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Abstract

The mathematics and geometry of the “kobs” method under the tight-binding experimental conditions, when inhibitor depletion
is significant, has not been fully explored in the existing biochemical kinetic literature. It is shown here that under tight-binding
conditions a plot of the pseudo-first order rate constant against the inhibitor concentration is always nonlinear and concave upward,
as opposed to either linear or hyperbolic (concave downward) in the absence of inhibitor depletion. If and when the apparent
inhibition constant is lower than the active enzyme concentration, the plot has a distinct local minimum occurring at an inhibitor
concentration that is equal to the enzyme concentration minus the inhibition constant. The slope of the plot at inhibitor concen-
trations significantly higher than the enzyme concentration is equal to the second order bimolecular association rate constant. The
intercept on the vertical axis is equal to the sum of the dissociation rate constant of the enzyme–inhibitor complex, plus the product
of the enzyme concentration multiplied by the association rate constant. Most importantly, we show here that specifically under
tight-binding experimental conditions the “kobs” method only applies to the one-step binding model, without a possible involvement
of a transient enzyme–inhibitor complex. Thus, as a matter of principle, under tight binding this method cannot be used to discrim-
inate between the one-step and two-step inhibition mechanisms, nor can it be used to determine the dissociation equilibrium of a
transient complex even if such a complex is in fact present.
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1. Introduction

The “kobs” method in reversible enzyme inhibition kinetics
consists of analyzing the reaction time-course in two consecu-
tive steps. In the first phase of the data analysis, each individual
kinetic trace is analyzed separately to determine an apparent
first-order rate constant using an appropriate algebraic model
for the reaction progress. In the second step, the values of ap-
parent first-order rate constants so determined are fit to another
algebraic model, which is based on a presumed mechanism of
inhibition. For example, depending on the exact nature of the
mathematical relationship between kobs and the inhibitor con-
centration [I]0, it might be possible to determine whether or not
the enzyme–inhibitor interaction proceeds with an involvement
of a transient intermediate.

Textbook literature on the kinetic evaluation of enzyme in-
hibitors [1] contains certain simple algebraic formulas (see be-
low) that can be used to determine the number of microscopic
inhibition steps and the values of relevant kinetic constants from
kobs data. Those formulas are applicable to simplified exper-
imental conditions without the involvement of tight-binding,
i.e., without inhibitor depletion [2, 3]. An important complica-
tion arises when the inhibition assay is in fact conducted under
tight-binding experimental conditions, where at least some in-
hibitor concentrations already causing a measurable inhibitory
effect are comparable with the enzyme concentration.
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This report describes a data-analytic method that can be
used to determine, under tight-binding experimental conditions,
not only the association and dissociation rate constants for an
reversible enzyme inhibitor but – in certain favorable cases –
simultaneously also the active enzyme concentration from rele-
vant kobs data. Importantly, it is clarified here that the classical
formulas for the dependence of kobs on the total inhibitor con-
centration cannot and should not be used to determine the num-
ber steps appearing in the inhibition mechanism under tight-
binding experimental conditions. Nor can those formulas be
used, specifically under tight-binding conditions, to determine
the dissociation equilibrium constant of a transient enzyme–
inhibitor complex even if such a complex is in fact present.

2. Theory

This section reviews previously published theoretical re-
sults and also presents a detailed analysis of those results specif-
ically as they pertain to the kobs method.

2.1. Algebraic models for inhibition time-course
We will be considering two kinetic mechanisms of enzyme

inhibition shown in Scheme 1. In the single-step Mechanism
A, the enzyme and inhibitor reversibly form a single noncova-
lent complex; kon is the association rate constant and koff is the
dissociation rate constant. The two-step Mechanism B involves
a rapid (effectively instantaneous) formation of an initial com-
plex, which relatively slowly rearranges into a final complex;
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kfor is the forward isomerization rate constant and krev is the
reverse isomerization rate constant.

