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Abstract: Solvent accessibility has been extensively used to
characterize and predict the chemical properties of surface
residues of soluble proteins. In contrast, there is not yet a
widely accepted quantity of the same dimension for the study
of lipid accessible residues of membrane proteins. In this work,
we propose that lipid accessibility, defined in a similar way to
the solvent accessibility, can be used to well characterize the
lipid accessible residues of membrane proteins. Moreover, we
developed a deep learning-based method, ProtRAP (Protein
Relative Accessibility Predictor), to predict the relative lipid
accessibility and relative solvent accessibility of residues from
a given protein sequence, which can infer which residues are
likely accessible to lipids, accessible to solvent, or buried in the
protein interior in one run.

Solvent accessibility (SA) was first proposed in 1971 by
Lee and Richards for the characterization of surface residues
of soluble proteins.1 Ever since, SA has been used as an
important one-dimensional predictive property of protein
residues for the structural and functional studies of pro-
teins. To quantitatively measure SA, Accessible Surface
Area (ASA) is calculated by the rolling-a-ball algorithm.2

Often, the relative accessible surface area (RASA) is used,
which is defined as the fraction of ASA of a given amino
acid residue in the polypeptide chain to that in the center of
a tripeptide adjacent to glycines.3 Generally, a residue with
high SA means it is located on the surface of a protein, which
can help determine protein folding and stability4. SA is also
important for disease discovery and drug design, as residues
located on the protein surface are more likely to serve as
active sites or interact with ligand and drug molecules.5–7

Therefore, there have been numerous studies focusing on the
prediction of SA of proteins, which were further boosted by
the rapid development of structural biology and deep learn-
ing in recent years.8–11

However, SA is not enough for the description of surface
residues of membrane proteins. Membrane proteins are em-
bedded or anchored in a lipid bilayer, a distinct chemical
environment from solvent. As a consequence, many surface
residues of membrane proteins are not solvent accessible,
but lipid accessible. Strikingly, there is not yet a widely
accepted quantity to characterize the lipid accessible prop-
erties of surface residues of membrane proteins, which play
crucial roles in signal transduction and mass transport across
membranes12 and serve as the major targets for drug de-
sign.13–15 Therefore, we think that something similar to SA
but for the lipid accessible residues is a highly desirable yet

missing quantity for the study of membrane proteins.
Recently, we proposed to use membrane contact probability

(MCP) to predict the likelihood of proteins residues in direct
contact with membranes.16 Although showing great poten-
tial, MCP does not have the same dimension as SA, and
is inherently incompatible with SA. Therefore, we sought
to study lipid accessibility (LA), a quantity defined in the
same/similar way to SA, to characterize the surface residues
of membrane proteins that are accessible to lipid molecules.
The ultimate purpose is to be able to combine LA and SA
to describe the surface residues of membrane proteins in a
more complete way.

There were very few papers studying LA of protein
residues. Adamian et al. used a canonical model to predict
LA of protein residues,17 and later on, the support vector
machine (SVM)18 method was utilized as well. However, at
that time, there were not much data available for the train-
ing purpose (no more than 100 membrane protein structures
in their datasets), and consequently the methods did not
show satisfactory performance. In the meanwhile, several
methods can predict the transmembrane region of the pro-
tein, thereby indirectly predicting LA.19–21 A recent binary
prediction method was included in TopProperty, which can
predict whether a residue is exposed to membranes or not,
but the binary prediction is still not as compatible and in-
formative as LA in complementing SA.22

To predict LA in a more direct and accurate way, in
this work, we propose an attention-assisted neural network,
named ProtRAP (Protein Relative Accessibility Predictor),
to predict the LA of residues of membrane proteins from
sequences. In fact, our model can accurately predict the
relative lipid accessibility (RLA) and relative solvent ac-
cessibility (RSA) of protein residues for any given protein
sequence in one run, thus can provide more complete infor-
mation about the likely surface residues of both soluble and
membrane proteins.

