG site is centred at the centre-of-mass of
the atoms that comprise it. Each aromatic ring was assigned to
a single CG site, and the side-chain sites composed of three (site
type 5) or four (site type 4) CHn groups. This mapping groups
atoms whose motion is expected to be strongly correlated into
the same site. We note that while the entire NDI group is rela-
tively rigid and could theoretically be coarse-grained into a single
site, doing so with a spherical CG site would not capture its signif-
icantly anisotropic shape, which is expected to impact chain pack-
ing in polymer aggregates. Site masses were taken as the sum of
the masses of atoms in the AA representation that composed each
CG site. Where atoms were shared between sites, such as within
the NDI group, the masses were split evenly over the sites (e.g.
the carbon shared between site 2 and the two sites of type 3 in
the CG representation contributed 1/3 of its mass to each of these
sites; see ESI Table S14 for a list of masses).

CG simulations were carried out in implicit solvent using
Langevin dynamics73 to capture the effect of stochastic collisions
with solvent molecules and frictional drag. The equations of mo-
tion of a particle i with mass mi and position rrri are

mir̈rri(t) = fff i(t)−miγ ṙrri(t)+ζζζ i(t), (1)

where fff i(t) is the force acting on particle i due to the CG po-
tential and miγ ṙrri(t) the frictional drag in a solvent with fric-
tion coefficient γ. ζζζ i(t) is the force due to random collisions
with the solvent, which satisfies ⟨ζζζ i(t)⟩ = 0 and ⟨ζζζ i(t)ζζζ j(t

′)⟩ =
2γkBT miδi jδ (t − t ′). Most simulations used a friction coefficient
of γ = 20 ps−1, chosen to give a monomer diffusion coefficient
consistent with that of the AA model in DCB (ESI Fig. S6). With
this friction coefficient, the maximum timestep that gave stable
simulations was 8 fs, which was used in all CG simulations unless
otherwise stated. A number of simulations were also conducted
at lower friction to speed up equilibration as well as to examine
the effect of viscosity on both single-chain folding and multi-chain
aggregation. These simulations used γ = 2 ps−1 and a timestep of
5 fs. All simulations were conducted at constant volume and tem-
perature.

The CG model was parameterised using the iterative Boltz-
mann inversion (IBI) method,74,75 which has been used pre-
viously to systematically coarse-grain OSCs.51,76 This method
aims to match the local structural distribution functions between
equivalent AA and CG systems via iterative optimisation of the CG
interaction potentials. We followed the procedure outlined in refs
76 and 51, with the potential at each iteration, Un+1(x), updated

according to

Un+1(x) =Un(x)+an ln
(

Pn(x)
Ptarget(x)

)
, (2)

where Un(x) is the potential at iteration n as a function of the
variable x, 0 ≤ an ≤ 1 is a parameter that controls how much the
potential changes between iterations, Ptarget(x) is the target AA
distribution, and Pn(x) is the CG distribution at iteration n. For
non-bonded interactions, P(x) is the radial distribution function
(RDF) g(r). For bonded interactions it takes the forms Pbond(l)/l2,
Pangle(θ)/sin(θ), Pdihed(φ), and Pimprop(ψ) for the bond length, an-
gle, dihedral, and improper dihedral distributions, respectively,
where l is the bond length, θ the bond angle, and φ and ψ proper
and improper dihedral angles, respectively. In all cases, the re-
sulting potentials were fit to analytical functions defined in ESI
Section S3.1, giving good agreement between the CG and AA dis-
tributions, as shown in ESI Section S3.3.

The fit of the analytical CG potential functions to the Boltz-
mann inversion of the target distributions was used as the initial
guess for all parameters, with the value of the LJ energy param-
eter εLJ for each of the non-bonded interactions constrained to
be initially 0.1 ≤ εLJ < 1 in order to prevent extensive aggrega-
tion. The constraint on εLJ was removed for the iterative proce-
dure. Bonded interactions were optimised first, by comparing the
target distributions from the AA trimer simulations with distribu-
tions from an equivalent CG system. The non-bonded parameters
were then optimised by comparing the target distributions from
the AA monomer simulations with distributions from an equiva-
lent an equivalent CG system. The volume of the CG system was
fixed at approximately the average volume of the equilibrated AA
system in each case. Further details of the coarse-graining proce-
dure are given in the ESI, Section S3.

Optimising the non-bonded interactions independently of, and
after, the bonded interactions as we have done can potentially
perturb the bonded distributions so that they no longer match the
corresponding AA distributions. We verified that this was not the
case by comparing the AA bonded distributions to those obtained
from a 100 ns simulation of the CG model with the parameterised
bonded and non-bonded interactions (ESI Section S3.3). Good
agreement between the AA and CG distributions was still found
in all cases. The final bonded and non-bonded parameters are
given in the ESI in Section S14.

2.2.1 Solvent quality

To model a range of solvent conditions, we defined two additional
sets of non-bonded CG parameters to approximate solvation in a
poorer solvent and a better solvent than DCB. The IBI method
used in this work relies on the AA reference systems being ho-
mogeneous, which makes it challenging to parameterise models
in poor solvents, in which extensive aggregation is expected. In-
stead of explicitly parameterising the model in other solvents, we
adopted a simpler approach of scaling the non-bonded parame-
ters obtained in DCB to give either 20% stronger or 20% weaker
interactions. These two cases will be referred to as the poor sol-
vent and the "good" solvent, respectively. The system with the
original parameters, parameterised in DCB, will be called the in-
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termediate solvent. It is important to note that some aggregation
occurred in the CG simulations with all three of these solvent con-
ditions, which means that all were, according to the conventional
polymer physics definition, relatively poor solvents. We therefore
use the terms "good" and intermediate to refer to the better sol-
vents, in which, according to UV–vis spectra of P(NDI2OD-T2) in
solvents such as DCB and chlorobenzene, only intermediate ag-
gregation is observed.10,12 The non-bonded parameters and po-
tentials for these three cases are given in the ESI, Section S14.

