
 1

Quantum circuit learning as a potential algorithm to

predict experimental chemical properties

Kan Hatakeyama-Sato, a* Yasuhiko Igarashi,b Takahiro Kashikawa,c Koichi Kimura,c Kenichi

Oyaizua*

aDepartment of Applied Chemistry, Waseda University.Tokyo 169-8555, Japan

bFaculty of Engineering, Information and Systems, University of Tsukuba, 1-1-1 Tennodai,

Tsukuba 305-8573, Japan

cFujitsu Ltd., Kanagawa 211-8588, Japan

*K.H.: satokan@toki.waseda.jp,

*K.O.: oyaizu@waseda.jp

KEYWORDS

Quantum computing, machine learning, materials informatics

 2

ABSTRACT

We introduce quantum circuit learning (QCL) as an emerging regression algorithm for chemo- and

materials-informatics. The supervised model, functioning on the rule of quantum mechanics, can

process linear and smooth non-linear functions from small datasets (< 100 records). Compared

with conventional algorithms, such as random forest, support vector machine, and linear

regressions, the QCL can offer better predictions with some one-dimensional functions and

experimental chemical databases. QCL will potentially help the virtual exploration of new

molecules and materials more efficiently through its superior prediction performances.

 3

Introduction

Recent data-oriented science provides chemical and material research insights by treating

versatile experimental data with statistical tools.1-5 Compared to human-based data recognition and

accumulation, experimental data are analyzed and stored more objectively by data science.1, 3 Such

a data-oriented approach offers a more solid platform for interdisciplinary research conducted by

chemists, data scientists, physicists, and experts in any other fields.3, 5

Evaluating molecular and material properties is essential in materials and chemo-informatics.4,

5 Various supervised models, trained to predict specific properties from explanatory variables by

learning their statistical relationships, have been developed in machine learning.5 There are many

supervised models represented by linear algorithms, support vector machines, and decision tree-

based ensembles.5 Also, recent deep learning technology of neural networks has broken the limit

of prediction accuracy by drastically increasing the model complexity.6 In chemical and material

fields, appropriate use of such supervised models afforded the prediction of versatile material and

chemical properties, such as conductivity,7, 8 energy level,9 photoconversion efficiency,10 and

toxicity.4 Their prediction accuracy can exceed human experts and traditional computational

simulations, gradually forming a solid platform for data-oriented science.4, 5, 8-10

On the other hand, most data science projects still have difficulty with the reliable prediction of

experimental properties. The main challenges are a) the lack of trainable records and b) complex

molecular interactions. Due to the high cost of actual experiments, typical database sizes of

material projects are around 101 − 102,7 whereas deep learning mainly targets databases with over

104 records.4-6 Although recent deep learning approaches, represented by fine-tuning (transfer

 4

learning) and multipurpose learning, may offer an opportunity for small datasets, they may not be

the complete solutions due to the still insufficient and diverse material databases to learn.2, 7, 11

As a promising approach, sparse modeling aims to extract linearity between explanatory and

target variables.12, 13 The method is powerful against small datasets owing to the simple linear

assumption, and successful data analyses have been reported.12, 14 Still, material and chemical

properties appear from complex, non-linear atomic interactions.5, 8 The linear approximation

would face difficulties in expressing the non-linear system.

Here, we introduce quantum circuit learning (QCL), an emerging algorithm for supervised

learning.15-18 QCL works on the rule of quantum mechanics. It can predict various parameters

likewise to classical models. The current quantum systems (noisy intermediate-scale quantum

computers: NISQ)19, 20 face the problems of calculation noise and the limited processable number

of information units (qubits). Nevertheless, the advantage of quantum nature would appear under

the support of classical computers.19, 20

Quantum machines and simulators have been examined in several fields, including quantum

chemistry, combinatorial optimization, and machine learning.21-26 Quantum neural networks, such

as autoencoders, and generative adversarial networks, are the main prototypes of quantum machine

learning.21-24 They offer new potentials as supervised or unsupervised algorithms.

Since QCL is a frontier for machine learning, few reports have been reported on authentic

regression tasks.15, 17, 27 The success of prediction with a toxicity dataset of organic molecules was

reported,17 whereas the study was still conceptual. The prediction processes and advantages have

been unclear, especially from chemical and material viewpoints.

 5

Here, we conducted a more comprehensive study on QCL with standard datasets of one-

dimensional functions and chemical properties. Both simulated and actual quantum computing

was undertaken to clarify the challenges of QCL. The comparison with conventional models

contrasted the benefits of the new approach: capable of learning both linear and non-linear

functions even from small datasets. The property was also favorable for predicting the so-called

extrapolating data region, essential for chemical and material research.

1. Theory of quantum circuit learning

First, we briefly explain the basic idea of quantum computing and circuit learning,28 especially

for readers unfamiliar with quantum systems. Quantum computers have qubits to maintain the

information, whereas standard computers process information with bits (0 or 1). A qubit does not

have one fixed state but supports multiple states probabilistically (superposition properties).

Mathematically, the condition can be described by a two-dimensional complex vector.

In the case of an n-qubit system, a 2n-dimensional complex vector is needed for the qubit state

expression.28 This seems confusing from the viewpoint of standard Euclidean space, but is required

to express complex interactions of qubits, called quantum entanglement. Quantum systems become

more complicated in exponential speed along with 𝑛, affording massively parallel computing,

which is harder to be simulated by classical computers.

In a similar way to conventional machine learning, QCL treats a task of 𝑦̂ = 𝑓𝜽(𝒙),15 where 𝑦̂ is

the predicted value for a target parameter 𝑦, 𝒙 is explanatory variable, and 𝜽 is trainable parameter.

Generation of 𝑓𝜽 only by a current quantum system (NISQ) is not feasible due to the limited

computation power. Currently, only the prediction part of 𝑓𝜽(𝒙) is assigned to the quantum system

 6

(or simulator), and other parts, such as loss calculation (e.g., (𝑦̂ − 𝑦)2) and parameter optimization,

are done by classical computers.15

A mathematical expression of QCL for regression is not so complex (Figure 1, see Experimental

section for derivation). The initial 2𝑛-dimensional quantum state vector, expressed by (1,0, . . . ,0)𝑇,

is transformed to another state 𝒘 = (𝑤1, 𝑤2, . . . , 𝑤2𝑛)𝑇 by multiplying two complex operational

matrices of 𝑉(𝒙) and 𝑈(𝜽) (Eq 1). Then, 𝑦̂ is calculated from the squares of 𝑤1, 𝑤2, … , 𝑤2𝑛 (Eq

2).

𝒘 = (

𝑤1

𝑤2

⋮
𝑤2𝑛

) = 𝑈(𝜽)𝑉(𝒙) (

1
0
⋮
0

)

= (

𝑢1,1(𝜽) … 𝑢1,𝑛2(𝜽)

⋮ ⋱ ⋮
𝑢𝑛,1(𝜽) … 𝑢𝑛2,𝑛2(𝜽)

) (

𝑣1,1(𝒙) … 𝑣1,𝑛2(𝒙)

⋮ ⋱ ⋮
𝑣𝑛,1(𝒙) … 𝑣𝑛2,𝑛2(𝒙)

) (

1
0
⋮
0

)

(𝑤𝑖, 𝑢𝑖,𝑗, 𝑣𝑖,𝑗 ∈ ℂ)

Eq 1

𝑦̂ = 𝑓𝜽(𝒙) = ∑ |𝑤𝑖|

2
2𝑛−1

𝑖=1
− ∑ |𝑤𝑖|

2
2𝑛

𝑖=2𝑛−1+1
 Eq 2

 7

Figure 1 Mathematical and visual expression of a quantum circuit. Upward vectors in the initial

state (mathematically, (1,0, … ,0)𝑇) are rotated by encoding gates of 𝑉(𝒙). In the figure, a simple

case is shown where the i-th qubit is rotated along with the angle of 𝑥𝑖. Then, qubits interact via

the gates of 𝑈(𝜽) . Finally, up- or downward vector for the 1st qubit is observed with the

probabilistic distribution. The transformations of 𝑉(𝒙) and 𝑈(𝜽) are linear against the initial state

vector. The final observation is a non-linear step.

