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ABSTRACT: Photoinduced hydrogen atom transfer (HAT) has been developed as a powerful tool to generate synthetically valuable radical 
species. The direct photoexcitation of ketones has been known to promote HAT or to generate acyl radicals through Norrish-type pathways, 
but these modalities remain severely limited by radical side reactions. We report herein a catalyst- and transition metal-free method for the 
acylation of C–H bonds that leverages the unique properties of stable, isolable acyl azolium species. Specifically, acyl azolium salts are shown to 
undergo an intermolecular and regioselective HAT upon LED irradiation with a range of substrates bearing active C–H bonds followed by C–
C bond formation to afford ketones. Experimental and computational studies support photoexcitation of the acyl azolium followed by facile 
intersystem crossing to access triplet diradical species that promote selective HAT and radical-radical cross-coupling.

The power of light-driven chemical transformations has cap-
tured the attention of synthetic chemists for over a century. Some of 
the earliest examples of organic photochemistry include the photo-
reduction of ketones, first reported in 1885 by Klinger, Ciamician, 
and Silber.1 It was observed that the exposure of an ethereal solution 
of an aromatic ketone to sunlight slowly formed the reduced alcohol. 
Since then, countless photochemical transformations of ketones 
have been developed. Notable early innovations include the discov-
ery of Norrish-type photochemistry, wherein excitation to the triplet 
diradical state of ketones leads to rapid and uncontrolled fragmenta-
tion, abstraction, and coupling reactions. Norrish II and Norrish-
Yang reactivities stem from initial intramolecular hydrogen atom 
transfer (HAT) and have found various synthetic applications,2–7 in-
cluding natural product total synthesis.8,9 Norrish Type I chemistry, 
on the other hand, is the direct generation of an acyl and alkyl radical 
by ketone irradiation (Fig. 1A).2,10,11 Despite presenting an attractive 
solution to the generation of valuable radical species, this subset of 
photochemistry remains far less developed than its counterparts, pri-
marily due to the uncontrolled reactivity of its initial radical prod-
ucts.12–14 As such, strategies that could provide more controlled out-
comes from Norrish-type processes would enable powerful new syn-
thetic tools. 

HAT has gained significant attention as a powerful bond-form-
ing strategy in the past decade. Direct abstraction of hydrogen atoms 
offers a unique regio- and chemoselectivity compared to other meth-
ods of radical generation and avoids the need for prefunctionalized 
redox-active precursors. Many groups have developed methodolo-
gies that use HAT to generate radical fragments, often employing a 
co-catalyst that can abstract a hydrogen atom when activated.15–22 
Similarly, triplet state ketone-induced HAT has been employed in 

 
Figure 1. (A)  Norrish I photochemistry and selected products (B) 
Design and challenges of intermolecular triplet ketone HAT (C) Ef-
fective HAT acylation is achieved by leveraging acyl azolium triplet 
reactivity. 
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catalytic transformations on its own23–29 as well as in conjunction 
with transition metal catalysis.30 In these cases, however, the ketyl 
radical generated upon HAT is not incorporated into the final prod-
uct.  

We envisioned that a union of these two modes of photochemi-
cal reactivity could enable a catalyst-free transformation that directly 
links ketones with activated C–H bonds (Fig. 1B). A combination of 
triplet state ketone-driven intermolecular HAT with Norrish I-like 
radical-radical coupling would provide a new strategy for C–C bond 
formation. However, as demonstrated by several prior attempts, this 
combined intermolecular HAT/coupling suffers from several issues 
associated with Norrish I chemistry, including dimerization, frag-
mentation, and undesired secondary HAT between the newly gen-
erated radical pair.13,14,31 Recent reports by our group, Hopkinson, 
and others on single-electron N-heterocyclic carbene catalysis high-
light the utility of radical azolium species as stabilized acyl radical 
surrogates.32–49 Due presumably to their persistence, these radical 
species have been shown to avoid common radical side reactivity in 
favor of selective radical-radical cross coupling. We hypothesized 
that utilizing an acyl azolium as a triplet ketone reagent would enable 
our desired HAT/coupling reaction manifold (Fig. 1C). Our reac-
tion design then consists of irradiation of the target substrate with an 
acyl azolium. After excitation, acyl azoliums can readily undergo in-
tersystem crossing to access triplet diradical species.50 Subsequent 
HAT from a coupling partner generates a pair of radicals, which, due 
to the unique reactivity of the acyl azolium radical, could then selec-
tively cross-couple to provide a masked ketone. Finally, the desired 
acylated product could be liberated instantaneously by addition of 
base.51–53 