To confirm that the scaled solvent parameters were reasonable
representations of the behaviour of P(NDI2OD-T2) in a better
and a poorer solvent than DCB, we calculated the free energy as
a function of backbone centre-of-mass separation in AA systems
of two P(NDI2OD-T2) monomers in DCB, 1-chloronaphthalene
(a better solvent than DCB), and toluene (a poorer solvent than
DCB, and one of those shown to promote extended rod-like struc-
tures experimentally10). This free energy was compared with
the equivalent free energy calculated for CG monomers with the
poor, intermediate, and "good" solvent parameters. Free energies
were calculated using on-the-fly probability enhanced sampling
(OPES),77 which, similarly to metadynamics,78 facilitates the
exploration of the probability distribution of interest (here that
of the centre-of-mass separation) by depositing small repulsive
Gaussians (kernels) in collective-variable space over the course
of the simulation in order to bias the system against exploring
regions it has already visited. Further details on the method are
given in the ESI, Section S4.1. These calculations were carried out
using the PLUMED software package, version 2.5.4.79,80 Compar-
ing the final free energy curves as a function of centre-of-mass
separation showed good agreement between the "good" solvent
parameters and 1-chloronaphthalene, the as-parameterised DCB
model and its AA equivalent, and the poor solvent parameters
and toluene (ESI Fig. S15). This finding confirms that the poor
solvent conditions used here should be a reasonable representa-
tion of the conditions that have been experimentally been shown
to give extended rod-like aggregates.

2.2.2 Backbone flexibility

As the folding of single polymer chains has been shown to depend
on backbone stiffness,30–32 we examined two different backbone
stiffnesses quantified by the Kuhn length: the as-parameterised
stiffness (which we will refer to as "regular" stiffness), and a more
flexible chain (referred to as "flexible"). To model the more flex-
ible chain, the coefficients of the 1(7)–3–3 angles and 3–7–7–1
dihedral were reduced to 1% of the values of the regular stiffness
backbone (see ESI Section S14 for parameters and plots of these
modified potentials), reducing the Kuhn length of the chain by
30–40% in the "good" solvent (ESI Fig. S16).

2.3 Coarse-grained simulations
In order to determine the effects of the rates of single-chain fold-
ing and multi-chain aggregation, solvent quality, and backbone
stiffness on the final aggregate structure, we examined the folding
of a number of isolated single-chain systems of various molecular
weights as a function of backbone stiffness and solvent quality,
as well as multi-chain systems representative of the experimen-

tal systems studied in ref. 10. All simulations were conducted at
constant volume and temperature using Langevin dynamics.

2.3.1 Single-chain simulation

Single-chain simulations were conducted for the two backbone
flexibilities and the two extremes of solvent quality ("good" and
poor). To examine the effect of molecular weight on folding ki-
netics, four different chain lengths were studied: 10, 20, 30, and
40 monomers, corresponding to Mn ≈ 10, 20, 30, and 40 kDa,
respectively (40 monomer chains were only simulated with the
regular-flexibility backbone in the poor solvent). Simulations of
a 20mer with a regular-flexibility backbone in the poor solvent
were also conducted with a 10× lower friction coefficient, to de-
termine the effect of solvent viscosity on the rate of single-chain
folding. A number of independent simulations were conducted
for each system type, with each initially run with non-bonded
interactions modelled using purely repulsive Weeks–Chandler–
Andersen (WCA) potentials to give an extended chain conforma-
tion characteristic of a good solvent, before switching to the CG
LJ potentials to determine the time scale of single-chain folding.
To obtain an accurate estimate of the folding time, which varied
with the system parameters, a system-dependent simulation du-
ration was used. Details of the simulation procedure are given in
the ESI (Section S5.1), with a list of the systems studied and key
parameters in Table S1.

2.3.2 Multi-chain simulation

Multi-chain simulations were conducted for systems of 10, 20,
30 and 40mers of P(NDI2OD-T2) in the "good", intermediate,
and poor solvents, with flexible (poor solvent only) and regular-
flexibility (all three solvents) backbones. The P(NDI2OD-T2) sys-
tem studied in SAXS experiments that showed extended aggre-
gates consisted of approximately 30-monomer chains at a con-
centration of 5 g/L.10 Assuming a simulation box roughly three
times the polymer contour length to avoid finite-size effects, a
system of 30mers at this concentration would contain too many
atoms to be easily simulated on the µs time scale. Instead, we
focused most of this work on the shorter 20mers. Even shorter
(10mer) and longer (30mer, 40mer) chains were also considered
for a few select cases. In order to achieve approximately the same
behaviour as the experimental 30mer system, we set the concen-
tration of each system so that the ratio of the polymer volume
fraction, φV, to the overlap volume fraction, φ∗, was approxi-
mately the same for all chain lengths, and close to that in the
SAXS experiments. This choice was motivated by recent work
that showed the concentration of a polymer solution relative to
the polymer overlap concentration to be a key predictor of OSC
device performance due to its effect on the extent and type of
aggregation.17 Making the crude approximation of ideal chains
gives φ∗ ∝ 1/N1/2 for polymer chain length N, and so constant
φV/φ∗ corresponds to constant φVN1/2. The concentrations that
gave the same φVN1/2 as the experimental system of 30mers at
5 g/L were 4 g/L for 40mers, 6 g/L for 20mers and 8.5 g/L for
10mers. Unless otherwise stated, the results presented below are
for these concentrations. A number of additional systems were
studied at different φVN1/2 to elucidate the effect of concentration
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on multi-chain aggregation. As with the single-chain simulations,
the chains were first allowed to relax to conformations consistent
with a good solvent by initially using purely repulsive WCA non-
bonded interactions, before switching to the CG LJ potentials. A
detailed description of the simulation procedure is given in the
ESI (Section S5.2), with a list of the systems studied and key pa-
rameters in Table S2.

3 Results and discussion

3.1 Solution-phase behaviour of P(NDI2OD-T2)

We begin by analysing the solution-phase morphology of multi-
chain systems of P(NDI2OD-T2) in "good", intermediate, and poor
solvents. Aggregate properties and the kinetics of aggregate for-
mation were analysed in a number of ways. For all analyses, two
chains were considered to be in the same aggregate if any of their
monomers had a backbone centre-of-mass separation of less than
7 Å. In all cases, aggregation occurred through interactions of the
NDI groups (CG site types 2, 3, and 6) in the π-stacking direction.
This highly anisotropic aggregation behaviour is consistent with
expectations for conjugated polymers, whose attractions in the
π-stacking direction are substantially stronger than via the alkyl
side-chains, highlighting the importance of accurately capturing
the shape anisotropy of the monomer unit.