The overall method and architecture of ProtRAP is shown
in Figure 1. To generate a dataset for the training purpose,
as shown in Fig. 1A, we used 1362 non-redundant membrane
protein structures and 7740 non-redundant soluble protein
structures from the Protein Data Bank (PDB), and adopted
the rolling-a-ball (of 1.4 Å radius) method to generated the
RASA of each residue. Then, we used MCP, as observed in
molecular dynamics (MD) simulations in the MemProtMD
database,23 to determine the RLA and RSA of each residue.
We also calculated the relative buried surface area (termed
"RBSA"). The detailed definitions are shown in Fig. 1A
and SI. Such a definition not only generates a quantity, RLA,
that has the same dimension and physical meaning as RSA
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and RASA, but also accounts for the more complex nature of
lipid molecules than water molecules in accessing the surface
residues of proteins. This dataset was then used to train the
deep neural network model ProtRAP, as shown in Figs. 1B
and 1C (please refer to the SI for details).
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Figure 1. Our protocol for protein accessibility prediction. (A)
Generation of the training dataset. Protein structures were an-
alyzed to get the RASA and the membrane contact probability
(MCP), which were further used to calculate the RLA, RSA, and
RBSA of each residue for the output. (B) Preprocessing pipeline
for the input. From a protein sequence, the MSA was obtained by
HHblits, then the Position Specific Scoring Matrix (PSSM) and
the predicted three-state secondary structure (SS3) were obtained
by RaptorX-Property. (C) Architecture of the deep neural net-
work model ProtRAP.

ProtRAP can predict the RLA and RSA of residues of
a given protein sequence in one run, which can tell which
residues are accessible to lipids (high RLA), to solvent
(high RSA), or buried in protein interior (low RLA and
low RSA, thus high RBSA). With the high-quality dataset
and refined model, ProtRAP showed very satisfactory per-
formance. Three test sets were used to evaluate the model
performance, the first one containing 140 membrane proteins
(Mem), the second one containing 733 soluble proteins (Sol),
and a mixture of the above two (Mix). As can be seen in
Table S1, the overall prediction performance, as measured
by the Pearson Correlation Coefficient (PCC) with respect
to the true observations, reached 0.7∼0.8 for RLA and RSA.
Particularly, the prediction of RLA for membrane proteins
showed a high PCC of above 0.77. The ten-fold cross vali-
dation shows very low standard deviations, indicating that
our model and dataset are robust.

To better understand the performance of ProtRAP, we
compared it with two related methods that predict accessi-
bility of protein residues (Table 1 and Table S2). The first
method, RaptorX-Property, predicts the RSA of residues
from a given protein sequence with a deep learning model
DeepCNF (Deep Convolutional Neural Fields).8 The sec-
ond method, NetSurfP 2.0 is a state-of-the-art method that
predicts the RASA with an architecture composed of convo-
lutional and long short-term memory neural networks.11 Ac-

cording to the data in Table 1, it appears that NetSurfP 2.0
and RaptorX-Property do a great job in predicting RASA
and RSA, respectively, but none of them is able to predict
RLA. Our model performed very well for the prediction of
RSA of both membrane and soluble proteins, with an ac-
curacy comparable to that of RaptorX-Property. Although
our ProtRAP did not directly predict RASA, the formula
RASA = RLA + RSA can be used to obtain the RASA.
As can be seen in Table 1, our ProtRAP is comparable to
NetSurfP 2.0 in predicting the RASA of membrane and sol-
uble proteins. Most importantly, ProtRAP can predict the
RLA of membrane proteins, a function that is absent in the
other two models. Therefore, from a given protein sequence,
ProtRAP is able to accurately predict the RLA and RSA
of residues for both soluble and membrane proteins in one
run, which can then be used to infer the RASA (RLA+RSA)
and RBSA (1-RASA) of residues, providing more complete
and quantitative information on the exposure of amino acid
residues in a protein structure.