We began exploration and optimization of this triplet acylation 
strategy with stable benzoyl azolium 1a and N-Boc-pyrrolidine 2a. 
Thus, irradiation of a 0.1 molar solution of acyl azolium in 1,2-di-
chloroethane (DCE) with two equivalents of carbamate provided 
the desired ketone product 3a in 35% yield after base-mediated 
deprotection (Table 1, entry 1). Notably, no di- or polyacylated 
products were detected, which we hypothesize originates from the 
cationic character of intermediate 4a preventing further HAT from 
acyl azolium 1a due to Coulombic repulsion. The investigation of 
other solvents, including acetonitrile and trifluorotoluene, did not 
lead to improvements in reaction efficiency (Table 1, entries 2 and 
3). A screen of reaction concentrations demonstrated a correlation 
between yield and dilution, with lower concentrations providing 
higher yields of ketone 3a (Table 1, entries 4 and 5). Further in-
creases in yield were achieved by increasing the loading of carbamate 
2a and further decreasing the concentration (Table 1, entries 6 and 
7), which we hypothesize minimizes side reactivity between the 
transient ⍺-amino radicals.  
These reaction conditions were then employed to prepare a variety 
of ⍺-amino ketones. Notably, acyl azolium salts such as 1a can be 
prepared on multigram scale. Products 3b and 3c bearing benzyl car-
bamate and pivalate protecting groups, respectively, were prepared 
in good yields (Table 2). More complex carbamates were also toler-
ated under the reaction conditions without significant loss of yield 
(3d – 3f). Beyond pyrrolidine-based scaffolds, ketones containing 
Boc-protected azetidine, piperidine, and azepane were prepared in 
moderate yields (3g – 3i). Additionally, isoindoline ketone 3j was 
prepared in excellent yield. Linear amine-derived substrates were 
tolerated, and the corresponding ketones isolated in moderate-to-
good yields (3k – 3n). Finally, under these conditions, Boc-pro-
tected L-proline methyl ester and protected B5 provitamin 

dexpanthenol triacetate were successfully and selectively acylated 
(3o & 3p), demonstrating the utility of this methodology for the 
late-stage functionalization of high-value structures. 
Table 1. Optimization of Reaction Conditions. 

 

The scope of aryl acyl azoliums compatible with this methodol-
ogy was also investigated. Electron-withdrawing substituents (3q – 
3r) and electron-donating substituents (3s – 3u) were tolerated, 
providing the corresponding ketones in moderate-to-good yields. 
Halogenated acyl azoliums were also successfully employed in the 
acylation, affording para-, meta-, and ortho- substituted aryl ketones 
(3v – 3y). Acyl azoliums bearing functional handles for further di-
versification were tolerated, providing methyl (3z) and pinacol bo-
ronic ester-containing (3aa) ketones. Currently, acyl azoliums de-
rived from saturated carboxylic acids (e.g., hydrocinnamic acid) are 
not productive in these coupling processes and we are actively inves-
tigating the expansion of scope to engage these potential substrates. 

We also investigated the photoinduced hydrogen atom abstrac-
tion/acylation of substrates beyond carbamates and amides. Based 
on their relative C–H bond strength54,55 as well as prior reports,26,56–

59 we anticipated being able to functionalize benzylic, allylic, and ⍺-
oxo C–H bonds. We were delighted to find that our methodology 
successfully acylated tetralin, cyclopentene, and dibenzyl ether, 
providing the corresponding ketones (5a – 5c) without further op-
timization. This expands the utility of the methodology by synthe-
sizing benzylic ketones, β,γ-unsaturated ketones, and glycolic acid 
derivatives. Interestingly, applying our methodology to the methyl 
ester of lipid-lowering agent bezafibrate yielded the benzylic ketone 
5d in excellent yield instead of the ⍺-amido ketone. 