Aggregate size (number of chains) The size of an aggregate,
Nagg, was defined the number of chains that it contained. Fig. 2a
shows the growth over time t of the average aggregate size,
⟨Nagg(t)⟩, in each solvent. For 20mers in the poor and interme-
diate solvents, aggregation initially occurred rapidly, with the av-
erage aggregate size approaching three chains in the intermedi-
ate, and four chains in the poor solvent, after 3 µs. In the bet-
ter ("good") solvent, aggregation occurred much slower, with the
average aggregate size remaining under 2 chains, indicating the
presence of many unaggregated chains. The time dependence
appears to be roughly independent of chain length at the same
φVN1/2 (see ESI Fig. S17), but shows a strong dependence on
concentration, which will be discussed further in Section 3.3.

To get a better understanding of the long-time behaviour in
the "good" solvent, which should be representative of solvents in
which some aggregation is expected but the formation of rod-
like aggregates is not, we conducted the same simulation with
lower friction in order to speed up the dynamics of the system.
Although this will not accurately capture the kinetics of aggrega-
tion in a realistic solvent, the equilibrium behaviour should be the
same. Aggregation in this low-friction system occurred faster, as
expected, but extensive aggregation was still not observed, with
the average aggregate size remaining below 2 (Fig. 2a).

Aggregate conformation (radius of gyration) The experimen-
tal SAXS results showed that P(NDI2OD-T2) aggregates in ex-
tremely poor solvents may be significantly larger than in better
solvents, and have a rod-like structure.10 The conformation of ag-
gregates in solution was characterised by their radius of gyration,
Rg. Over time, as the average aggregate size increased, we ob-
served a corresponding increase in the root-mean-squared (RMS)
Rg (Fig. 2b). Separating this into the Rg of aggregates of a specific
size showed that as the aggregate size (Nagg, number of chains)

0 1 2 3 4
t ( s)

1

2

3

4

5

N
agg

(t)

(a)
poor

intermediate

"good"

low friction

0 1 2 3 4
t ( s)

6

7

8

9

10

R
2 g(t

)
(n

m
)

(b)
poor

intermediate

"good"

low friction

Fig. 2 (a) Average aggregate size (number of chains in aggregate) and

(b) RMS aggregate radius of gyration versus time. Low-friction results

in the "good" solvent are also shown (dotted blue line). Shaded regions

indicate 95% con�dence intervals based on two replicate simulations. The

horizontal black line in (b) indicates the RMS Rg of a 20mer over the �nal

2 µs of the single-chain simulations in "good" solvent conditions. Inset

images in (b) show snapshots of the same aggregate in a poor solvent

at 0.7 µs and 4 µs, highlighting the more ordered, rod-like structure at

later times.
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increased, the RMS Rg of the aggregate also increased beyond
that of a single chain much more rapidly than would be expected
if stacking in a perfect π-stacking arrangement (Fig. 3). Examin-
ing the evolution of the aggregate structure over time (see e.g. the
structures inset in Fig. 2b) shows an aggregation mechanism in
which chains initially collide with random backbone orientations,
before ‘zipping’ up to form a more rod-like structure. Although
the aggregates are still relatively small, this behaviour is indica-
tive of the formation of extended aggregates in which chains are
not fully overlapping. Due to computational constraints, it is chal-
lenging to model a system large enough to form aggregates with
Rg much larger than observed here. However, the trend towards
more extended structures suggests that the formation of larger,
extended aggregates is expected.

0 10 20 30 40 50 60
Nagg

10

20

30

R
2 g

 (n
m

)

poor
intermediate
"good"
stacked scaling

Fig. 3 RMS radius of gyration as a function of aggregate size for 20mers

in varying solvent qualities, averaged over the entire simulation. The

horizontal solid black line indicate the RMS Rg for a single 20mer in the

"good" solvent conditions, calculated as described in Fig. 2. The dotted

black line is an approximation of the radius of gyration of an aggregate

with fully overlapping chains that form a rectangular block, calculated as

R2
g =

(
L2/12

)
+
(
R2/12

)
where L is the contour length of a single polymer

chain (approximated as 20× 1.4 nm for a chain of twenty 1.4-nm-long

monomers), and R is the aggregate dimension in the π-stacking direction,

in which each additional chain is assumed to add 0.4 nm.

3.2 Partially overlapping chains lead to extended aggregates
in poor solvents

The results presented in the previous section show behaviour con-
sistent with the formation of extended, multi-chain aggregates
in poor solvents, as observed experimentally.10 Although the in-
crease in Rg is relatively limited due to system-size and time-scale
limitations, the steady growth of the RMS Rg with aggregate size
suggests that large aggregates are feasible, with values already
reaching multiple times that of a single chain. Previous Monte
Carlo simulations of a generic bead–spring model of a semiflexi-
ble polymer34 indicated that the thermodynamically favoured ag-
gregate in a poor solvent is one in which all monomers between
chains overlap to give a fully stacked bundle of chains. How-
ever, the formation of fully overlapping aggregates cannot explain
the large values of Rg observed experimentally or in our simula-
tions in a poor solvent. Instead, to explain the observed forma-

Npair = 4
Npair = 6

Ntotal = 6 + 4 = 10

Ntrap = 3

Fig. 4 De�nitions of order parameters quantifying chain overlap (for the

green chain). Npair is the number of overlaps between a single pair of

chains. Ntotal is the overlaps between a chain and any other chain. Ntrap
is the number of monomers on the speci�ed chain that have a monomer

from a di�erent chain on each face.

tion of large rod-like structures, chains must not be fully overlap-
ping, allowing for the growth of the aggregate in a brickwork-like
fashion. For non-overlapping chains to lead to significant growth
of aggregates, it is necessary that these incompletely overlapped
chain pairs be sufficiently stable that they are inseparable, or at
least do not separate on the time scale of further aggregation,
such that they become effectively trapped as additional chains
are incorporated into the aggregate.

To characterise whether polymer chains in aggregates were
overlapping or not, and whether they were likely to be trapped in
those structures, we have defined three order parameters: Npair,
Ntotal, and Ntrap, as illustrated in Fig. 4. For all three quantities,
monomers were considered to overlap if their centre-of-mass sep-
aration was less than 7 Å. Npair defines the number of overlapping
monomers between a given pair of polymer chains. A value < N
(or Npair/N < 1), where N is the polymer chain length, indicates
that two chains only overlap partially. Ntotal extends this param-
eter to include the number of overlapping monomers between a
chain and any other chain. Therefore, a value of N (or Ntotal/N
= 1) indicates either a pair of fully overlapping chains, or a chain
that is fully covered by multiple other chains in a partially over-
lapping fashion. Finally we considered monomers to be trapped
in an aggregated structure if they had a monomer on each face.
Ntrap was thus defined as the number of monomers in aggregates
that overlap with two other monomers on separate chains.