E + I E•I
kon

koff

E + I E•I EI
kon

koff

kfor

krev

rapid equilibrium: Kd = koff / kon

Mechanism A:

Mechanism B:

Scheme 1

Note that the substrate branch of the overall catalytic mech-
anisms is absent in Scheme 1. Consequently, in the theoreti-
cal analysis below all references to the bimolecular association
rate constant kon should be interpreted as meaning the apparent
second-order association rate constant k∗on according to the for-
mulas previously derived by Cha [4] for the apparent inhibition
constants [3].

2.1.1. Algebraic model in the absence of inhibitor depletion
The algebraic formalism discussed in this report assumes

throughout that in the absence of inhibitors the time course of
the enzyme assay is strictly linear, in the sense that the reac-
tion rate effectively does not change over time. In the simpli-
fied case of zero inhibitor depletion, i.e., in the absence of tight
binding, Cha [4] has shown that the time course of an inhibi-
tion assay is described by Eqn (1), where F is some observable
experimental signal such as fluorescence; F0 is the baseline in-
strument offset; v0 is the initial reaction rate; vs is the reaction
rate at steady state; t is the reaction time; and kobs is the ap-
parent first-order rate constants. Note that unlike the closely
related Eqn. (34) in Cha’s original report [4], the reaction rates
v0 and vs appearing in Eqn (1) are expressed in instrument units
(e.g., fluorescence units per second) as opposed to in concen-
tration units (e.g., micromoles of product formed per minute).

F = F0 + vs t +
v0 − vs

kobs

[
1 − exp (−kobs t)

]
(1)

kobs = koff + kon[I]0 mechanism A (2)

kobs = krev + kfor
[I]0

[I]0 + Kd
mechanism B (3)

Cha [4, Table 1] has also shown that in the absence of in-
hibitor depletion Eqns (2)–(3) can be used to diagnose how
many steps appear in the inhibition mechanism. In particular,
if the plot of kobs data vs. the inhibitor concentration [I]0 is dis-
tinctly hyperbolic, we can conclude there is an involvement of
a intermediate complex. (Note however that, unlike the classic
Michaelis-Menten type saturation curve, the hyperbola defined

by Eqn (3) does not go through the origin of the coordinate sys-
tem.) In contrast, a strictly linear plot of kobs vs. [I]0 suggests
that the inhibitor and enzyme associate in a single step. In that
case the slope of the linear plot is identical to the association
rate constant kon and the intercept is identical to the dissocia-
tion rate constant koff .

2.1.2. Algebraic model in the presence of inhibitor depletion
Under tight-binding experimental conditions inhibitor de-

pletion is significant, in the sense that the mole fraction of the
inhibitor bound to the enzyme cannot be neglected in the in-
hibitor’s mass balance. Under these particular experimental cir-
cumstances, Williams et al. [5] have shown that the time course
of the enzyme assay is described by Eqn (4), where γ is an aux-
iliary variable defined by Eqn (5).

F = F0 + vs t +
v0 − vs

kobs

1 − γ
γ

ln
1 − γ exp (−kobs t)

1 − γ (4)

γ =
[E]0

[I]0

(
1 − vs

v0

)2

(5)

kobs = kon

√(
[E]0 − [I]0 −

koff

kon

)2

+ 4 [E]0
koff

kon
(6)

Importantly, Eqns (4)–(5) can only be applied to the one-
step Mechanism A, in which case the apparent rate constant kobs
depends on the inhibitor and enzyme concentrations as is shown
in Eqn (6) (see Eqn. (5) in the original paper [5]). Williams at
al. [5] have demonstrated that, specifically under tight-binding
experimental conditions, it is theoretically impossible to derive
any closed-form algebraic formula for the reaction progress un-
der the two-step Mechanism B, similar to Eqn (4). According
to these authors, the only possible way to obtain a mathematical
model for the reaction progress under tight-binding conditions
following Mechanism B is to perform a numerical integration
of a relevant system of first-order ordinary differential equa-
tions (ODEs). Thus, it is fundamentally impossible to differ-
entiate between the one-step Mechanism A and the two-steps
Mechanism B on the basis of kobs data derived from the tight-
binding rate Eqn (4), which only applies to the one-step binding
mechanism.