In a quantum circuit, 𝑉(𝒙) and 𝑈(𝜽) correspond to the encoding and interaction steps of qubits,

respectively (Figure 1). Before calculation, all directions of qubit vectors are set upward along

with the z-axis (corresponding to a vector of (1,0, … ,0)𝑇). The vectors are changed by the rotation

gates of 𝑉(𝒙). The encoded states are further rotated and interacted with according to another

matrix 𝑈(𝜽). Finally, the direction of one qubit (or theoretically any number of qubits) is observed

to obtain the interacted result.15, 17 The regression model can learn a variety of functions because

 8

of the universality of quantum circuit28 and the non-linear transformation steps during prediction

(i.e., 𝒙 ↦ 𝑉(𝒙), 𝜽 ↦ 𝑈(𝜽) and final prediction by Eq 2).15

In Eq 1, naïve determination of 𝑉 and 𝑈 is not easy because they are 2𝑛 × 2𝑛 -dimensional

matrices (i.e., over 1018 parameters with n = 30). In QCL, the matrices are prepared by repeated

products of elementary gate components, such as 𝑅𝑖,𝑥(𝑡), 𝑅𝑖,𝑦(𝑡), and CNOT𝑖,𝑗 (Eq 3, Figure 2).

 𝑉(𝒙) = ∏ 𝐴(𝑥𝑘)

 𝑈(𝜽) = ∏ 𝐴(𝜃𝑘)

(𝐴 = 𝑅𝑖,𝑥, 𝑅𝑖,𝑦, or CNOT𝑖,𝑗)

Eq 3

𝑅𝑖,𝑥(𝑡) and 𝑅𝑖,𝑦(𝑡) are rotation gates, changing the i-th qubit state and affecting nothing against

the others.28 One qubit state (without entanglement) can be visualized as an arrow in a sphere

(Bloch sphere, Figure 2a). The gates change the angle of an i-th qubit along with the x- (or y-) axis

(Eq 4, Eq 5). A CNOT𝑖,𝑗 gate can switch the state of the j-th qubit according to the condition of

the i-th qubit (Figure 2b, Eq 6). The gate is similar to an XOR operation in classical circuits. The

three components are known as universal gate sets, which can make an arbitrary quantum circuit

from their products.28

 9

Figure 2 Visual understanding of quantum gates with Bloch spheres. a) 𝑅𝑥 and 𝑅𝑦 gates. A vector

is rotated along with the x- or y-axis. b) CNOT gate. When the i-th qubit is upward, nothing

happens to another qubit. When the i-th qubit is downward, the j-th qubit is flipped by the CNOT

gate.

𝑅𝑥(𝑡) = (
cos (

𝑡

2
) −𝑖sin (

𝑡

2
)

−𝑖sin (
𝑡

2
) cos (

𝑡

2
)

)

𝑅𝑖,𝑥(𝑡) = 𝐼2⨂𝐼2⨂ … ⨂𝑅𝑥(𝑡)⨂𝐼2⨂ … ⨂𝐼2

(𝑅𝑥(𝑡) appears at the i th occurrence. 𝐼2 is unit matrix)

Eq 4

𝑅𝑦(𝑡) = (
cos (

𝑡

2
) −sin (

𝑡

2
)

sin (
𝑡

2
) cos (

𝑡

2
)

)

𝑅𝑖,𝑦(𝑡) = 𝐼2⨂𝐼2⨂ … ⨂𝑅𝑦(𝑡)⨂𝐼2⨂ … ⨂𝐼2

Eq 5

CNOT𝑖,𝑗 = (

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

(an example case of 𝑖 = 1 and 𝑗 = 2)

Eq 6

Due to the restriction of quantum physics, the interacted state 𝒘 itself is not observable by actual

quantum systems. Instead, other parameters, such as the probabilities of upward (↑) or downward

(↓) eigenstates, are experimentally observable (𝑝↑ and 𝑝↓, respectively, Figure 1). During actual

quantum computing, such eigenstates are sampled via repeated calculations, and the probability

difference between the two is calculated to obtain 𝑦̂ (Eq 7).

 𝑦̂ = 𝑝↑ − 𝑝↓ Eq 7

 10

𝑝+1 = ∑ |𝑤𝑖|
2

2𝑛−1

𝑖=1

𝑝−1 = ∑ |𝑤𝑖|
2

2𝑛

𝑖=2𝑛−1+1

For clearer understanding, we calculated analytical solutions of 𝑦̂ with some simple quantum

circuits (Table S1). An example quantum circuit, encoding 𝒙 = (𝑥1, 𝑥2)𝑇 by four rotational gates,

and interacting by one CNOT and one rotational gate, is shown in Figure 3a. Even the simple

circuit gives a very complex analytical solution of 𝑦̂ from Eq 2, consisting of repeated

trigonometric functions (Figure 3a). The complexity should mathematically correspond to the

superparallel and entangled nature of the quantum system.

 11

Figure 3 Quantum circuits for QCL. a) An example circuit of 𝑉(𝜃) = 𝑅1,𝑦(𝜃) ⋅ CNOT2,1 and

𝑉(𝑥) = 𝑅1,𝑦(𝑥1) ⋅ 𝑅1,𝑥(𝑥1) ⋅ 𝑅2,𝑦(𝑥2) ⋅ 𝑅2,𝑥(𝑥1). The analytical solution of 𝑦̂ is also shown in the

figure. b) General QCL circuit. The i-th qubit is encoded with 𝑅𝑦(𝑥𝑖)𝑅𝑥(𝑥𝑖). Then, repeated layers

of CNOT and rotational gates are prepared for m times.

Regardless of the complex equation of 𝑦̂ in QCL, the value always ranges from -1 to +1 because

of the unitary nature of the operational matrices, 𝑉 and 𝑈 (𝑉†𝑉 = 𝐼, 𝑈†𝑈 = 𝐼, where † indicates

complex conjugates).15, 28 This study tries to clarify the actual effects of such complex yet

systematic prediction algorithms for various regression tasks.

2. One-dimensional regression

We examined the basic regression properties of QCL models with simple one-dimensional

functions of 𝑦 = 𝑥, sin(𝑥) , and 𝑒𝑥−1 (Figure 4a). There are three major approaches to obtain 𝑦̂:

a) calculate state vectors (Eq 1, Eq 2) by classical computers, b) sample frequencies of upward

and downward eigenvalues to get their probabilities (𝑝↑ and 𝑝↓, Eq 7) by classical computers, and

c) conduct the sampling by real quantum computers. Currently, many works obtain values by a)

or b) due to the limited power of the quantum system.15, 20-24 In the future, the role of c) will be

more critical with larger qubits because of the exponential calculation cost (in the order of 2𝑛, Eq

1). Here, predictions were mainly made by the most precise method of a).

 12

Figure 4 Predicting the function of 𝑦 = sin(𝑥) , 𝑥, or, 𝑒𝑥−1 using QCL, support vector machine for

regression (SVR), random forest regression (RFR), Bayesian ridge regression (BYR), and

Gaussian process regressor (GPR) (RBF + Dot-product). In the case of QCL, circuit parameters of

𝑛 = 2 and 𝑚 = 3 are chosen. Predictions were made from state-vector calculations. Other results

are shown in Figure S 2. b) Predicting the function of 𝑦 = sin(𝑥) by an actual quantum computer

(IBM Quantum) with 𝑚 = 2, 3, or 4. Models were trained by state-vector calculations. Full results

are shown in Figure S 10.

Preliminary optimization of quantum circuits15, 17 and our optimization revealed that the

following configuration was concise and practical for regression tasks (for details, see results and

explanations in Figure S 1). First, the inputted value 𝒙 should be encoded by two rotational gates

𝑅𝑖,𝑦(𝑥𝑖) and 𝑅𝑖,𝑥(𝑥𝑖) . Then, neighboring qubits had to be interacted CNOT gates, with

𝜽 −dependent gate rotation 𝑅𝑖,𝑦(𝜃𝑗)𝑅𝑖,𝑥(𝜃𝑗+1)𝑅𝑖,𝑦(𝜃𝑗+2) . The CNOT interaction and rotation

should be repeated m times (Figure 3b, Figure S 1).

Some notes on circuit design should be mentioned. Mitarai et al. proposed15 the use of sin-1 or

cos-1 to preconvert 𝑥𝑖 for linear encoding of the inputted value (Table S1). On the other hand, we

 13

noticed that the conversion induced unfavorable bending of 𝑦̂ around|𝑥𝑖| ≅ 1, giving prediction

errors (Figure S 1). The bending was caused by the large curvature of the inverse functions

(sin−1, cos−1) near ±1.

For qubit interaction, three gates, such as 𝑅𝑦, 𝑅𝑥, 𝑅𝑦 , were introduced for one qubit. The

selection was because at least three gates are needed for arbitrary rotation for the complex vectors

(i.e., X-Y decomposition).15 Instead of using systematic CNOT gates,17 non-parameterized random

qubit interactions, known as the Transverse-field Ising model, could be employed.15 However, the

regression was unstable and sometimes failed, depending on the randomness of the qubit

interactions with small circuit depth 𝑚 ≤ 3, which motivated us to use repeated CNOT gates

(Figure S 1).