Chain overlap fraction As incompletely overlapping chains are
required to give a substantial increase in Rg as aggregates grow,
we first examined the number of overlaps between pairs of chains,
Npair. Only chains with overlaps were counted so this variable has
a minimum value of 1. Fig. 5a shows the evolution of ⟨Npair⟩ over
time for 20mers in the three different solvent conditions studied.
By approximately 1 µs, the average overlap fraction ⟨Npair⟩/N of
20mers in the poor solvent has converged to 0.4 (8 overlaps) and
does not appear to increase further over the rest of the simulation.
This is well below the expected 100% overlap predicted previ-
ously as the equilibrium structure.34 In the "good" solvent, how-
ever, ⟨Npair⟩/N is still increasing, albeit very slowly. In better sol-
vents, we expect that chains are able to separate rapidly enough
that less thermodynamically favourable structures, being those
held together by only a few monomers, do not become kinetically
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trapped by the aggregation of more chains around them. Over
time, this behaviour, where thermodynamically less favourable
partially overlapping chains can separate, should give aggregates
that tend toward the expected thermodynamic minimum of fully
overlapping (⟨Npair⟩/N = 1) chains. While Fig. 5a suggests that
this process may be occurring, especially in the "good" solvent, the
time scale of this process appears to be too long to observe full re-
arrangement within the simulation duration. We have compared
the behaviour in the "good" solvent with an equivalent system
with lower friction to elucidate the equilibrium behaviour. This
low-friction system showed greater overlaps between aggregated
chains, indicating that when able, the system appears to converge
towards the expected equilibrium (fully overlapping) behaviour.

Comparing the behaviour for different chain lengths at the
same φVN1/2 (ESI Fig. S18), a slightly lower average overlap frac-
tion ⟨Npair⟩/N was observed with increasing chain length, which
may be attributed to faster folding of the longer single chains.
This behaviour will be discussed in more detail in Section 3.3. It
should also be noted that we have assumed ideal chains in us-
ing φVN1/2 to scale the polymer concentration, from which the
behaviour of our CG model in poor solvents is likely to deviate.

Stability of partially overlapping aggregates The differences
in the evolution of ⟨Npair⟩ over time in the "good" and poor sol-
vents, with the structure able to rearrange towards fully overlap-
ping in the "good" solvent but trapped in partially overlapping
structures in poorer solvents, suggests that aggregation through
fewer monomers is sufficient to hold two chains together as sol-
vent quality decreases. If partially overlapping chains are effec-
tively inseparable, at least on the time scale of becoming trapped
by further aggregation, a build-up of extended aggregates with
increasing Rg will occur.

The strength of the attraction between two monomers in the
different solvents was estimated from the free energy as a func-
tion of intermolecular separation calculated from OPES simula-
tions (Fig. 6). Although this free energy was calculated as a func-
tion of distance only (i.e. not considering the orientation of the
particles, which is important for distinguishing different aggre-
gate geometries), the minimum at ≈4 Å is due almost exclusively
to π-stacked structures as it is the only configuration that allows
such close packing. The free energy preference for aggregation
of a pair of monomers was approximately 3.8 kcal/mol (6.4 kBT )
in the poor solvent, 2.2 kcal/mol (3.7 kBT ) in the intermediate
solvent, and 0.9 kcal/mol (1.5 kBT ) in the "good" solvent (kBT
at T = 300 K). In the poor solvent, this attraction is sufficiently
strong that even chains held together by a single monomer are
unlikely to separate often, allowing for the build-up of large ag-
gregates. Additionally, the convergence of ⟨Npair⟩/N to a value far
less than 1 in the poor and intermediate solvents (Fig. 5) indi-
cates that with an average Npair of just 8 in the poor solvent, the
average number of overlaps neither decreases nor increases with
time. This finding again indicates that chains that are much less
than fully overlapping are stable for long periods of time in the
poorer solvents.

Trapping of aggregates Although it appears that aggregates in
which chains overlap by only a few monomers are stable enough
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Fig. 5 Average (a) chain overlap fraction ⟨Npair⟩/N, (b) total overlap
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time in multi-chain 20mer systems in di�erent solvents. The dotted blue
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system can be found in the ESI (Fig. S15).

that the chains become effectively inseparable, further aggrega-
tion, by which new chains create stacked structures in which parts
of a central chain are sandwiched between two other chains, may
result in trapping of the non-equilibrium structure, making these
partially overlapping structures even more long-lived. We have
quantified this behaviour via Ntrap, the number of monomers that
have a monomer on each face (Fig. 4). This variable increased
over time in the poor and intermediate solvents, but did not go
above zero in the "good" solvent over the simulation duration
(Fig. 5c), highlighting again that the chains in the "good" solvent
should be able to rearrange towards the fully overlapping struc-
ture, whereas those in the poorer solvents will eventually become
trapped in partially overlapping structures.

3.3 Single-chain folding is slower than multi-chain aggrega-
tion for sufficiently stiff backbones

The results of the previous section show that multi-chain
P(NDI2OD-T2) aggregates in which pairs of chain do not fully
overlap are sufficiently stable in the poor solvent that they do
not separate on the time scale of further aggregation. A further
condition that must be satisfied for the build-up of extended rod-
like aggregates is that the chains must aggregate before they are
able to fold into more compact conformations. Thus, we turn our
attention to the relative rates of single-chain folding and multi-
chain aggregation.