2.2. Mathematical properties of the “tight-binding” kobs rate
constant

Enzymologists involved in the study of enzyme inhibition
under classical (as opposed to tight-binding) experimental con-
ditions are accustomed to viewing and analyzing plots of kobs
against the inhibitor concentration [I]0, in an effort to discern
the number of binding steps involved in the inhibition mecha-
nism. A strictly linear plot normally signifies a one-step bind-
ing model, whereas a hyperbolic plot (with an nonzero offset
on the Y-axis) signifies a two-step binding model. Under tight-
binding experimental conditions, when kobs values are derived
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from Eqn (4), it is impossible to discern the number of bind-
ing steps from the shape of the plot. Nevertheless visualizing
the expected shape of such plots might prove illuminating. An
illustrative example is shown in Figure 1.

[E]0 = 0.01 µM, kon = 1 µM-1s-1, varied koff
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Figure 1: Expected shapes of the kobs vs. [I]0 plot under the
tight-binding experimental conditions. For explanation see text.

The overall shape of the kobs vs. [I]0 plot under tight-binding
conditions is always ever-so-slightly concave upward. In some
cases, depending on the value of Ki = koff/kon, there is a promi-
nent minimum. In fact, at extremely low values of Ki, the mini-
mum on the plot corresponds to zero kobs value occurring at ex-
actly [I]0 = [E]0. At sufficiently high inhibitor concentrations
the kobs plot appears linear with a slope that does not depend on
the Ki but only on the association rate constant kon.

dkobs

d[I]0
= −kon

[E]0 − [I]0 − Ki√
([E]0 − [I]0 − Ki)2 + 4 [E]0 Ki

(7)

To understand these qualitative feature better, we can dif-
ferentiate Eqn (6) with respect to [I]0 to obtain Eqn (7), which
represents the slope of the kobs plot. Setting the left-hand side of
Eqn (7) to zero and solving for [I]0, we can determine that there
is a minimum on the kobs curve at [I]0 = [E]0 − Ki. However,
a distinct minimum is observable on the positive [I]0 half-axis
only if Ki < [E]0. Setting [I]0 >> [E]0 and [I]0 >> Ki in
Eqn (7) we can also discover that the asymptotic slope of the
tight-binding kobs plot is equal to kon, as in the classical binding
situation represented by Eqn (2).

The intercept on the vertical kobs axis can be found by set-
ting [I]0 = 0 in Eqn (6) and simplifying the resulting square
root expression to obtain kobs = koff + kon[E]0. Note that under
classical, as opposed to tight-binding, experimental conditions
the intercept on the vertical axis is at kobs = koff , according to
Eqn (2). In other words, tight binding simply shifts the Y-axis
intercept upward by kon [E]0.

It should be noted that under tight-binding experimental
conditions kobs vs. [I]0 plots derived from the classical rate
equation Eqn (1) are often very similar to kobs vs. [I]0 plots
derived from Eqn (4). Thus, many enzymologists involved in
drug-discovery research may have encountered nearly linear
kobs plots that (i) do not go through origin but instead intersect
the Y-axis below the zero point; and (ii) are concave upward,
or even show a distinct minimum, at low inhibitor concentra-
tions instead of appearing either linear or hyperbolic (concave
downward). As we can see from Figure 1, both of these qual-
itative characteristics are clear hallmarks of tight-binding (in-
hibitor depletion) actually occurring in the assay.

3. Results

This section presents the results of a heuristic simulation
study that was designed to further illuminate the behavior of
the tight-binding inhibition model and gain a practical expe-
rience in handing kobs values derived under tight-binding ex-
perimental conditions. The numerical simulations were per-
formed by using the software package DynaFit [6, 7]. All alge-
braic computations data fitting procedures were also indepen-
dently verified by using the software package GraphPad Prism
version 9.1 (GraphPad Software, San Diego, California USA,
www.graphpad.com). The GraphPad Prism files, including the
embedded user-defined fitting equations, are made available as
part of the Supporting Information attached digitally to this re-
port.