A QCL circuit with the qubit number of 𝑛 = 2 and the depth of 𝑚 = 3 was selected to learn the

one-dimensional functions. Here, practically one-dimensional vector 𝒙 = (𝑥1, 𝑥1) was encoded in

the two-qubit circuit, enabling the higher expressiveness of 𝑓𝜽(𝒙) (Figure S 1). The final output

was scaled by a constant factor of two as a hyperparameter (𝑦̂ ↦ 2𝑦̂).15, 17

QCL circuit was able to learn versatile functions of 𝑦 = 𝑥, sin(𝑥/2) , sin(𝑥), and 𝑒𝑥−1 (Figure

4a and Figure S 2). The machine learning model was trained with about six training datasets

randomly sampled, and they predicted about ten random testing data. No significant prediction

errors were detected (Figure 4a and Figure S 2).

The unique advantage of the QCL model is highlighted by comparing it with conventional

regression models.18 We examined standard algorithms of support vector machine for regression

(SVR), random forest regression (RFR), Bayesian ridge regression (BYR), and Gaussian process

regressor (GPR) (Figure 4a, Figure S 2, Figure S 3, Table S2).5 SVR works on kernel trick,

 14

enabling the learning of even non-linear functions. RFR is a standard ensemble model of decision

trees. Its reliable prediction is frequently employed with experimental material databases.5 BYR is

a robust model for probabilistic linear regression, potentially strong against small datasets. GPR is

similar to SVR, but its stochastic process can offer more flexible fitting with smaller datasets.

SVR, RFR, and BYR could not predict either 𝑦 = 𝑥 , sin(𝑥) , or 𝑒𝑥−1 . Prediction in

extrapolating regions, where 𝑥𝑖 and 𝑦̂ range out of the training datasets, was unsuccessful (Figure

4a and Figure S 2). The SVR model assuming a non-linear Gaussian kernel mimicked sin(𝑥), but

gave a bent curve in the untrained regions of 𝑦 = 𝑥. RFR displayed similar responses to SVR, with

the unfavorable step-wise prediction by the noncontinuous decision-tree algorithm. The linear

BYR model was predictable of 𝑦 = 𝑥, but never of sin(𝑥). Even though their hyperparameters

were changed, the three models could not predict the functions (Figure S 3). Due to the algorithm

biases, many conventional supervised models could not switch linear and non-linear predictions.

We also examined more complex machine learning models, GPR and multilayer perceptron

(MLP). GPR with radial basis function (RBF)-type kernels offered promising predictions due to

their non-linear and stochastic algorithms (Figure 4a, Figure S 3).18 MLPs with different

activation functions (ReLu, tanh, and sigmoid) and hidden layer numbers (1 to 4) did not afford

sufficient performances. The models could switch linear and non-linear functions, but larger errors

were obtained because of too many trainable parameters against the inputted data

The performances of the regression models were validated by repeating the random data

preparation and learning processes 30 times (Figure S 4, Table S3). On average, two GPR models

with RBF or RBF + Dot-product kernels exhibited the smallest error. The following best was the

 15

QCL regression: the model, capable of handling linear and non-linear interactions from small

databases, offers a new option for solving regression tasks of various datasets.

4. Analyzing regression steps of QCL

Although QCL models work on complex prediction algorithms (e.g., Table S1), their estimation

steps can be visualized (Figure S 5). As defined in Eq 1, a quantum state is expressed by a complex

vector of 𝒘 = (𝑤1, … , 𝑤2𝑛)𝑇 (𝑤𝑖 ∈ ℂ). We showed the change of coordinates 𝑤𝑖 in a simple

example circuit of 𝑈(𝜃)𝑉(𝑥) = 𝑅1,𝑦(𝜃) ∙ CNOT1,2 ∙ 𝑅2,𝑥(𝑥) ∙ 𝑅1,𝑥(𝑥) (𝜃 = 1.0, 𝑥 = 0.6) for a

two-qubit system (Figure S 5a). The applications of 𝑅1,𝑥 and 𝑅2,𝑥 gates changed 𝑤1 to 𝑤4 by

shifting the complex coordinates of 𝑤2 , 𝑤3 , and 𝑤4 . Then, 𝑤2 and 𝑤4 were swapped by the

CNOT2,1 gate. The final output of 𝑦̂ = |𝑤1|2 + |𝑤2|2 − |𝑤3|2 − |𝑤4|2 (Eq 2) was given

followed by the rotation with 𝑅1,𝑦. Although state vectors are not observable in real world, state-

vector simulation reveals that such rotation and swapping effects by quantum gates. Developing

more sophisticated visualization methods (e.g., heatmap for neural networks)11 is needed to

provide deeper insights into more explainable QCL.

We calculated |𝑤𝑖|
2 for the trained QCL models of 𝑦 = sin(𝑥) and 𝑥 (Figure S 5, Figure 5b,c,d).

Bending curves were observed for each term against 𝑥 even with the linear function of 𝑦 = 𝑥. This

means that the QCL model worked through non-linear processes even with linear systems. The

final output was made from the slight difference of |𝑤1|2 + |𝑤2|2 and |𝑤3|2 + |𝑤4|2.

 16

Figure 5 a) Prediction process of 𝑦 = sin (𝑥) by a trained QCL model (𝑚 = 3 , 𝑛 = 2) or

multilayer perceptron (MLP, 8-dimensional hidden layer and activation function of ReLu). The

model was trained with 24 random records (gray plots). Black lines show predictions, and colored

represent latent variables. b) Prediction process for 𝑦 = 𝑥. c) Extrapolating predictions by QCL,

GPR (RBF), and MLP models. After randomly generating 100 points, 70% of the data with high

𝑦 were selected as testing (extrapolating) data. Full results are shown in Figure S 7 and Figure S

8.

As a control for QCL, MLP regressors were examined for prediction. The MLP model contained

one 8- (or 16-) dimensional hidden layer for prediction with the standard non-linear activation

function of ReLu or tanh.29 The overall design of QCL and MLP is slightly similar (Figure S 5b).

Both models encode 𝒙 to the first latent vector 𝒘′, convert into another state of 𝒘 by 𝜽–

dependent transformation, and finally calculate 𝑦̂ from 𝒘 . The main differences are a) QCL

maintains complex latent variables, whereas MLP usually has real numbers, and b) only linear (or

more precisely, unitary) transformation is available by QCL during the conversion of 𝒘′to 𝒘.

 17

MLP models were not predictive of the one-dimensional functions with small training data

(around 20 records, Figure 5a, Figure S 6). A simple formulal of 𝑦 = sin(𝑥) could not be fitted by

MLP, even through different hyperparameters were employed (hidden layer sizes of 8 or 16 and

activation functions of ReLu or tanh, Figure S 6). The simplest 𝑦 = 𝑥 was successful, yet 𝑦 =

sin(𝑥/2) and 𝑒𝑥−1 were partially failing. Although complexing the circuit design, deep learning,

will enhance fitting results, it also induces overfitting problems and requires larger datasets.

5. Keys to extrapolation by QCL

QCL affords promising prediction performances in extrapolating regions. We try to shed light

on the reason by clarifying the requirements for extrapolation. First, the regression algorithms must

provide 𝑦̂ outside the scope of trained 𝑦. Several models, such as decision trees and SVRs with

RBF kernels, would not meet the criterion (Figure 4). Second, the algorithms have to mimic the

original data trend. For a simple example case, a quadratic function can perfectly predict the

responses of ideal free falling. On the other hand, nobody knows most systems' exact functions

and explanatory parameters. Instead, researchers should provide appropriate algorithms and

parameters from their domain knowledge to come close to the ground truth.

The QCL model is specialized in mimicking the gently-sloping, non-linear functions. The model

gave better performances in predicting linear, 𝑒𝑥−1, and sin (𝑥/2) functions compared to GPR

and MLP (Figure 5, Figure S 7, Figure S 8). The prediction error did not change drastically even

though the extrapolation ratio in the dataset was changed from 10% to 90%, whereas others did

(Figure S 8). On the other hand, poorer results were obtained with steeper functions, sin (𝑥) and

sin (2𝑥). The QCL model with the current parameter was unable to fit sin (2𝑥) (𝑛 = 2, 𝑚 =

 18

3, Figure S 2). The results indicated that the current QCL model was specialized in predicting

gently-sloping, non-linear functions.