Single-chain folding: expected structure and kinetics Single
CG P(NDI2OD-T2) chains were studied in the poor solvent for
flexible and regular-flexibility backbones of length 10, 20, and
30 monomers. 40mers were considered only for the regular-
flexibility chains. The single-chain conformation was charac-
terised by the radius of gyration Rg and shape anisotropy κ2, de-
fined as

κ
2 =

3
2

λ 4
x +λ 4

y +λ 4
z

(λ 2
x +λ 2

y +λ 2
z )

2 − 1
2
, (3)

where λi are the eigenvalues of the gyration tensor. The shape
anisotropy is 0 for a spherical aggregate, and 1 for a linear ag-
gregate, allowing rod-like aggregates to be distinguished from
more disordered structures that are likely to be closer to spher-
ical. Based on these characteristics, three broad classes of struc-
ture were observed: the extended chain (large radius of gyra-
tion, shape anisotropy > 0.5), hairpin (smaller radius of gyra-
tion, shape anisotropy > 0.5), and toroid (small radius of gyra-
tion, shape anisotropy < 0.5). Over 80 independent 10–25 µs
simulations, most chains (whether regular or flexible) displayed
a transition to a folded conformation within 10 µs. The excep-
tion to this behaviour was the 10mers, which were too short to
consistently give folded structures within the 25 µs time period,
assuming the folded structure even has significant probability at
equilibrium for such short chains. Collapsed structures were ei-
ther hairpins or toroids, with the 2D distributions as a function
of Rg and κ2, calculated at early (0.5–1 µs, corresponding to the
time required to achieve an average aggregate size ⟨Nagg(t)⟩ ≈ 2
in the multi-chain simulations), intermediate (4.5–5.5 µs), and
late times (9–10 µs) given in Fig. 7 (early time) and in the ESI,
Fig. S19 (intermediate and late time). Fig. 7 highlights that, while
some chains may have folded by 1 µs, most chains, especially for
the regular-flexibility backbones, remained extended on the time
scale of initial multi-scale aggregation. The more flexible back-
bones fold faster, and a greater proportion of these are expected
to be folded prior to multi-chain aggregation occurring. Equiva-
lent 2D histograms for the 40mers are given in the ESI in Fig. S20.

An approximate time scale for single-chain folding, τs, was de-
termined as the average time for two monomers in the chain to
come into contact (defined as a center-of-mass separation of 7 Å,
averaged over 80–100 (or 20 for flexible chains) independent
single-chain simulations), consistent with the definition used in
previous work for the folding of semiflexible polymers.38 We will
refer to this as the "first-contact time". This definition of the fold-
ing time assumes that, once in contact, the chain does not unfold,
which is consistent with the observed behaviour. It also assumes
that all chains fold (form at least one contact) within the simu-
lation duration; however, while all the longer chains, and flexi-
ble chains of any length, folded, only ≈75 % of the 10mers with
the regular-flexibility backbone folded within the simulation du-
ration. For those that did not fold, the first-contact time was set to
the simulation duration (e.g. 25 µs for 10mers) for the purposes
of calculating the folding time. The calculated folding time in this
case is therefore a lower bound on the actual folding time.

The folding time was found to be 0.5–1 µs for flexible chains
and 1.7–9 µs for regular chains (Table 1). The slower chain col-
lapse for stiffer chains is consistent with previous reports on the
collapse dynamics of single semiflexible chain as a function of
flexibility.35 In terms of the dependence of the kinetics of chain
collapse on molecular weight (chain length), scaling of the fold-
ing rate with N1/3 has been previously reported,38 and the be-
haviour of the single chains in this work is consistent with this
scaling (ESI Fig. S21).

Kinetics of multi-chain aggregation The aggregation kinetics
were approximated based on the depletion of single chains in so-
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Fig. 7 2D histogram of the radius of gyration Rg and shape anisotropy κ2

calculated over 80 independent single-chain simulations of various chain

lengths in poor solvent conditions. The distributions were calculated over

the period 0.5�1 µs, corresponding to the time by which the average

aggregate size ⟨Nagg(t)⟩ in the poor solvent for both �exible and regular

backbones was approximately 2 in the multi-chain simulations. The Rg
is normalised by Rg,max, the Rg of a fully extended rod, with R2

g = L2/12
and L = 1.4 nm per monomer. Representative conformations are shown

near their corresponding peak in the distribution. The colour scale is the

same in all cases with darker regions corresponding to higher probability.

Table 1 Single-chain folding time, τs, multi-chain aggregation time, τc,

and estimated critical concentration c† at which τs = τc from simulations

in the poor solvent for varying chain �exibility, chain length N, and solvent
friction coe�cient γ. In cases where τc is not given, the single-chain

concentration in the multi-chain systems remained higher than 25% of

the initial concentration over the simulation duration.

flexibility N γ (ps−1) τs (µs) τc (µs) c† (g/L)
regular 10 20 11.4 ± 2.0 0.42 ± 0.06 1.6 ± 0.2
regular 20 20 3.37 ± 0.81 0.69 ± 0.09 2.7 ± 0.4
regular 30 20 2.32 ± 0.57 0.79 ± 0.13 2.9 ± 0.4
regular 40 20 1.74 ± 0.36 1.65 ± 0.67 3.9 ± 0.9
regular 20 2 0.37 ± 0.18 0.056 ± 0.003 2.4 ± 0.9
flexible 10 20 0.98 ± 0.33 – –
flexible 20 20 0.56 ± 0.20 – –
flexible 30 20 0.45 ± 0.23 – –

lution, from which the aggregation time τc was approximated as
the time for the concentration of unaggregated chains in solu-
tion to fall to 25% of the original concentration. This proportion
corresponded to an average aggregate size of ≈2–2.5 in the sim-
ulations in the poor solvent, and so this definition should be rep-
resentative of the characteristic time scale of multi-chain aggre-
gation. The values of τc for the multi-chain systems studied are
given in Table 1 alongside the time scales of the corresponding
single-chain folding. For 20mers of regular backbone flexibility in
the poor solvent, the aggregation time scale is almost five times
shorter than that for single-chain folding.

Controlling relative rates of single-chain folding and mul-
ti-chain aggregation As the multi-chain behaviour described
above is kinetically controlled, it is expected to depend on the
concentration of the system. Assuming that multi-chain aggre-
gation is a diffusion-limited bimolecular process that occurs via
binary collisions (all of which lead to aggregation) between ag-
gregates and is dominated by the aggregation of single chains to
give an aggregate of two chains, as shown in ESI Section S9, for
the conditions studied here under which aggregation occurs on
times scales significantly shorter than R2/D, where R is the typi-
cal size and D the typical diffusion coefficient of the aggregating
species, the aggregation time scale can be approximated as

τc ≈ f (N)/c2, (4)

where c =CN is the monomer concentration (or, equivalently, the
mass concentration) for chains of length N and concentration C,
and f (N) is a function of N that depends on system properties be-
sides c. We define a critical monomer (or mass) concentration c†

above which multi-chain aggregation is expected to be faster than
single-chain collapse, by setting τc = τs. Combined with eqn (4),
this gives

c†(N)≈
(

f (N)

τs

)1/2
, (5)

where f (N) can be determined from τc and c measured in the
multi-chain simulations. The value of this concentration for
regular-flexibility backbones of different chain lengths, N, in the
poor solvent is shown in Fig. 8.