Several mechanistic studies were performed to elucidate the na-
ture of the triplet acyl azolium acylation. Control experiments em-
ploying 465 nm LEDs or omitting irradiation provided none of the 
desired ketone after basic workup, strongly suggesting that excita-
tion of the acyl azolium is key to the transformation (Scheme 1A). 
UV/Vis spectroscopic studies confirmed that the acyl azolium does 
not absorb above 400 nm (See Supporting Information page S30). 
Additionally, we were able to verify no change in UV/Vis absorption 
profile occurs when combining acyl azolium 1a and N-Boc-pyrroli-
dine 2a, eliminating the possibility of the formation of an electron 
donor-acceptor complex  (see Supporting Information page S31).60–

62 One additional control reaction omitting the addition of DBU led 
to none of the desired product per NMR spectroscopic or LC-MS 
analysis (Scheme 1A), further supporting the presence of an inter-
mediate that liberates the desired ketone upon workup. Experiments 
substituting acyl 
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Table 2. Substrate Scope of Triplet Azolium Acylation 

azolium 1a with other commonly employed acyl electrophiles did 
not provide any ketone 3a after workup, suggesting the acylation re-
activity is unique to the acyl azolium (Scheme 1B). A TEMPO-
trapping experiment was conducted by adding three equivalents of 
TEMPO to the standard reaction (Scheme 1C). TEMPO adducts 
of the acyl azolium (6) and of N-Boc-pyrrolidine (7) were detected 
by ESI-HRMS, strongly supporting the intermediacy of the two rad-
ical fragments. Additionally, ketone 3a was not detected after basic 
workup of the reaction mixture, indicative of a radical acylation pro-
cess inhibited by TEMPO (Scheme 1C). 

To further explore the proposed mechanism, we turned to dis-
persion-corrected density functional theory (DFT) calculations 
(Scheme 1D, see Supporting Information for additional details). As 
previously reported,63 acyl azolium 1a is calculated to reach the sin-
glet excited state S1 under violet or UVA irradiation. Time-depend-
ent density functional theory (TD-DFT) calculations at the B3LYP-
D3/Def2-SVP-CPCM level were used to study the excited state 
pathways (Scheme 1D) which show that S1 can undergo a favorable 
intersystem crossing to the second triplet (T2) excited state 
(DDE=1.8 kcal/mol),64 which can then rapidly undergo internal 
conversion to the lowest energy 
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Scheme 1: Mechanistic Studies, Density Functional Theory Calculations, and Proposed Reaction Pathway 

triplet excited state T1. To investigate the factors controlling selec-
tivity in the HAT step, we explored all possible sites for HAT (See 
Supporting Information page S32). Notably, analysis of the opti-
mized T1 structure indicated that spin density was primarily located 
on the oxygen atom, consistent with selective O–H bond formation 
(vs. C-H) in the HAT step (vide supra). Consistent with the ob-
served high regioselectivity of acylation, the hydrogen atom abstrac-
tion from the ⍺-amino C-H bond of the N-Boc-pyrrolidine takes 
place through a small energy barrier (TS-Ia, DG‡=0.5 kcal/mol; with 
respect to complexed intermediate I), compared to a much higher 
(8.2 kcal/mol) barrier for HAT at the β-position (TS-Ib). This en-
ergy difference and corresponding selectivity aligns with literature 
reports of polarity-matched and mismatched HAT kinetics65–68 and 
reflects the relative stabilities of the formed radical pairs (IIb vs. IIa). 
In addition, we also considered the possibility of the carbonyl carbon 
in T1 promoting the HAT step. However, as expected, high energy 
barriers were calculated for this path (DG‡ > 17.0 kcal/mol) making 
it unfeasible. Thus, this pathway was not considered further (see 
Supporting Information, Figure S1). Finally, from in-cage radical 

pair IIa, radical-radical cross coupling can proceed rapidly to pro-
duce tertiary alcohol 4a, which was unambiguously characterized by 
XRD of a crystal grown prior to workup to form 3a. 

In summary, we have developed a photoinduced direct acylation 
of activated C–H bonds with stable acyl azolium salts. This process 
does not require any catalyst and leverages the apparent unique re-
activity of acyl azolium triplet excited states. With simple irradiation, 
the acyl azolium can readily access a triplet diradical, which under-
goes highly regioselective hydrogen atom transfer and subsequent 
radical-radical coupling to deliver a tetrahedral intermediate. This 
azolium alcohol is then cleanly converted to the desired ketone by 
simple treatment of the reaction with mild base.  Overall, this redox-
neutral process delivers valuable acylated materials from simple 
chemical starting materials and enables the late-stage functionaliza-
tion of complex bioactive structures. Further investigations explor-
ing the utility of azolium triplet excited states as unique intermedi-
ates and their propensity to prevent traditional Norrish reactivity 
limitations in synthesis are underway. 
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