The smooth characteristics of the QCL model originated from the small trainable parameters and

the regularization effect of quantum gates. The model had much smaller trainable parameters than

MLP. The dimension of 𝜽 for QCL (𝑛 = 2, 𝑚 = 3) was only 15, whereas 27 and 51 parameters

were needed even for the unsuccessful MLP models (with hidden layer dimensions of 8 and 16,

respectively). The smaller trainable parameters and continuous sinusoidal basis resulted in smooth

curves. Further, the unitary restriction of |𝑤1|2 + |𝑤2|2 + |𝑤3|2 + |𝑤4|2 = 1 should also have

suppressed the outlier prediction as the regularization.

In summary, the current QCL model has a chance to outperform conventional linear and non-

linear regression algorithms when smooth curves are supposed with the original datasets. Although

the actual chemical and material systems do not always meet the requirement, the success in sparse

(linear) modeling5, 11 encourages researchers to expand the idea to smooth non-linear functions by

QCL or other algorithms. Further tuning of QCL models will also offer capabilities of more

complex functions, which should be examined in future research.

6. Prediction by an actual quantum computer

The biggest problem of QCL is the long calculation time with large qubit systems. The training

time increased exponentially against the number of qubits 𝑛 , and became significant (> 102

seconds) around 𝑛 = 8 even with one-dimensional datasets (Figure S 9).

 19

Instead of calculating state vectors by Eq 1, prediction can also be made by observing the actual

quantum system's eigenvalues: this is the real QCL (Eq 7). Calculation cost will not increase

exponentially because nature automatically does the calculation according to quantum mechanics.

 The probabilistic sampling was examined with an IBM quantum computing machine (Figure S

10). The model was trained via the state-vector method. Then, we calculated statistical

probabilities of upward (↑) or downward (↓) eigenvalues (𝑝↑ or 𝑝↓) from the quantum system to

predict 𝑦̂ = 𝑝↑ − 𝑝↓ (Eq 7).

Quantum sampling suffered from more significant prediction errors than the classical state-

vector calculation. Mean squared error (MSE) for the training dataset of 𝑦 = sin(𝑥), with a circuit

of qubit number 𝑛 = 2 and depth 𝑚 = 2, was 0.0007 and 0.15 for state-vector and quantum

sampling methods, respectively. When the circuit depth was increased to 3 or 4, the predicted

values did not look like the original trigonometric curves. The errors were mainly caused by the

computational noise of the quantum system (Figure S 10).19 For practical usage, the number of

quantum gates in the circuit must be reduced to suppress the effects of noise. More facile access

to quantum machines is also essential because calculation takes about 101 − 103 seconds to

predict just one record by the heavily crowded cloud system. The superparallel advantage of

quantum machines for QCL will be achieved when the computers can handle large qubit numbers

𝑛 (>> 10) with negligible noise and prompt server responses.

Apart from hardware, the development of theoretical approaches is also essential. For instance,

QCL accepts the limited domain of 𝑦̂ and 𝑥𝑖. The unitarity of operational matrices restricts the

predicted value of −1 ≤ 𝑦̂ ≤ 1. Although not mandatory, the explanatory variable 𝑥𝑖 should range

in −𝜋 ≤ 𝑥𝑖 ≤ 𝜋 owing to the periodicity of trigonometric functions in rotational gates (Eq 4, Eq

 20

5). For practical regression tasks, linear or non-linear conversion may be needed, whereas 𝑥𝑖 and

𝑦 were set in [−1, +1] in this theoretical study (e.g., use of sigmoid: 1/(1 + 𝑒−𝑥) and logit:

log (𝑦̂/(1 − 𝑦̂))).

7. Predicting molecular properties

We examined the QCL models to predict experimental molecular properties from their

structures. Four standard experimental databases of a) log solubility in water (estimating the

aqueous solubility: ESOL),9 b) melting point (Jean-Claude Bradley open melting point dataset),30

c) octanol/water distribution coefficient (lipophilicity: Lipo),9 and d) hydration free energy of

small molecules in water (Solv)9 were selected as the benchmark. Regardless of the qubit

limitations, the benefit of QCL was observed with actual materials- or chemo-informatics tasks.

As explanatory variables, molecular features in the databases were calculated by a conventional

ca. 200-dimensional descriptor algorithm of RDKit.31 The method can facilely quantify molecular

characteristics by various indicators, such as molecular weight and the number of specific atoms

in a molecule. Due to the high calculation cost of QCL, the descriptors were compressed to an 8-

dimensional vector by principal component analysis.32 All explanatory and target variables were

normalized in [−1, +1].

Small datasets were prepared artificially, assuming the actual materials informatics projects.

From the master databases, 8, 16, 32, 64, 128, 256, or 512 records were sampled randomly. Then,

the top 20% records of 𝑦 were extracted as the testing data: these were model tasks for

extrapolating regression. The random selection and regression tasks were repeated 2000/(dataset

size) times for statistical verification (Figure S 11).

 21

 QCL improved prediction performance more than conventional models with several conditions.

For instance, QCL exhibited the smallest MSE of 0.25 for the testing data, with the melting point

database of random 64 records (Figure 6a). Larger errors were observed with other models (RFR:

0.35, SVR: 0.30, BYR: 0.57, GPR: 0.61). Most of 𝑦̂ by RFR and SVR ranged in the region of only

trained 𝑦, meaning that extrapolation was unsuccessful, due to their decision-tree and radical basis

kernel-based algorithms.2

Linear-compatible models of BYR and GPR made some extrapolating predictions, exceeding

the maximum 𝑦 of training records (Figure 6a). However, the model underestimated several test

cases, giving large MSEs of 0.57 and 0.61, respectively. Another linear regression algorithm,

partial least squares regression (PLS), was also examined as a regular model for materials

informatics.33 Nevertheless, the model suffered from the largest MSE of 0.94. We doubt that the

linear models could not faithfully catch up with the nonlinearity of the current experimental

systems.

 22

Figure 6 Regression results for chemical properties. a) Actual and predicted parameters for the

melting point dataset, using QCL (𝑛 = 8, 𝑚 = 3) and other regressors. Dataset size was 64. The

top 20% of 𝑦 records were extracted as testing data, whose MSE is shown as orange numbers. b)

MSE for the regression tasks of melting point as a function of dataset size. Datasets were generated

randomly and repeatedly. Transparent regions show standard errors with 68% confidence intervals.

Results for PLS are not shown because the average MSE was too large. c) Results for ESOL. The

results with other databases (Figure S 12) and results for interpolating tasks are shown in Figure S

13 and Figure S 14. RBF + dot-product was used for GPR.

The models' performances were examined by repeating the random shuffling and regressions

(Figure 6b,c, Figure S 12). Up to the dataset size of 100, QCL almost displayed the smallest error

of the models (Figure 6b). The quantum model was also robust against tiny datasets of ESOL and

Solv (Figure 6c and Figure S 12). The QCL model also benefited from regular interpolating

regression tasks, where 20% of testing data were sampled randomly (Figure S 13). The model

 23

exhibited the best performance with the ESOL datasets, up to 32 records. Naturally, other models

sometimes outperformed QCL under different conditions. There is no omnipotent algorithm

applicable to any problem (no-free-lunch theorem).34 More careful analysis of predicting processes

for each case is needed to pursue better performances in future research.

Although we currently have no clear clue about the remarkable performances of QCL, the

gently-sloping assumption of datasets might be a key to prediction. As demonstrated with the one-

dimensional functions, the QCL model could fit linear and smooth curves (Figure 4). If the

experimental molecular structure (𝒙)–property (𝑦) relationships were not so fluctuated, their data

trend could be mimicked by QCL. We are examining the data trends more carefully by considering

the multivariable factors and distinguishing which functions are suitable for QCL.

A drawback of QCL for material exploration is the limited dimension of explanatory parameters.

If conventional models conducted regressions without dimension reduction, they offered better

performances than QCL (Figure S 12 and Figure S 13). From another perspective, however, we

can understand that the still large prediction errors by QCL were soluble by expanding the

dimension. Preliminarily selecting essential parameters by other methods, such as sparse

modeling,12 will also be critical to utilize QCL.

The encoding method of 𝒙 to quantum circuits is also a challenge of QCL.15-17, 26 The current

model did not require two qubits for one variable of 𝑥𝑖, in contrast to one-dimensional regressions

(Figure S 1). No significant improvement in prediction was detected even though the descriptors

were compressed to 4-dimensional vectors and inputted to the 8-qubit model (i.e., 𝒙 =

(𝑥1, 𝑥1, 𝑥2, 𝑥2, … , 𝑥4, 𝑥4), Figure S 14). The success may be explained by exponential natures of

the state vectors (i.e., 2𝑛-dimensional vectors and fully connected interactions). Encoding multiple

 24

values to one qubit is gradually becoming possible,26, 28 whose circuit optimization will also

increase the dimensions of explanatory parameters.