If D ∼ Nβ and R ∼ Nν , where β and ν are scaling exponents,
the scaling of f (N)∼ N(2−β−4ν) is predicted; then, assuming that
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mer chain length in the poor solvent. For 10 and 20mers, there are
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length, calculated using τc from multi-chain simulations at di�erent con-

centrations. The solid circles are values calculated from the Langevin

dynamics simulations (i.e. with no hydrodynamic interactions (HI)). The

red curves are power-law �ts to these data, either with the �t parameters

unconstrained (solid line) or with the power-law exponent constrained to
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τs ∝ Nα , eqn (5) predicts the scaling (see ESI Section S9)

c†(N)∼ N(1−α/2−β/2−2ν). (6)

We showed previously that α ≈ −1/3. Given that the polymer
conformation was initially that in a good solvent, ν ≈ 0.6 accord-
ing to the Flory theory.28 In the absence of hydrodynamic interac-
tions, which are neglected in the Langevin dynamics simulations
that we have used, the polymer diffusion coefficient is expected to
scale with N−1,81 so β =−1. Thus, under conditions correspond-
ing to this work, eqn (6) predicts a scaling of c† ∼ N0.47. The
best-fit scaling observed in the simulations was c† ∼ N0.58, which
is reasonably close to the predicted scaling given the significant
approximations made in this simple theory. Note that, account-
ing for statistical uncertainty, the theoretical N0.47 scaling is also
consistent with the simulation values in Fig. 8.

Arguably the most significant assumption in the theory is that
aggregation only occurs between two single chains to give an ag-
gregate of size two. This is not the case for the simulations stud-
ied in this work, in which many aggregates form containing more
than two chains (see Fig. 3). In addition, the definition of τc as
the time taken for the concentration of single chains to fall to
25% of the original concentration, although consistent with the
notion that the aggregation time scale should correspond to when
most chains are in aggregates, is somewhat arbitrary. However,

according to the theory in ESI Section S9, the specific choice of
this proportion (x) of single chains used to define τc is not ex-
pected to affect the scaling of c† with N, although c† at a given N
is predicted to scale with (x−1 −1).

Another simplifying assumption of the theory used to derive the
scaling of c† with N is that the process of single-chain folding does
not affect the multi-chain aggregation rate. As chains fold, they
gradually become more compact, reducing the diffusion-limited
collision rate between chains. Thus, there is a complex interde-
pendence between the single-chain folding and multi-chain ag-
gregation that cannot be fully captured by the simple theory used
here. This means that the estimated critical concentrations are a
lower bound: accounting for chain collapse during aggregation
will increase the concentration at which aggregation dominates
single-chain collapse. Nevertheless, especially for the shorter
chains, for which the size difference between a fully extended
and collapsed chain is less significant, the calculated concentra-
tions should be a reasonable approximation to the actual concen-
trations at which folding occurs as fast as interchain aggregation.

Although these simulations used Langevin dynamics, in which
hydrodynamic interactions are neglected, an approximate cor-
rection to account for the effect of hydrodynamics on the poly-
mer diffusion coefficient can be applied based on the Kirkwood
formula for the translational diffusion coefficient of a macro-
molecule81,82 (see ESI Section S9, eqns (S50)–(S57)). This
amounts to

c†
HI = c†

noHI

(
Nν

N +Nν

)1/2
(7)

≈ c†
noHIN

1
2 (ν−1), for N ≫ 1,ν < 1. (8)

The values of c† obtained from eqn (7) are included in Fig. 8,
along with the theoretical scaling of c†

HI ∼ N0.27 from eqn (8) with
ν = 0.6, corresponding to the initial good-solvent conformation of
the polymer chain. Note that the rate of single-chain folding was
not adjusted for hydrodynamic interactions as it is expected to
depend on the rate of monomer diffusion rather than that of the
whole polymer.83 The monomer diffusion coefficient was param-
eterised in the CG Langevin dynamics simulations to match that in
the explicit-solvent AA simulations, which include hydrodynamic
interactions. Accordingly, the Langevin dynamics simulations ef-
fectively account for hydrodynamics at the monomer level.

The predicted values of c† (including hydrodynamic interac-
tions) under conditions corresponding to those used in the work
of ref. 10 (30mers, c ≈ 5 g/L) and ref. 12 (180mers, c < 1 g/L)
can help explain the contrasting observations in these studies. For
30mers, such as those used in ref. 10 for which extended rod-like
aggregates were observed, the critical concentration is predicted
to be approximately 1 g/L, well below the concentrations used in
the experiments. At concentrations of 5 g/L (roughly correspond-
ing to the concentrations used in the simulations conducted in
this work) multi-chain aggregation is therefore expected to domi-
nate single-chain collapse, giving rise to the observed rod-like ag-
gregates. The effect of concentration on the behaviour of a num-
ber of different systems that are otherwise identical is given in
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the ESI in Fig. S22, highlighting that more rapid aggregation, and
the formation of larger aggregates, is indeed observed at higher
concentrations, with the conccentration dependence of the aggre-
gation rate with eqn (4). Extrapolating the observed chain length
dependence (Fig. 8) to longer chains (e.g. 180mers, consistent
with ref. 12), single-chain folding is expected to be the dominant
pathway at concentrations up to approximately 2.4 g/L. These
concentrations are above those used in the experiments of up
to 1 g/L.12 The predicted folding behaviour is therefore consis-
tent with the experimental observations for these longer chains
at lower concentrations. This kinetic effect, by which the rel-
ative rates of single chain folding and multi-chain aggregation
are important for predicting the aggregate structure, reconciles
the apparent discrepancy between the experimental studies, and
highlights the importance of both concentration and chain length
for achieving the desired thin-film morphology.

It is important to note here that c† scales very differently with
N compared with the overlap volume fraction φ∗, which has been
used previously17 to predict aggregation properties. The work
of ref. 17, which considered a single polymer (DPP-DTT, which
is significantly different chemically to P(NDI2OD-T2)) at concen-
trations close to the overlap concentration, suggested that the op-
timal concentration for achieving high-performing organic field-
effect transistor (OFET) devices is the polymer overlap concentra-
tion. If this is the case, the optimal concentration is expected to
decrease with N, and c† should be roughly constant for constant
φVN1/2 (approximating φ∗ ∼ φVN1/2). Fig. S23a shows that this
is not the case for the simulations in this work, with the value of
φVN1/2 at which τs = τc scaling roughly linearly with N.