Table 1. Comparison of protein accessibility predictions using three
methods.

RaptorX-Property NetSurfP 2.0 ProtRAP

Mem_RASA
PCC - 0.679 0.708
MAE - 0.143 0.133
Q3 0.487 - 0.612

Mem_RSA
PCC - 0.533 0.744
MAE - 0.189 0.108
Q3 0.661 - 0.684

Mem_RLA
PCC - - 0.779
MAE - - 0.052

Sol_RASA
PCC - 0.765 0.755
MAE - 0.128 0.131
Q3 0.640 - 0.643

To give a more intuitive picture, we selected several rep-
resentative examples to showcase the ProtRAP prediction
mapped onto protein structures. The first case is a soluble
protein, the dextranase from Streptococcus mutansisomal-

tase (PDB ID: 3vmn).24 From its sequence, we predicted
its RLA, RSA and RBSA, then showed the results in the
left of Fig. 2A (black lines), along with the ground truth
(red lines) as well as the difference (Diff ) between the pre-
diction and ground truth (blue dotted lines, Diff = Truth

- Prediction). The first thing to notice is that, the predic-
tion did not exhibit any false positive for RLA. Also, it is
clear that the predictions overlap very well with the ground
truth, indicated by the difference (blue dotted lines) fluc-
tuating around 0. This can also be seen in the right panel
of Fig. 2A, where the predicted and true RSA and RLA
are mapped onto the structure and show similar color dis-
tributions. These results indicate that our RSA prediction
of soluble proteins from their sequences can indeed provide
valuable information on the localization of residues in the
structures, and our RLA predictions do not tend to gener-
ate false positives. Indeed, the low MAE values for the RLA
prediction of soluble proteins confirmed that the soluble pro-
teins residues are not likely to be predicted to be exposed to
lipid molecules by ProtRAP (Table S1).

The second case is an α-helical dimeric transmembrane
protein, the OSCA channel from Arabidopsis thaliana, which
is a relatively large (1202 amino acids) and hom-dimeric
complex membrane protein (PDB ID: 5z1f).25 Again, the
ProtRAP performed well in predicting both the RLA and
RSA, as shown in Fig. 2B. The difference between the pre-
diction and ground truth shows an overall flat line fluctu-
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Figure 2. Accessibility prediction for three representative cases. (A) Predicted accessibility for a soluble protein. Left panels show
the predicted accessibility (black line), the true accessibility (red line), and the prediction error (blue dotted line, Truth − Prediction)
for each residue. Right panels show the structure of the protein (PDB ID: 3vmn), represented by cartoon and surface. The surface
representation is colored according to the predicted relative accessibility and true relative accessibility. The color scheme is shown at
top right. (B) Similar to (A) but for an α-helical transmembrane protein OSCA, whose PDB ID is 5z1f. The bottom panel on the right
shows the dimeric interface. (C) Similar to (A) but for a β-barrel transmembrane protein (PDB ID: 5fr8). The bottom panel on the
right shows the interior of the protein.
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ating around 0 (Fig. 2B left), and a clear lipid accessi-
ble, transmembrane domain is observed on the outer surface
when the prediction is mapped onto the structure, which
is consistent with the ground truth (Fig. 2B right). In-
terestingly, the ProtRAP prediction shows a lipid accessible
area on the dimer interface (yellow circle on the right bot-
tom structure), indicating that the interface may be filled
with lipid molecules. The ground truth obtained from Mem-
ProtMD shows a similar but less definitive lipid accessible
area near the same spot (yellow circle). In fact, two previous
structural and MD simulation studies found that the dimeric
interface contains a groove that can indeed be filled by lipid
molecules, which confirmed the ProtRAP prediction.25,26 To
exclude the possibility that this may represent a failure of
ProtRAP in predicting the accessibility at the oligomeric
interfaces, we further looked into another membrane pro-
tein, the eukaryotic CLC transporter (CmCLC), which has
a similar architecture to OSCA (α-helical and dimeric) but
does not have a groove at the dimeric interface (PDB ID:
3org).27 The results are shown in Fig. S1, and it is clear
that the dimeric interface is predicted to be buried in this
case (yellow circle). Therefore, it appears that the ProtRAP
can accurately predict the RLA of α-helical membrane pro-
teins, and the oligomeric interface can be identified as well,
no matter whether it is buried or lipid accessible in the trans-
membrane region. The RSA prediction is satisfactory too,
without false positives of RLA for the non-transmembrane
regions.