Conclusions

We examined the fundamental steps of quantum circuit learning (QCL) for regression and

prediction performances of experimental molecular properties. The superparallel and

entanglement natures of the quantum systems led to the exponential increase of model complexity

along with qubit numbers. Our study showed that the unitarity quantum operations contributed to

the flexible fitting of linear and smooth non-linear functions, even from small datasets and

extrapolating regions. QCL models had a chance to outperform conventional models with

several experimental molecule databases. The long simulation time of QCL by classical computers

is a challenge for practical applications. However, it is intrinsically soluble by developing

algorithms and hardware. Supercomputers can now handle over 30 qubits,35, 36 whose simulations

will hint us at a more efficient way of calculations. We are also continuing to examine the potential

of QCL with various material and chemical prediction tasks.

Experimental section

Data and Software Availability

Programs and databases used in this study are available as open access via GitHub

(https://github.com/KanHatakeyama/qcl)

 25

Deriving equations for a regression model of QCL

A regression model Eq 2 can be derived according to quantum mechanics and computing

theory.28 A state of one qubit is typically expressed with a linear combination of two basis vectors,

|0⟩ and |1⟩ (Eq 8).

 |0⟩ = (
1
0

)

|1⟩ = (
0
1

)

Eq 8

For 𝑛-qubit system, 2𝑛-dimensional bases are needed to describe an arbitrary quantum state

because of quantum entanglement.28 Their bases can be made by the tensor products of |0⟩ and |1⟩

(Eq 9).

 |𝜓⟩ = 𝒘 = 𝑤1|00⟩ + 𝑤2|01⟩ + 𝑤3|10⟩ + 𝑤4|11⟩

|00⟩ = |0⟩⨂|0⟩ = (
1
0

) ⊗ (
1
0

) = (

1 × 1
1 × 0
0 × 1
0 × 0

) = (

1
0
0
0

)

|01⟩ = |0⟩⨂|1⟩ = (0 1 0 0)𝑇

|10⟩ = |1⟩⨂|0⟩ = (0 0 1 0)𝑇

|11⟩ = |1⟩⨂|1⟩ = (0 0 0 1)𝑇

(these are examples for 𝑛 = 2)

Eq 9

By quantum computing, the initial state of |0 … 0⟩ = |0⟩⨂|0⟩⨂ … ⨂|0⟩ = (1 0 … 0)𝑇 is

transformed into another form of |𝜓⟩ by repeated application of quantum gates (e.g., 𝑅𝑥, 𝑅𝑦, and

CNOT), as unitary matrices (Eq 1, Eq 3). In actual quantum systems, the state vector |𝜓⟩ itself

cannot be observed, but expected values of some Hermitian operators are observable. Although

there are many observation ways, the most straightforward and popular operation is to detect

 26

upward (↑) or downward (↓) eigenvectors for one qubit against the z-axis (Eq 7).15, 28 Its

mathematical expression can be given by applying a Pauli’s Z operator to the first qubit in a circuit

(Eq 10).

𝑦̂ = ⟨𝑍1⟩ = ⟨𝜓|𝑍1|𝜓⟩ = (𝑤1

∗ … 𝑤2𝑛
∗)𝑍1 (

𝑤1

⋮
𝑤2𝑛

) = 𝐄𝐪 𝟐

𝑍1 = 𝑍⨂𝐼2⨂𝐼2⨂ … ⨂𝐼2 (repeat 2n-1 times)

𝑍 = (
1 0
0 −1

)

Eq 10

Calculation environment

Calculations were conducted with a Python 3 environment. Quantum computing libraries of

Qulacs and Qiskit were introduced for simulation and actual quantum computing. Conventional

regression models were made with scikit-learn.32 Analytical solutions were calculated with

Sympy.37 Computations were done with a standard workstation without using graphics processing

units (Intel Core i9-9900K CPU @ 3.60 GHz, 32 GB memory, and Ubuntu 16.04 operating

system).

Preparation of regression models

Unless noted otherwise, prediction models were generated with the configuration of Figure 3b

and state vector calculation using classical computers. The number of trainable parameters (or

dimension of 𝜽) were 3𝑚𝑛 − 3𝑚(𝑛 − 1). The latter term comes from the fact that rotation of i-th

(𝑖 > 1) qubit in the final depth layer does not affect the state of the 1st qubit for observation.

Calculations were done using a Qulacs library.38 Final prediction was made using a constant factor

of two as a hyperparameter (𝑦̂ ↦ 2𝑦̂). Models were trained so that the summation of squared

 27

prediction errors (𝑦 − 𝑦̂)2 for training data became smaller. Basin-hopping solver implemented in

Scipy library39 was employed to optimize 𝜽. Ising model Hamiltonian was also examined during

circuit optimization instead of CNOT gates (Figure S 1). According to the method of Mitarai et al.,

Hamiltonian was made randomly, and its time evolution operator was generated via Suzuki-Trotter

transformation (time step of 0.1).15

For actual quantum computation and its simulation, predictions were conducted using a Qiskit

library.40 For higher accuracy, the training parameter 𝜽 was preliminarily set by the state vector

calculation by Qulacs. During prediction, sampling was repeated 1000 times for one record to

obtain 𝑝↑ and 𝑝↓. Cloud service of IBM Quantum systems was used for quantum computing. Five-

qubit systems were employed for sampling (mainly using a machine named ibmq_quito, having a

quantum volume of 16 and clops of 2.5K).

The following conventional models were introduced using the scikit-learn module: support

vector machine for regression (SVR, radial basis function kernel), random forest regression (RFR,

100 decision trees), Bayesian ridge regression (BYR), Gaussian process regressor (GPR), partial

least squares (PLS) regression (default dimension of 8). GPR models were constructed using some

selected kernel plus a white kernel. Unless noted otherwise, default hyperparameters were used.

MLP models were prepared using a Keras library.41 The model had a one-dimensional inputting

layer, one (or multiple) 8- or 16-dimensional hidden layer(s), and a one-dimensional output layer

(multiple hidden layers were examined in Figure S 3 and Figure S 4). Relu, sigmoid, or tanh

activation functions were introduced in the model. All training data (24 records) were

simultaneously inputted into the model, using MSE loss and Adam optimizer. Due to the limited

records, training was systematically repeated for 1000 epochs without making validation datasets.

 28

Regression of one-dimensional functions

In Figure 4 and related figures, regression models were examined with one-dimensional functions

of 𝑦 = 𝑥, sin(𝑎𝑥) , 𝑒𝑥−1 (𝑎: 𝑐𝑜𝑛𝑠𝑡.) with −1 ≤ 𝑥, 𝑦 ≤ +1 . Random 𝑁 = 20 records were

sampled to prepare a master dataset. For simplicity, no noise was added to the dataset. Then, the

top 10%, lowest 10%, and other random 20% of the records were extracted as the testing data. The

rest 60% was used for training. In Figure S 9, 𝑁 was set to be 50 for more accurate calculation

time estimation. In Figure S 10, 𝑁 = 10 was used because of a long access time to connect the

IBM cloud server. For extrapolation tasks, random 𝑁 = 100 records were generated and 10, 30,

50, 70, or 90% of the data were used for testing (Figure S 12).

Chemical property regression

Four types of standard experimental molecular databases were introduced: a) log solubility in

water (estimating the aqueous solubility: ESOL), b) melting point (Jean-Claude Bradley open

melting point dataset), c) octanol/water distribution coefficient (lipophilicity: Lipo), and d)

hydration free energy of small molecules in water (Solv).9 Features of molecules were quantified

as about 200-dimensional molecular descriptors by an RDKit library (Table S4). Then, the

descriptors were compressed to 8-dimensional vectors by principal component analysis by a scikit-

learn module.32 In Figure S 14, descriptors were compressed to 4-dimensional vectors instead.

For regression, quantum circuit models with 𝑛 = 8 and 𝑚 = 3 were employed. Datasets were

prepared by randomly sampling 8, 16, 32, 64, 128, 256, or 512 records from the master databases

(Figure S 11). All variables (𝑦, 𝑥𝑖) in each dataset were normalized in the range of [−1, +1]. As

testing data, 20% of the top 𝑦 records were extracted in Figure 6 and Figure S 12. Random 20%

data were extracted for testing in Figure S 13 and Figure S 14. The random dataset generation and

 29

prediction processes were repeated 2000/ (dataset size) times for statistical verification. The

figures display the test data's mean squared error (MSE) as box plots. The maximum y-axis was

set to be 4 for easier understanding (excessive outliers are not shown in the graphs). Unless noted

otherwise, default hyperparameters of the scikit-learn library were used for the conventional

models.