3.1. Simulated “tight-binding” data set

A collection of enzyme inhibition progress curves was sim-
ulated by according to the fully general first-order ordinary dif-
ferential equation (ODE) formalism, using the software pack-
age DynaFit [6, 7]. The assumed kinetic mechanism is shown
in the scheme below. The corresponding ODE system is shown
in Eqns (8)–(12).

→ ←
E + S → E + P : ksub
E + I 
 E.I : kon koff

d[E]
dt

= −kon [E][I] + koff [E.I] (8)

d[S]
dt

= −ksub [E][S] (9)

d[P]
dt

= +ksub [E][S] (10)

d[I]
dt

= −kon [E][I] + koff [E.I] (11)

d[E.I]
dt

= +kon [E][I] − koff [E.I] (12)

The simulated concentrations were [E]0 = 10 nM, [S]0 = 10
µM, and [I]0 = 128, 64, 32, 16, 8, 4, 2, 1, 0 nM. The simulated
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Figure 2: Simulated instantaneous reaction rates according to
the one-step inhibition Mechanism A. Note that the instanta-
neous rate at zero inhibitor concentration is strictly constant,
which justifies the application of Eqn (4). For further details
see text.

rate constant values were ksub = 0.00001 µM−1s−1, kon = 0.1
µM−1s−1, and koff = 0.0001 s−1. Thus the equilibrium dissocia-
tion constant of the enzyme–inhibitor complex Ki = koff/kon =

1 nM, which is ten times lower than the enzyme concentra-
tion. Also note that approximately one half of the inhibitor
concentrations are lower than the enzyme concentration (tight-
binding). Altogether 60 data points were simulated for each
progress curve spanning from time zero to t = 3600 s, or one
hour. The normally distributed random experimental noise added
to each data point had standard deviation equal to 0.7 percent
of the maximum signal.

The instantaneous reaction rates associated with the simu-
lated progress curves are shown in Figure 2. Note that, impor-
tantly, the reaction rate simulated at zero inhibitor concentration
is unchanging, which means that the reaction progress curve
simulated in the absence of inhibitors is strictly linear. This
fully justifies the assumptions inherent in the integrated rate
equation Eqn (4). Also note that at least several of the relatively
high inhibitor concentration curves did reach a steady-state rate,
which means that the simulated data set should contain suffi-
cient inhibition to determine the reversible binding affinity.

3.2. Local fit of individual progress curves

All simulated reaction progress curves, except the positive
control curve simulated at [I]0 = 0, were fit separately to Eqn
(4) to determine the best-fit values of the four adjustable model
parameters v0, vi, kobs, and F0. In these regression analyses
the enzyme concentration was held fixed at the nominal value
[E]0 = 10 nM. The results of fit are summarized graphically in
Figure 3. The best-fit values of the apparent inhibition constant

kobs and the associated formal standard errors (SE) are shown
in Table 1.
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Figure 3: The results of fit of individual progress curves to the
integrated rate Eqn (4). The results of fit to the alternate Eqn
(1) were virtually indistinguishable, in that the residuals of fit
(bottom panel) also appeared completely random.

1000 × kobs, s−1

[I]0, nM from Eqn (4) from Eqn (1)

128 10.50 ± 5.57 10.68 ± 5.63
64 6.78 ± 2.05 7.08 ± 2.11
32 2.61 ± 0.37 2.91 ± 0.38
16 1.11 ± 0.21 1.52 ± 0.22
8 0.87 ± 0.16 1.27 ± 0.19
4 1.00 ± 0.32 1.17 ± 0.36
2 1.69 ± 0.29 2.17 ± 0.66
1 2.16 ± 0.53 2.90 ± 1.47

Table 1: Best-fit values of kobs from the fit of individual reac-
tion progress curves depicted in Figure 3. The “±” values are
formal standard errors from (unweighted) nonlinear regression
analysis.

Table 1 purposely lists kobs values determined both by the
fit of reaction progress data to Eqn (4) and also by the fit of
the same progress curve data to Eqn (1). Note that the best-fit
values of are very similar to each other. A major practical sig-
nificance of this result lies in that Eqn (4) as the fitting model is
exquisitely sensitive to the initial estimate of model parameters
v0, vi and kobs. Therefore it proved very beneficial to always
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perform all progress curve fits first to the classical rate Eqn (1)
and then re-use the best-fit values of v0, vi and kobs so obtained
as initial estimates in the fit to Eqn (4).

