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Abstract 14 

 15 

Many per- and polyfluoroalkyl substances (PFASs) pose significant health hazards due to their 16 

bioactive and persistent bioaccumulative properties. However, assessing the bioactivities of 17 

PFASs is both time-consuming and costly due to the sheer number and expense of in vivo and 18 

in vitro biological experiments. To this end, we harnessed new unsupervised/semi-supervised 19 

machine learning models to automatically predict bioactivities of PFAS in various human 20 

biological targets, including enzymes, genes, proteins, and cell lines. Our semi-supervised 21 

metric learning models were used to predict the bioactivity of PFASs found in the recent 22 

Organization of Economic Cooperation and Development (OECD) report list, which contains 23 

4,730 PFASs used in a broad range of industries and consumers. Our work provides the first 24 

semi-supervised machine learning study of structure-activity relationships for predicting 25 

possible bioactivities in a variety of PFAS species. 26 
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Introduction 36 

Since the 1930s,1 per- and polyfluoroalkyl substances (PFASs) have been used in several 37 

consumer products (including fire-fighting foams) due to their outstanding stability and 38 

water/oil repellant properties.2 However, these compounds pose significant risks to the 39 

environment and biosystems. The presence of PFASs in surface water and groundwater can 40 

result in exposure to organisms, subsequently leading to accumulation in the body, with adverse 41 

effects on the liver, kidneys, blood, and immune system.2,3 Because of these deleterious effects, 42 

there is a pressing need to identify and understand the bioactivity of PFAS-based compounds 43 

that can adversely affect human health. 44 

For these reasons, several international groups including the Organization for Economic 45 

Cooperation and Development (OECD), United States Environmental Protection Agency, 46 

Food and Drug Administration, European Chemicals Agency, European Food Safety Authority, 47 

and Ministry of Ecology and Environment (China) continue to monitor PFASs that are 48 

produced in the global market.4,5 According to a 2018 OECD report, more than 4,700 PFASs 49 

currently exist as manufacturers bring new forms of PFASs into industrial and consumer 50 

products (it is worth pointing out, however, that not all 4,700 structures exist in commerce). 51 

Nevertheless, among the wide varieties of PFAS molecules, the potential hazards of these new 52 

forms remain largely unknown. 53 

  Due to the sheer number of PFAS species, in vivo and in vitro biological experiments are 54 

both time-consuming and costly. As such, the construction of predictive and reliable 55 

quantitative-structure activity relationship (QSAR) models6–8 is essential for assessing the 56 

bioactivities of these contaminants (even for PFAS species that are yet to be made). Specifically, 57 

a QSAR model that can accurately predict the bioactivities of PFASs can be harnessed to screen 58 

several of these contaminants, saving immense time and experimental resources. While there 59 

have been prior machine learning studies on PFAS molecules,9,10 most of these approaches 60 
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used supervised learning techniques to suggest general structure-bioactivity trends after post-61 

processing of the data (i.e., the focus was on aggregate data for all targets as opposed to 62 

analyzing chemical trends specific to each target).  63 

In this work, we present a new QSAR model using semi-supervised metric learning 64 

techniques to assess which functional groups affect bioactivities toward specific biological 65 

targets. Semi-supervised learning is a different machine learning approach that has the 66 

advantages of both supervised and unsupervised learning. It can be used on a dataset with 67 

primarily unlabeled data and only a few labeled data. Like unsupervised learning, it can also 68 

automatically cluster unlabeled data. Our approach is integrated with molecular docking 69 

calculations to predict possible bioactivities of PFAS molecules based on their chemical 70 

functional groups and specific biological targets (e.g., genes, proteins, or cell lines). Our 71 

approach first combines dimension reduction methods with clustering methods to classify 72 

PFASs based on their molecular structures. We then apply a semi-supervised metric learning 73 

method to improve classification accuracy. Finally, we use a molecular docking approach to 74 

shed light on the physicochemical reasons for their bioactivity. Our study provides the first 75 

unsupervised/semi-supervised learning approach for screening potentially bioactive PFAS 76 

molecules beyond conventional supervised learning or QSAR approaches. 77 

 78 

Methods 79 

  80 
 81 

 82 
Figure 1: Machine-learning-based workflow for QSAR construction to predict bioactivity of PFASs. 83 
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 84 

Our QSAR machine-learning framework, shown in Figure 1, utilizes four sequential steps 85 

followed by a reasoning/validation step: (1) collecting a training dataset from verified open-86 

source databases, (2) encoding those compounds into molecular fingerprints, (3) clustering the 87 

data to predict chemical properties based on the molecular fingerprints and assessing the 88 

performance of the models, (4) evaluating the clustering by choosing the optimal model and 89 

predicting molecular groups responsible for bioactivity based on the clustering, and (5) 90 

molecular docking simulations to rationalize the role of the chemical functional groups. All of 91 

our machine learning algorithms are publicly available (see Supporting Information). 92 

In our first step, we obtained datasets from comprehensive open-source databases, 93 

including PubChem’s BioAssay,11 Maximum Unbiased Validation,12 Toxicology in the 21st 94 

Century,13 beta-secretase 1,14 and blood-brain barrier penetration datasets,15 which are 95 

available from the Supporting Information of Ref. 10. We used two different datasets without 96 

further modification from Ref. 10: (1) the CF dataset, which includes substances containing at 97 

least one −CF− moiety (62,043 molecules), and (2) the C3F6 dataset, which includes 98 

substances containing a perfluoroalkyl moiety with three or more carbons (1,012 molecules). 99 