AUTHOR INFORMATION

Corresponding Author

*Kan Hatakeyama-Sato (satokan@toki.waseda.jp)

*Kenichi Oyaizu (oyaizu@waseda,jp)

Author Contributions

All authors have given approval to the final version of the manuscript.

Funding Sources

This work was partially supported by Grants-in-Aid for Scientific Research (Nos. 21H04695,

18H05515, 20H05298, 22H04623, and 21H02017) from MEXT, Japan. The work was partially

supported by JST FOREST Program (Grant Number JPMJFR213V, Japan) and the Research

Institute for Science and Engineering, Waseda University

REFERENCES

1. S. Hong, C. H. Liow, J. M. Yuk, H. R. Byon, Y. Yang, E. Cho, J. Yeom, G. Park, H.

Kang, S. Kim, Y. Shim, M. Na, C. Jeong, G. Hwang, H. Kim, H. Kim, S. Eom, S. Cho,

H. Jun, Y. Lee, A. Baucour, K. Bang, M. Kim, S. Yun, J. Ryu, Y. Han, A. Jetybayeva, P.

 30

P. Choi, J. C. Agar, S. V. Kalinin, P. W. Voorhees, P. Littlewood and H. M. Lee, ACS

Nano, 2021, 15, 3971-3995.

2. J. Schmidt, M. R. G. Marques, S. Botti and M. A. L. Marques, Npj Comput. Mater.,

2019, 5, 83.

3. M. Scheffler, M. Aeschlimann, M. Albrecht, T. Bereau, H. J. Bungartz, C. Felser, M.

Greiner, A. Gross, C. T. Koch, K. Kremer, W. E. Nagel, M. Scheidgen, C. Woll and C.

Draxl, Nature, 2022, 604, 635-642.

4. Y. C. Lo, S. E. Rensi, W. Torng and R. B. Altman, Drug Discov Today, 2018, 23, 1538-

1546.

5. R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi and C. Kim, Npj Comput.

Mater., 2017, 3, 54.

6. Y. LeCun, Y. Bengio and G. Hinton, Nature, 2015, 521, 436-444.

7. K. Hatakeyama-Sato and K. Oyaizu, Commun. Mater., 2020, 1, article number: 49.

8. K. Hatakeyama-Sato, T. Tezuka, M. Umeki and K. Oyaizu, J. Am. Chem. Soc., 2020,

142, 3301-3305.

9. Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing

and V. Pande, Chem. Sci., 2018, 9, 513-530.

10. S. Nagasawa, E. Al-Naamani and A. Saeki, J. Phys. Chem. Lett., 2018, 9, 2639-2646.

11. H. Yamada, C. Liu, S. Wu, Y. Koyama, S. Ju, J. Shiomi, J. Morikawa and R. Yoshida,

ACS Cent. Sci., 2019, 5, 1717-1730.

12. R. Mizuguchi, Y. Igarashi, H. Imai and Y. Oaki, Nanoscale, 2021, 13, 3853-3859.

13. J. Mairal, F. Bach and J. Ponce, 2014, arXiv:1411.3230.

14. H. Numazawa, Y. Igarashi, K. Sato, H. Imai and Y. Oaki, Adv. Theory Simul., 2019, 2,

1900130.

15. K. Mitarai, M. Negoro, M. Kitagawa and K. Fujii, Physical Review A, 2018, 98, 032309.

16. J. G. Liu and L. Wang, Physical Review A, 2018, 98, 062324.

17. T. Suzuki and M. Katouda, J. Phys. Commun., 2020, 4, 125012.

18. T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, Springer

New York, NY, 2009.

19. K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M.

Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek and

A. Aspuru-Guzik, Rev. Mod. Phys., 2022, 94, 015004.

20. J. Preskill, Quantum, 2018, 2, 79.

21. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferova, I. D.

Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis and A. Aspuru-

Guzik, Chem. Rev., 2019, 119, 10856-10915.

22. I. G. Ryabinkin, T. C. Yen, S. N. Genin and A. F. Izmaylov, J. Chem. Theory Comput.,

2018, 14, 6317-6326.

23. R. Xia and S. Kais, Nat Commun, 2018, 9, 4195.

24. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, Nature, 2017,

549, 195-202.

25. S. A. Stein, R. L'Abbate, W. Mu, Y. Liu, B. Baheri, Y. Mao, Q. Guan, A. Li and B. Fang,

2021, arXiv:2012.00256.

26. M. Schuld, A. Bocharov, K. M. Svore and N. Wiebe, Physical Review A, 2020, 101,

032308.

 31

27. Y. Takaki, K. Mitarai, M. Negoro, K. Fujii and M. Kitagawa, Physical Review A, 2021,

103.

28. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th

Anniversary Edition, Cambridge: Cambridge University Press, 2010.

29. L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma, J.

Santamaria, M. A. Fadhel, M. Al-Amidie and L. Farhan, J Big Data, 2021, 8, 53.

30. Jean-Claude Bradley Open Melting Point Dataset (2014). DOI:

10.6084/m9.figshare.1031637

31. RDKit: Open-source cheminformatics; , http://www.rdkit.org).

32. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M.

Brucher, M. Perrot and E. Duchesnay, J. Mach. Learn. Res., 2011, 12, 2825-2830.

33. K. Rajan, Mater. Today, 2005, 8, 38-45.

34. D. H. Wolpert and W. G. Macready, IEEE T. Evolut. Compt., 1997, 1, 67-82.

35. S. Imamura, M. Yamazaki, T. Honda, A. Kasagi, A. Tabuchi, H. Nakao, N. Fukumoto

and K. Nakashima, arXiv:2203.16044, 2022.

36. Z. Wang, Z. Chen, S. Wang, W. Li, Y. Gu, G. Guo and Z. Wei, Sci Rep, 2021, 11, 355.

37. A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar,

S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F.

Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, Š.

Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman and A. Scopatz, PeerJ Comput.

Sci., 2017, 3.

38. Y. Suzuki, Y. Kawase, Y. Masumura, Y. Hiraga, M. Nakadai, J. Chen, K. M. Nakanishi,

K. Mitarai, R. Imai, S. Tamiya, T. Yamamoto, T. Yan, T. Kawakubo, Y. O. Nakagawa,

Y. Ibe, Y. Zhang, H. Yamashita, H. Yoshimura, A. Hayashi and K. Fujii, Quantum, 2021,

5, 559.

39. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.

Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,

K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I.

Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I.

Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P.

van Mulbregt and C. SciPy, Nat Methods, 2020, 17, 261-272.

40. Qiskit: An Open-source Framework for Quantum Computing,

https://zenodo.org/record/6476573, DOI: 10.5281/zenodo.2573505).

41. F. Chollet, Keras, https://github.com/fchollet/keras).

http://www.rdkit.org/
https://zenodo.org/record/6476573
https://github.com/fchollet/keras

 S1

Supplementary Information

Quantum circuit learning to predict experimental

chemical properties

Kan Hatakeyama-Sato,* Yasuhiko Igarashi,

Takahiro Kashikawa, Koichi Kimura, Kenichi Oyaizu*

 S2

Table S1 Examples of simple quantum circuits and mathematical expressions.

NOTE: for simple expression, the results for 𝑅𝑥(2𝑡) and 𝑅𝑦(2𝑡) are used for 𝑦̂ (𝑡 ↦ 2𝑡 in Eq 4 and Eq 5).

Circuit 𝑉 𝑈 𝑦̂ = 𝑓𝜽(𝒙)

𝑅𝑥(𝑥) - cos(2𝑥)

𝑅𝑥(cos−1 𝑥) - 2𝑥2 − 1

𝑅𝑥(cos−1 𝑥)

𝑅𝑦(cos−1 𝑥)

-
4𝑥4 − 4𝑥2 − 1

𝑅𝑥(𝑥) 𝑅𝑦(𝜃) cos(2𝜃 − 2𝑥)

2
+

cos (2𝜃 + 2𝑥)

2

𝑅𝑥(𝑥) 𝑅𝑦(𝜃2)𝑅𝑦(𝜃1)
−

cos(2𝜃2 − 2𝑥)

2

+
cos(2𝜃2 + 2𝑥)

2

+
cos(−2𝜃1 + 2𝜃1 + 2𝑥)

4

+
cos (2𝜃1 − 2𝜃1 + 2𝑥)

4

+
cos (2𝜃1 + 2𝜃1 − 2𝑥)

4

+
cos (2𝜃1 + 2𝜃1 + 2𝑥)

4

 S3

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2)

∙ 𝑅𝑦(𝑥1)𝑅𝑥(𝑥1)

- cos(4𝑥1)

4
+

cos(4𝑥2)

4

−
cos(2𝑥1 − 4𝑥2)