The third representative case is a wide β-barrel transmem-
brane protein, the siderophore receptor PirA from Acineto-

bacter baumannii (PDB ID: 5fr8).28 Again, the prediction
performance is pretty good, with an overall horizontal line
fluctuating around 0 representing the difference between the
prediction and ground truth, and no false positive RLA pre-
dictions for the non-transmembrane region (Fig. 2C left). A
well-defined transmembrane region is observed on the outer
surface, which is consistent with the ground truth (red re-
gion in Fig. 2C right). As this β-barrel transmembrane
protein also has a large pore interior, we examined the ac-
cessibility of the inner surface. The right bottom of Fig. 2C
shows that the interior residues are predicted to be buried
or weakly solvent accessible, but not lipid accessible. This is
consistent with the observation in coarse grained MD sim-
ulations (considered as ground truth in this study). This
result confirms the ability of ProtRAP in predicting the sur-
face residues of β-barrel transmembrane proteins, another
large family of membrane proteins.

The sequences of the above four representative cases, col-
ored according to the predicted accessibilities, are shown in
Figs. S2. It should be noted that the above examples were
not the top ranked cases in terms of prediction accuracy in
our test sets, as measured by the weighted mean absolute
error (wMAE, whose definition is similar to the loss func-
tion in SI) of each protein. The prediction accuracy of the
dextranase ranks 570th in the 733-soluble-protein test set;
the accuracy of the OSCA channel ranks 99th, the accuracy
of the CLC transporter ranks 18th, and the PirA receptor
ranks 24th in the 140-membrane-protein test set, respec-
tively. Still, from these cases, we can see that ProtRAP
can accurately predict lipid accessible residues that form the
transmembrane regions in various situations, and does not
show trend of false positive predictions of lipid accessibility
for soluble proteins or water exposed regions of membrane
proteins. In the meanwhile, the solvent accessible residues

are accurately predicted as well. Taken together, we believe
ProtRAP can be used to annotate the localization of protein
residues from a given protein sequence, which can be further
utilized to evaluate or even refine the predicted or modeled
protein structures.

Another notable feature of ProtRAP is that it predicts
RLA with high specificity, especially for soluble proteins. As
the protein sequence is the only required input and the pre-
diction for one sequence only costs about one minute (mainly
cost in MSA), ProtRAP can be used for high throughput
screening to discover potential membrane proteins from pro-
teomes. Naturally, ProtRAP can also help identify the po-
tential residues of a given protein that directly interact with
membranes, which would be useful for integrative structure
biology studies.

There is still room for further improvement, though. Our
model is not optimized for multimer prediction. It can only
take one chain as input when predicting, and cannot con-
sider other subunits of the multimer. But the case studies
of the OSCA channel and CLC transporters seem reassuring,
showing that ProtRAP can capture the difference between
the dimer interface and outer surface. The other known
problem is that, some mutations of specific amino acids in
experiments can lead to great changes in protein structure
and localization, but this is difficult for our model to cor-
rectly predict at the moment. This may be attributed to
the nature of deep learning model used here in exploring
the multiple sequence alignment and the usage of statistical
PSSM for the prediction, which can eliminate the effect of
specific mutations. Therefore, an improved model that is
more sensitive to specific mutations would be highly desired
in the future, which will be valuable for (membrane) protein
design.
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