Note that formal standard errors of kobs results listed in Ta-
ble 1 vary by more then an order of magnitude. Thus in the
subsequent analysis of the kobs values it was crucially important
to utilize weighted least-squares fit, with weighting factors set
to the reciprocal squared standard error of each individual kobs
measurement, as opposed relying on the usual unweighted or
ordinary least-squares (OLS) fit.

3.3. Fit of kobs values to Eqn (6)

The results of weighted least-squares fit of the kobs values
listed in the second column of Table 1 to Eqn (6) are shown
graphically in Figure 4. Both rate constants kon and koff as well
as the enzyme concentration [E]0 were treated as adjustable
model parameters. Non-symmetrical confidence intervals, at
the 95% likelihood level, were computed according to the profile-
t method of Bates & Watts [8, 9]. The numerical results are
summarized in Table 2.
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Figure 4: Results of weighted least-squares fit of kobs values
listed in Table 1 to Eqn (6).

parameter best-fit ± SE low 95% high 95%

[E]0, nM 12.5 ± 1.0 9.7 15.4
kon, µM−1s−1 0.125 ± 0.013 0.089 0.158
koff , msec−1 0.11 ± 0.05 0.02 0.27

Table 2: Results of weighted least-squares fit of kobs values
listed in Table 1 to Eqn (6). For details see text.

The results listed in Table 2 show that the best-fit values of
all three adjustable model parameters are in reasonably good
agreement with the “true” (i.e., simulated) values. In partic-
ular, the best-fit value of the active enzyme concentration is
[E]0 = 12.5 nM, while the simulated “true” value was 10 nM,

representing an agreement within 25% systematic error. Very
similar results were obtained for the association rate constant
kon (simulated “true” value 0.1 µM−1s−1, best-fit value 0.125
µM−1s−1). The best-fit value of the dissociation rate constant
koff agrees with the “true” value within 10%, but also note that
the non-symmetrical confidence interval is approximately one
order of magnitude wide (from 0.02 to 0.27 msec−1).

As expected from the theoretical analysis presented above,
the best-fit model curve depicted in Figure 4 is neither linear
nor hyperbolic, as could be expected in the absence of tight-
binding, but rather it has a characteristic “field-hockey stick”
shape, with a distinct minimum appearing near [I]0 ≈ [E]0 =

0.01 µM. The slope of the nearly linear upward branch of the
best-fit curve is equal to approximately 0.1 µM−1s−1, which is
identical to the “true” value of kon. The intercept on the kobs
axis is near kobs = 0.0017 s−1, which is approximately equal to
the best-fit value of koff + [E]0 kon = 0.00011 + 0.0125 × 0.125
in appropriate units.
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Figure 5: Joint confidence regions (95% likelihood level) of
model parameters obtained in the weighted least-squares fit of
kobs values listed in Table 1 to Eqn (6).
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The joint confidence regions of adjustable model parame-
ters are shown in Figure 5. Note that the enzyme concentration
shows very little correlation with the rate constants, which is
seen in very nearly circular joint confidence region in the upper
panel of Figure 5. In contrast, the best-fit values of two rate
constants kon and koff appear quite strongly correlated, which is
seen in the ellipsoid shape of their joint confidence region.

4. Discussion

The kinetic behavior of enzyme inhibitors under tight-bin-
ding experimental conditions [2, 3] presents a special set of
challenges to enzymology researchers, in particular those who
are involved in drug discovery. The literature on the subject is
often potentially confusing to the uninitiated.