4

+
cos(2𝑥1 + 4𝑥2)

4

+
cos(4𝑥1 − 4𝑥2)

8

−
cos(4𝑥1 − 2𝑥2)

4

+
cos(4𝑥1 + 2𝑥2)

4

+
cos(4𝑥1 + 4𝑥2)

8
+

1

4

𝑅𝑥(𝑥1)⨂𝑅𝑥(𝑥2) CNOT(2,1) cos(2𝑥1 − 2𝑥2)

2

+
cos(2𝑥1 + 2𝑥2)

2

𝑅𝑥(𝑥1)⨂𝑅𝑥(𝑥2) (𝑅𝑦(𝜃)⨂𝐼2)

∙ CNOT(2,1)

cos(−2𝜃 + 2𝑥1 + 2𝑥2)

4

+
cos(2𝜃 − 2𝑥1 + 2𝑥2)

4

+
cos(2𝜃 + 2𝑥1 − 2𝑥2)

4

+
cos(2𝜃 + 2𝑥1 + 2𝑥2)

4

(𝑅𝑦(𝑥1)𝑅𝑥(𝑥1))
⨂(

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2))

CNOT(2,1)
(2sin2(𝑥1) − 1)2 (2sin2(𝑥2)

− 1)2

 S4

(𝑅𝑦(𝑥1)𝑅𝑥(𝑥1))
⨂(

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2))

(𝑅𝑦(𝜃)⨂𝐼2)

∙ CNOT(2,1)

(1 − cos (2𝑥2))2cos (2𝜃)

2

+
(1 − cos (2𝑥2))2cos (2𝜃 − 4𝑥1)

4

+
(1 − cos (2𝑥2))2cos (2𝜃 + 4𝑥1)

4

−
cos(2𝜃)

2
−

cos(2𝜃 − 4𝑥1)

2

+
cos(2𝜃 − 2𝑥2)

2

+
cos(2𝜃 + 2𝑥2)

2

+
cos(−2𝜃 + 4𝑥1 + 2𝑥2)

4

+
cos(2𝜃 − 4𝑥1 + 2𝑥2)

4

+
cos (2𝜃 + 4𝑥1 − 2𝑥2)

4

+
cos (2𝜃 + 4𝑥1 + 2𝑥2)

4

(𝑅𝑦(𝑥1)𝑅𝑥(𝑥1))
⨂(

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2))

CNOT(2,1)
∙ (𝑅𝑦(𝜃1)⨂𝑅𝑦(𝜃2))

∙ CNOT(2,1)

Eq S1

(𝑅𝑦(𝑥1)𝑅𝑥(𝑥1))
⨂(

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2))

∙ (𝑅𝑥(𝜃3)⨂𝐼2)
∙ (𝑅𝑦(𝜃2)⨂𝐼2)

∙ (𝑅𝑥(𝜃1)⨂𝐼2)
∙ CNOT(2,1)

Eq S2

 S5

𝑅𝑥(𝑥1)
⨂𝑅𝑥(𝑥2)⨂𝑅𝑥(𝑥3)

(𝑅𝑦(𝜃)⨂𝐼2⨂𝐼2)

∙ CNOT(3,1)

∙ CNOT(2,3)

∙ CNOT(1,2)

Eq S3

(𝑅𝑦(𝑥1)𝑅𝑥(𝑥1))
⨂(

𝑅𝑦(𝑥2)𝑅𝑥(𝑥2))

⨂(

𝑅𝑦(𝑥3)𝑅𝑥(𝑥3))

(𝑅𝑦(𝜃)⨂𝐼2⨂𝐼2)

∙ CNOT(3,1)

∙ CNOT(2,3)

∙ CNOT(1,2)

Eq S4

 S6

Eq S1

Eq S2

 S7

Eq S3

Eq S4

 S8

a)

 S9

b)

 S10

c)

Figure S 1 Regression results with different quantum circuits, fitting a) 𝑦 = sin (𝑥) and b) 𝑦 = 𝑥. Successful results are marked red.

Regressions were repeated three times with Ising-type circuits (IsXYm) because the results changed randomly. c) Explanation of circuit

configuration.

NOTE: The best circuit configuration (2-XY-XY𝑚) was selected for the following reasons. One qubit circuit could not fit the one-

dimensional functions (e.g., 1-XY-XY3). For initial encoding, only the use of 𝑅𝑦 gates was sufficient to fit the linear function (e.g., 2-

Y-XY2 and 2-Y-XY3). However, additional 𝑅𝑥 gates were needed for a non-linear sin (𝑥) function (e.g., 2-XY-XY2 and 2-XY-XY3).

Preprocessing of explanatory variables with cos−1 𝑥𝑖 and sin−1 𝑥𝑖 was not successful with the linear function (e.g., 2-XY(a)-XY3). The

use of Ising Hamiltonian instead of CNOT circuits led to more unstable regressions due to the randomness (e.g., 2-XY-IsXY3).

 S11

Figure S 2 Full regression results for Figure 4a.

 S12

 S13

 S14

 S15

 S16

 S17

 S18

 S19

Figure S 3 Additional regression results for Figure S 2 using conventional machine learning

models with various hyperparameters. Details of the models are explained in Table S2. The

polynomial regression by BYR (degree > 1) could basically fit the three functions. However, the

regression was unstable; it could easily induce overfitting and substantial prediction errors, as

observed in Figure S 4 and Table S3.

 S20

Table S2 Explanations of the conventional models.a)
Expression Model name Hyperparameter

SVR(RBF) SVR kernel = “rbf”, gamma = “auto”

SVR(RBF) g=0.1 SVR kernel = “rbf”, gamma = 0.1

SVR(RBF) g=1 SVR kernel = “rbf” , gamma = 1

SVR(RBF) g=10 SVR kernel = “rbf” , gamma = 10

SVR(RBF) g=100 SVR kernel = “rbf” , gamma = 100

RFR RandomForestRegressor (default)

RFR depth=3 RandomForestRegressor max_depth=3

RFR depth=5 RandomForestRegressor max_depth=5

RFR depth=10 RandomForestRegressor max_depth=10

BYR degree=1 BayesianRidge (default)

BYR degree=2 BayesianRidge (default) Convert 𝑥 to 𝑥 + 𝑥2

BYR degree=3 BayesianRidge (default) Convert 𝑥 to 𝑥 + 𝑥2 + 𝑥3

BYR degree=4 BayesianRidge (default) Convert 𝑥 to 𝑥 + 𝑥2 … + 𝑥4

GPR(RBF) GaussianProcessRegressor kernel=RBF + WhiteKernel

GPR(DOT) GaussianProcessRegressor kernel=DotProduct + WhiteKernel

GPR(RBF+Dot) GaussianProcessRegressor kernel=RBF+DotProduct + WhiteKernel

MLP-16(relu) l=1 Multi layer perceptronb) One hidden layer, ReLu activation

MLP-16(relu) l=2 Multi layer perceptronb) Two hidden layers, ReLu activation

MLP-16(relu) l=3 Multi layer perceptronb) Three hidden layers, ReLu activation

MLP-16(relu) l=4 Multi layer perceptronb) Four hidden layers, ReLu activation

MLP-16(tanh) l=1 Multi layer perceptronb) One hidden layer, tanh activation

MLP-16(tanh) l=2 Multi layer perceptronb) Two hidden layers, tanh activation

MLP-16(tanh) l=3 Multi layer perceptronb) Three hidden layers, tanh activation

MLP-16(tanh) l=4 Multi layer perceptronb) Four hidden layers, tanh activation

MLP-16(sigmoid) l=1 Multi layer perceptronb) One hidden layer, sigmoid activation

MLP-16(sigmoid) l=2 Multi layer perceptronb) Two hidden layers, sigmoid activation

MLP-16(sigmoid) l=3 Multi layer perceptronb) Three hidden layers, sigmoid activation

MLP-16(sigmoid) l=4 Multi layer perceptronb) Four hidden layers, sigmoid activation

a) Except for MLP, regressions models were made using a scikit-learn (version 1.0.2) library.

Default hyperparameters were used unless noted otherwise. The document is available at

https://scikit-learn.org/stable/whats_new/v1.0.html.

b) MLP was implemented by a Keras (version 2.9.0) library. The dimension of the hidden layers

was 16.

 S21

a)

 S22

b)

 S23

c)

 S24

Figure S 4 Mean squared errors (MSEs) for the one-dimensional regression tasks. The random

data preparation and regressions were repeated 30 times. a,b) Prediction errors for the testing

datasets in the extrapolating regions and c,d) for interpolating regions. For clearer comparison,

enlarged graphs are shown in Figures b and d) by setting the x-range of 0 to 0.5.