Our work suggests that there is a lower concentration than the
overlap concentration, determined by the relative rates of single-
chain collapse and multi-chain aggregation, which might more ac-
curately predict the transition to extended aggregates correlated
with good device performance. It should be noted, however, that
the theory presented for the scaling of this critical concentration
(ESI Section S9) breaks down at the overlap concentration as ag-
gregation will be instantaneous (τc = 0) when the chains on aver-
age overlap, resulting in a critical concentration that is ill-defined.
The values of c† calculated from the short-chain simulations are
well below this overlap concentration (≈25 g/L for 30mers, as-
suming the size is the radius of gyration in a good solvent, and
higher for shorter chains), though are approaching the estimated
overlap concentration for 180mers (≈6 g/L, calculated using the
scaling of Rg with N obtained from the shorter chains in good sol-
vent). This calculated overlap concentration is, however, a lower
bound on the value, which will be higher in poor solvents where
single chains are more collapsed, so the estimated values of c† for
180mers are still expected to be reasonable.

Effect of solvent viscosity on relative rates of single-chain
folding and multi-chain aggregation All the previous analy-
sis was conducted using the same solvent viscosity (friction co-
efficient chosen to match diffusion of CG and AA monomers in
DCB) in order to facilitate comparison between different solvent
qualities. However, the viscosity of toluene (0.560 mPa·s at 25°C)
is approximately half that of DCB (1.324 mPa·s at 25°C).84 It is

therefore important that the effect of viscosity on the competi-
tion between single-chain folding and multi-chain aggregation be
considered, as it should affect the rates of both processes. Based
on the theory presented in the ESI (Section S9), the rates of both
single-chain folding83 and multi-chain aggregation are expected
to scale linearly with viscosity, as they both depend on the dif-
fusion coefficient of either the monomer or polymer, which from
the Stokes–Einstein equation are inversely proportional to solvent
viscosity.

To determine the effect of viscosity in the simulations, the
single-chain folding and multi-chain aggregation time scales were
calculated for a system with Langevin friction coefficient 1/10th
the value used for all other simulations in implicit DCB. The mea-
sured time constants for single-chain folding (τs) and multi-chain
aggregation (τc) are given alongside the DCB-viscosity results in
Table 1. Both the single- and multi-chain aggregation time scales
were found to scale approximately linearly with γ, indicating that
while viscosity will change τc and τs, it will do in such a way that
it is not expected to change the calculated value of c†. Indeed,
the low-viscosity system is included as one of the 20mer points
in Fig. 8 and shows roughly the same scaling of c† with N as the
higher viscosity points.

Effect of aggregation on backbone stiffness P(NDI2OD-T2)
consists of a fused-ring NDI system connected through a bTh
group. Flexibility of the backbone therefore comes largely from
the rotatable Th–Th and Th–NDI bonds. As aggregation occurs
in a manner in which both the NDI and Th groups π stack, ag-
gregation has the effect of reducing the flexibility of the chain.
The average Kuhn length b of each chain in a pair of aggregated
(fully overlapping, Npair/N = 1) 30mers from a simulation in the
poor solvent (20.0 monomers, assuming a monomer length of
1.4 nm) was found to be three times that of a single 30mer in
the same solvent (6.58 monomers), corresponding to a substan-
tial increase in bending rigidity. This increased backbone stiffness
means that folding of sections of the polymer where aggregation
has occurred becomes highly unlikely. Details of measurements
of the Kuhn length for these and other systems are given in the
ESI, Section S12.1.

To determine whether this regime, where the chains are so cov-
ered as to prevent further folding, is relevant for the aggrega-
tion observed here, the fraction of monomers in aggregates that
interacted with other monomers in any other chain was calcu-
lated. This variable, Ntotal/N, defined in Fig. 4, gives the total
number of monomer–monomer interactions between one chain
and any other chain. In the poor and intermediate solvents, this
quantity was in excess of 80% of the full chain length (about 16
monomers for 20mers; Fig. 5b) after 4 µs of simulation, indicat-
ing that chains that are in aggregates are almost fully covered by
other chains. Although the small regions where chains are not
overlapped may still be able to fold, the aggregates will be sub-
stantially stiffer than the single chains, and effectively stuck in
an extended state, from which the further build up of extended
rod-like structures can occur.

Effect of backbone flexibility on multi-chain aggregation To
better understand the effect of the single-chain folding kinetics
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on multi-chain aggregation properties, we examined the behav-
ior of the same P(NDI2OD-T2) polymer with the artificially flex-
ible backbone. Single chains of this flexible polymer exclusively
collapsed into more compact structures within the 10 µs single-
chain simulations, with relaxation times on the order of 1 µs,
rather than remaining extended (Figs. 7 and S19). At the same
concentration as the regular-flexibility 20mers (6 g/L), the flexi-
ble 20mers did not meet the metric discussed above for the cal-
culation of τc (single-chain concentration fallen to 25% of the
original concentration) within the simulation time of 3 µs. The
average aggregate size also remained below 2 chains over this en-
tire period. Given the value of τs of ≈ 1 µs for these chains, the
critical concentration c† must be > 6 g/L. For the concentrations
simulated, single-chain collapse therefore dominates multi-chain
aggregation for the flexible chains, in stark contrast to the stiffer
regular-flexibility chains.