For example, a well known textbook [1] first presents both
the the classical integrated rate Eqn (1) and the tight-binding
rate Eqn (4) in an introductory section entitled “Determining
kobs: The Rate Constant for Onset of Inhibition”. Here the
reader is correctly informed that in the absence of tight-binding
we are allowed to use the simpler Eqn (1) to determine kobs
values, whereas in the presence of tight-binding we must use
the more complex Eqn (4). In a subsequent section, entitled
“Determination of Mechanism and Assessment of True Affin-
ity”, the book then proceeds to discuss how to differentiate
between the one-step Mechanism A and the two-step Mecha-
nism B based on the concentration dependence (linear or hy-
perbolic) of kobs values. Unfortunately, this particular choice
of sequencing the mathematical material can create a false im-
pression among some readers that kobs values determined either
from Eqn (1) or from Eqn (4) can be used for mechanism dis-
crimination in this particular manner. In fact, over the years,
this investigator has encountered several internal reports and
slide presentations, circulating inside various drug discovery
establishments, where just such a misconception existed after
exposure to the textbook in question [1]. One major motiva-
tion for the present report was to present a clarification of this
complex mathematical issue.

To this end, let us try to uncover a possible origin of the gen-
erally confusing state of affairs. We can conveniently begin by
reviewing a classic paper by Cha [4], where the mechanism se-
lection Eqns (2)–(3) were first derived, alongside the newly de-
rived Eqn (1). In a section of the paper entitled Determination
of kobs and differentiation of mechanism, Cha [4] lists Eqns (2)–
(3) in his Table 1 on p. 2182 of the paper, and associates those
two equations with Mechanism A and B, respectively. Then the
author issues a crucially important caveat: “It must be pointed
out that the significance of kobs [...] holds true only when the
depletion of free inhibitor by binding is negligible. Therefore,
for this approach to be valid, the enzyme concentration must
be an order of magnitude or more lower than the inhibitor con-
centration”, meaning lower than even the lowest inhibitor con-
centration utilized in the inhibition assay. One major source
confusion stems from the fact that Cha’s paper is happens to
be entitled “Tight binding inhibitors: I. Kinetic behavior”. It
is probably somewhat easy to lose track of the fact that many

results presented in Cha’s 1975 paper do not actually apply to
the tight-binding situation.

We can then proceed to another classic paper by Williams
et al. [5], where the tight-binding of version of Cha’s integrated
rate Eqn (1) was first derived as Eqn (4). The authors state very
clearly at the beginning of section Theory and Data Analysis
that their newly derived rate Eqn (4) applies only to Mechanism
A. They also add the following comment: “A more complex
mechanism which predicts the slow development of inhibition
is Mechanism B [...]. In this model an enzyme-inhibitor (EI)
complex, which is formed rapidly, undergoes a slow isomer-
ization to a second (EI*) complex. Attempts to derive an inte-
grated equation for Mechanism B, analogous to Eqn (4), were
unsuccessful [...] [T]he attempted solution leads to hopelessly
complex algebra and an alternative technique must be sought.
For particular values of the various parameters, the equations
may be solved by numerical integration.” Williams et al. [5]
essentially state that they attempted but failed to derive a closed-
form integrated rate equation that would apply to Mechanism B
under tight-binding experimental conditions.

5. Summary and Conclusions

The tight-binding variant of the integrated rate Eqn (4) (shown
as Eqn 6.2 in Copeland [1] and elsewhere in the biochemical lit-
erature) applies only to the one-step Mechanism A. Specifically,
Eqn (4) does not apply to the two-step inhibition Mechanism B.
Therefore, no attempts should be made to interpret kobs values
derived from Eqn (4) by using the classical (as opposed to tight
binding) mechanism-selection formulas.

The overall shape of the kobs vs. [I]0 plot under tight-binding
experimental conditions is neither linear nor hyperbolic, as is
always the case in the absence of inhibitor depletion. Instead,
the tight-binding kobs plot has a relatively complex shape, gen-
erally concave upward, in many cases even including a local
minimum. If inhibitor depletion is in fact prominent, the kobs
vs. [I]0 data actually includes information about the concentra-
tion of the enzyme active sites.

Enzymology researchers involved in drug discovery, if and
when actually using the “kobs” method, should pay close atten-
tion the overall shape of kobs plot. Any such plots that show
local minima near [I]0 ≈ [E]0 strongly indicate the actual pres-
ence of tight-binding in the assay. If so, Eqn (6) rather than
the usual classical formulas should be used to interpret the kobs
results.
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