 S25

Table S3 Average MSEs for the regression task in Figure S 4. Extra and inner represent the testing

data in the extrapolating and interpolating regions, respectively. The “Total” column is the sum of

Extra (all) and Inner (all), which are average MSEs for the regression tasks of linear, sin, and

exponential curves.

 S26

Figure S 5 a) Visualized state vector for an example circuit of 𝑈(𝜃)𝑉(𝑥) = 𝑅1,𝑦(𝜃) ∙ CNOT1,2 ∙

𝑅2,𝑥(𝑥) ∙ 𝑅1,𝑥(𝑥) (𝜃 = 1.0, 𝑥 = 0.6). Coordinate 𝑤𝑖 against four bases |00⟩ =
(1,0,0,0)𝑇 , … , |11⟩ = (0,0,0,1)𝑇 are plotted as red points on complex planes. Changes of 𝑤𝑖 by

gates are marked by blue squares. b) Model design of QCL and MLP.

 S27

Figure S 6 Visualization of latent variables for the QCL and MLP models. Gray plots and lines

show answer data, black lines correspond to final predictions, and other colored curves are latent

variables. The expression of “MLP-8(ReLu)” represents that an 8-dimensional hidden layer and a

ReLu activation function were selected as hyperparameters. Related data is shown in Figure 5.

 S28

 S29

 S30

 S31

 S32

 S33

 S34

Figure S 7 Extrapolating predictions of linear, exponential, and sinusoidal functions by QCL, GPR

(RBF), and MLP-8. Random 100 points were generated according to the original functions.

Extrapolating 10, 30, 50, 70, or 90% of the data were selected as testing sets, and the rest were

training. The expression of, e.g., “sin2-0.9” indicates that a sin 2𝑥 function was fitted with the

90% extrapolating testing data.

 S35

Figure S 8 Statistical extrapolating performances for Figure S 7. The random dataset preparation

and fitting were repeated 30 times. Transparent regions show standard errors with 68% confidence

intervals.

 S36

Figure S 9 Training time of QCL model (configuration shown in Figure 3b). The number of qubits

𝑛 and circuit depth 𝑚 were changed to train random 50 records of 𝑦 = sin (𝑥). Predictions were

done by calculating from state vectors and repeated five times for each condition. Error bars

indicate 95% confidence intervals assuming Gaussian distribution.

 S37

Figure S 10 Predicting the function of 𝑦 = sin(𝑥) by an actual quantum computer (IBM Quantum)

with 𝑚 = 2, 3, or 4. Models were trained using the output of state vectors. Then, simulated or

actual quantum computations were conducted to predict the same data from sampling results (Eq

7). For one record, sampling was done 1000 times. The accuracy of simulated sampling was worse

than the state vector due to the randomness. Worse results of quantum sampling than simulation

meant that noises during quantum computing affected the predictions.

 S38

Figure S 11 Dataset preparation and regression steps for the molecular property prediction task.

The dataset size of n was set to be 8, 16, 32, 64, 128, 256, or 512.

 S39

 S40

Dataset size

a)

 S41

 S42

b)

Figure S 12 Regression results for the extrapolating tasks, with lipophilicity (Lipo), hydration free energy of small molecules in water

(Solv), log solubility in water (ESOL), and melting point (MP) datasets. a) Box plots. b) Line plots with standard errors with 68%

 S43

confidence intervals. In the legends, “8-dim” means that the explanatory variables were compressed from about 200- to 8-dimensional

by principal component analysis.

 S44

 S45

Dataset size

a)

 S46

 S47

b)

Figure S 13 Regression results for the interpolating tasks as Box plots. b) Line plots with standard errors with 68% confidence intervals.

In the figures, 20% of testing data were randomly sampled from the dataset, whereas the top 20% records of 𝑦 were extracted in Figure

S 12.

 S48

 S49

Dataset size

a)

 S50

 S51

b)

Figure S 14 Regression results for the interpolating tasks with 4-dimensional vectors. a) Box plots and b) Line plots with standard

errors with 68% confidence intervals.. A QCL circuit (𝑛 = 8) inputted a vector of (𝑥1, 𝑥1, 𝑥2, 𝑥2, … , 𝑥4, 𝑥4).

 S52

Table S4 List of molecular descriptors calculated by RDKit.
Name

MaxEStateIndex PEOE_VSA2 VSA_EState9 fr_aryl_methyl

MinEStateIndex PEOE_VSA3 FractionCSP3 fr_azide

MaxAbsEStateIndex PEOE_VSA4 HeavyAtomCount fr_azo

MinAbsEStateIndex PEOE_VSA5 NHOHCount fr_barbitur

qed PEOE_VSA6 NOCount fr_benzene

MolWt PEOE_VSA7 NumAliphaticCarbocycles fr_benzodiazepine

HeavyAtomMolWt PEOE_VSA8 NumAliphaticHeterocycles fr_bicyclic

ExactMolWt PEOE_VSA9 NumAliphaticRings fr_diazo

NumValenceElectrons SMR_VSA1 NumAromaticCarbocycles fr_dihydropyridine

NumRadicalElectrons SMR_VSA10 NumAromaticHeterocycles fr_epoxide

MaxPartialCharge SMR_VSA2 NumAromaticRings fr_ester

MinPartialCharge SMR_VSA3 NumHAcceptors fr_ether

MaxAbsPartialCharge SMR_VSA4 NumHDonors fr_furan

MinAbsPartialCharge SMR_VSA5 NumHeteroatoms fr_guanido

FpDensityMorgan1 SMR_VSA6 NumRotatableBonds fr_halogen

FpDensityMorgan2 SMR_VSA7 NumSaturatedCarbocycles fr_hdrzine

FpDensityMorgan3 SMR_VSA8 NumSaturatedHeterocycles fr_hdrzone

BCUT2D_MWHI SMR_VSA9 NumSaturatedRings fr_imidazole

BCUT2D_MWLOW SlogP_VSA1 RingCount fr_imide

BCUT2D_CHGHI SlogP_VSA10 MolLogP fr_isocyan

BCUT2D_CHGLO SlogP_VSA11 MolMR fr_isothiocyan

BCUT2D_LOGPHI SlogP_VSA12 fr_Al_COO fr_ketone

 S53

BCUT2D_LOGPLOW SlogP_VSA2 fr_Al_OH fr_ketone_Topliss

BCUT2D_MRHI SlogP_VSA3 fr_Al_OH_noTert fr_lactam

BCUT2D_MRLOW SlogP_VSA4 fr_ArN fr_lactone

BalabanJ SlogP_VSA5 fr_Ar_COO fr_methoxy

BertzCT SlogP_VSA6 fr_Ar_N fr_morpholine

Chi0 SlogP_VSA7 fr_Ar_NH fr_nitrile

Chi0n SlogP_VSA8 fr_Ar_OH fr_nitro

Chi0v SlogP_VSA9 fr_COO fr_nitro_arom

Chi1 TPSA fr_COO2 fr_nitro_arom_nonortho

Chi1n EState_VSA1 fr_C_O fr_nitroso

Chi1v EState_VSA10 fr_C_O_noCOO fr_oxazole

Chi2n EState_VSA11 fr_C_S fr_oxime

Chi2v EState_VSA2 fr_HOCCN fr_para_hydroxylation

Chi3n EState_VSA3 fr_Imine fr_phenol

Chi3v EState_VSA4 fr_NH0 fr_phenol_noOrthoHbond

Chi4n EState_VSA5 fr_NH1 fr_phos_acid

Chi4v EState_VSA6 fr_NH2 fr_phos_ester

HallKierAlpha EState_VSA7 fr_N_O fr_piperdine

Ipc EState_VSA8 fr_Ndealkylation1 fr_piperzine

Kappa1 EState_VSA9 fr_Ndealkylation2 fr_priamide

Kappa2 VSA_EState1 fr_Nhpyrrole fr_prisulfonamd

Kappa3 VSA_EState10 fr_SH fr_pyridine

LabuteASA VSA_EState2 fr_aldehyde fr_quatN

PEOE_VSA1 VSA_EState3 fr_alkyl_carbamate fr_sulfide

 S54

PEOE_VSA10 VSA_EState4 fr_alkyl_halide fr_sulfonamd

PEOE_VSA11 VSA_EState5 fr_allylic_oxid fr_sulfone

PEOE_VSA12 VSA_EState6 fr_amide fr_term_acetylene

PEOE_VSA13 VSA_EState7 fr_amidine fr_tetrazole

PEOE_VSA14 VSA_EState8 fr_aniline fr_thiazole

fr_thiocyan

fr_thiophene

fr_unbrch_alkane

fr_urea