Comparing the aggregate size (number of monomers) and ra-
dius of gyration of the flexible and regular-flexibility backbones
shows a slower rate of aggregate growth, and generally more
compact structures for the flexible chains than the stiffer regular
chains (Fig. 9), as expected from the relative rates of folding and
aggregation. This behaviour can be attributed to a more rapid col-
lapse into hairpin/toroid structures, which has the twofold effect
of reducing the collision rate due to the more compact structures,
and giving more compact structures when collisions do occur, as
chains may already be partially collapsed. Examining a system
with an even lower concentration (2 g/L) showed the same be-
haviour, with very little multi-chain aggregation observed over
the simulated time period (Fig. 9a). While there was still a brief
initial aggregation period, during which chains that were initially
positioned close to each other were able to aggregate prior to
folding, little aggregation was observed after this point with the
average aggregate size remaining well below 2 over the entire
simulation period. Although multi-chain aggregation is not com-
pletely prevented at this lower concentration, it is greatly sup-
pressed and could be expected to lead to different final aggregate
properties, as observed experimentally.10,12

The lower radius of gyration of the flexible chains in the poor
solvent observed in Fig. 9b could be attributed to both less aggre-
gation than for the regular-flexibility backbone and more com-
pact aggregates even when consisting of many chains. From the
behaviour in Fig. 9a, the flexible-chain aggregates were gener-
ally smaller (contained fewer polymer chains) than those with the
regular backbone flexibility, indicating that less aggregation does
occur as previously discussed. From examination of the Rg of ag-
gregates of various sizes (Fig. 10) it can also be seen that when
larger aggregates did form with the flexible backbone, they were
generally more compact (lower Rg) than their regular-flexibility
counterparts. Overall, the more rapid single-chain collapse of the
flexible polymer appears to lead to a stronger preference for in-
trachain aggregation compared with the regular-flexibility chain.
This has the combined effect of reducing the number of aggre-
gates, due to a lower probability of collisions between the more
compact aggregates, and giving slightly more compact aggregates
where aggregation does occur. Similar behaviour could likely be
obtained in a more dilute system of stiffer chains, which, although
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Fig. 9 Comparison of the multi-chain aggregation kinetics of �exible

and regular-�exibility 20mers in "good" and poor solvent. (a) Average

aggregate size (number of chains in aggregate) and (b) RMS radius

of gyration versus time. The horizontal black line in (b) indicates the

RMS radius of gyration for single regular-�exibility chains in the "good"

solvent, calculated as described in Fig. 2. Results for �exible chains in

the poor solvent at two concentrations that are expected to be lower

than c† (2 and 6 g/L) are also presented (dotted and dashed red lines).

they take longer to fold, could be expected to collapse prior to ex-
tensive multi-chain aggregation at low enough concentration.

4 Conclusions

The solution-phase morphology and dynamics of the organic
semiconducting polymer P(NDI2OD-T2) was studied using
coarse-grained molecular dynamics simulations in order to un-
derstand the reported formation of extended rod-like aggregates
in poor solvents. We found that sufficiently strong intermolec-
ular attractions (equivalent to poor solvent quality), for which
interaction through only a few monomers resulted in effectively
inseparable chains, led to the build up of extended aggregates of
partially overlapping chains with radii of gyration exceeding that
of a single chain. Over time, a trend towards more linear, rod-
like aggregates was also observed, consistent with experimental
results.10

We proposed that this behaviour, which is not predicted by ex-
isting theories of polymer solubility, in which decreasing solvent
quality is conventionally associated with the formation of com-
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pact aggregates, is a kinetic effect associated with the relative
rates of multi-chain aggregation and single-chain folding. The
formation of extended aggregates is expected under conditions
in which aggregation occurs faster than folding, assuming inter-
chain attraction is strong enough to hold chains together in an
only partially overlapping chain configuration. Firstly, we showed
that under conditions that correspond to P(NDI2OD-T2) in the
poor solvent toluene, at concentrations representative of exper-
iments in which rod-like aggregates were observed, aggregated
chains overlapping by only around 40% of their full chain length
were stable over the duration of the simulations. Under condi-
tions corresponding to a better solvent, this overlap fraction in-
creased over the entire simulation duration, and was expected to
reach close to the full chain length. This finding is consistent with
the difference between the experimentally observed behaviour in
good–intermediate and poor solvents, with rod-like aggregates
observed in the poor solvents, and structures in the better solvents
showing sizes consistent with single chains, despite some aggre-
gation occurring, suggesting almost fully overlapping chains.

For semiflexible polymers, a class that describes many organic
semiconductors, the folding of a single polymer chain is expected
to depend on the chain stiffness. By comparing coarse-grained
simulations of P(NDI2OD-T2) with a backbone parameterised to
match the flexibility of the all-atom model with those of a much
more flexible equivalent, we found more rapid folding of the flex-
ible chain. In both cases, the folding rate also displayed a chain-
length dependence, increasing with increasing chain length as has
previously been reported.38 By comparing the approximate time
scales characterising single-chain folding and multi-chain aggre-
gation in the poor solvent, we determined approximate concen-
trations at which each of these processes are expected to dom-
inate. A theory relating this critical concentration to the chain
length was developed, and the simulations were found to agree
well with the predictions. The critical concentration depended
both on backbone flexibility, with a more flexible backbone ex-

pected to result in predominantly single-chain folding at higher
concentrations than a more rigid one, and chain length, with
longer chains transitioning from single-chain folding to multi-
chain aggregation at higher concentrations due to their more
rapid folding. In comparing the simulated solution-phase be-
haviour of flexible and regular P(NDI2OD-T2) chains, this pro-
posed dependence was observed, with the more flexible chains
giving more compact structures and less multi-chain aggregation.
This finding rationalises apparent discrepancies between experi-
mental measurements of the P(NDI2OD-T2):toluene system10,12

and emphasises the importance of both concentration and chain
length on predicting solution-phase behaviour.

Overall, multi-chain aggregation, resulting in the formation of
extended rod-like aggregates, is expected to occur under condi-
tions in which (1) partially overlapping chains are inseparable
over sufficiently long time scales that they do not rearrange to the
energetically favourable fully-overlapped chains before becoming
trapped, and (2) single-chain folding occurs slowly enough that it
is not expected to occur before multi-chain aggregation prevents
further folding. The relative rates of the single- and multi-chain
pathways that control the second of these conditions depend on
the polymer concentration, chain length, and backbone flexibil-
ity. Although we have assumed these processes to be indepen-
dent, they are likely to show a complex interdependence, with
the progress along the single-chain folding pathway affecting the
aggregation rate. A more complex model that accounts for these
processes more completely, as well as explicitly including the ef-
fects of hydrodynamics, will further improve understanding of
the solution-phase behaviour of semiflexible polymers. Finally,
we have studied this behaviour using a coarse-grained model sys-
tematically parameterised to accurately represent P(NDI2OD-T2).
However, these results are not expected to be specific to this
molecule, with the reported dependence of the solution-phase
morphology on solvent quality, backbone flexibility, concentra-
tion, chain length, and solvent viscosity expected to be applicable
more generally to any semiflexible polymer.
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