For both datasets, we used bioactivity data against 26 biological targets.  100 

Encoding the compounds to molecular fingerprints followed next in our framework. We 101 

used the extended connectivity fingerprint (ECFP) featurization16 with a default diameter of 4 102 

(i.e., ECFP4), which considers a maximum of four neighbors. ECFPs are topological molecular 103 

representations developed for substructure and similarity searching. By encoding molecular 104 

structures into fingerprints, we obtained a binary array with a constant length of 2,048, making 105 

it a convenient input for the unsupervised/semi-supervised learning models. Furthermore, since 106 

the simplified molecular-input line-entry system (SMILES) sequences for all PFAS molecules 107 
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are readily available, they can be easily converted into fingerprint-based representations using 108 

the RDKit software package.17 109 

We then applied semi-supervised metric learning to the generated fingerprints by training 110 

machine learning models to predict the bioactivities of PFAS molecules by first (a) reducing 111 

the dimension of the fingerprint datasets and then (b) classifying/clustering them (see Figure 112 

1). Our QSAR model used a semi-supervised metric learning algorithm to automatically 113 

group/classify molecules with similar bioactivities. Metric learning has two main advantages: 114 

(1) its predictions are more efficient/accurate since the model distinctly separates new 115 

molecular representations according to their bioactivities (by reducing the distance metric 116 

between the same-labeled pair of data and increasing the distance between opposite-labeled 117 

pair of data), and (2) it automatically generates a vector-shaped representation from the 118 

molecular fingerprint and can be directly integrated with conventional dimension reduction 119 

methods. The final clusters were selected based on the best Silhouette score, which analyzes 120 

the distances of each data point to its cluster and neighboring clusters.18 In short, a higher 121 

Silhouette score indicates more distinct and separated clusters. We then identified which 122 

substructures or molecular functional groups played essential roles in determining the 123 

bioactivity of the molecules.   124 

Lastly, we conducted several molecular docking calculations using Autodock19 to elucidate 125 

the physicochemical reasons for the bioactivity trends obtained from our QSAR model (i.e., 126 

using ligand-protein binding conformations to rationalize the role of chemical substructures 127 

that induces bioactivity on biological targets.)  128 

 129 

Results and Discussion 130 

3-1. Unsupervised vs. semi-supervised machine learning 131 
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To systematically evaluate the performance of our semi-supervised metric approach, we 132 

first performed traditional unsupervised machine learning and compared the performance of 133 

the two models. To maintain a concise discussion of our results, the Supporting Information 134 

contains a detailed analysis and comparison of our unsupervised vs. semi-supervised machine 135 

learning results. Figure S1 shows our clustering results using unsupervised machine learning 136 

on the C3F6 dataset, and Figure S2 shows a comparison between the unsupervised and semi-137 

supervised results using the CF dataset on two different targets. Table S3 summarizes the 138 

substructures that induce bioactivity as predicted from our unsupervised learning calculations. 139 

In summary, our extensive analyses in the Supporting Information showed that semi-140 

supervised metric learning performed significantly better than unsupervised machine learning; 141 

as such, we only focus on the results of the former in this manuscript. 142 

 143 
 144 
3-2. Semi-supervised metric learning 145 

Figure 2 displays true-positive ratios and classifications between bioactive/inactive 146 

molecules on four representative targets that show the best performance in the CF dataset using 147 

semi-supervised metric learning (for example, in Fig. 2a, we obtain a true-positive ratio of 97.3% 148 

by computing 
number of molecules containing esters and are also bioactive

number of ester−containing molecules in the cluster
). Using the Maximum 149 

Common Structure (MCS) module in the RDKit software package on bioactive molecules, we 150 

found that the ester functional group is the critical substructure that causes bioactivity on Cyps 151 

(Figures 2a, b, and c) and ATXN (Figure 2d). Table S4 summarizes the substructures predicted 152 

to play a vital role in bioactivity toward nine different targets. The other 17 targets did not 153 

demonstrate as distinct clustering as the nine targets in Table S4 due to a relatively weak 154 

correlation between molecular structure and bioactivity. 155 
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156 
Figure 2: Distribution of molecules in the CF dataset using semi-supervised metric learning. Each point 157 
represents a molecule that is either bioactive (red circular edges) or inactive (light blue circular edges) 158 
towards (a) CYP2C9, (b) CYP3A4, (c) CYP2D6, and (d) ATXN. The olive green-filled circles represent 159 
molecules having the substructure depicted in the plot; i.e., (a, b) ester groups, (c) phenylprimidyl 160 
groups, and (d) 4-benzyl-2-(4-fluorophenyl)-1,2-thiazole. The pink-filled circles in (c) represent 161 
molecules with phenylethanone. The percentage value represents the ratio of the number of bioactive 162 
molecules within the identified substructure. Table S3 lists the predicted substructures for specific 163 
targets.   164 

  165 
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 166 
We used structural alerts to cross-check the validity of the predicted substructures that play 167 

a crucial role in bioactivity. Within the bioinformatics community, structural alerts are 168 

molecular functional groups associated with a particularly adverse outcome, in our case, 169 

bioactivity.20,21 We cross-referenced the CheMBL dataset to our machine learning results since 170 

it contains structural alert information for some PFAS molecules.22 Figure S3 shows structural 171 

alerts of the molecules that are bioactive on CYP2CP, and, as mentioned previously, the ester 172 

group was found to be the critical structure that induces interaction with Cyps.23,24 173 

 174 

3-3. Interactions between PFASs and targets 175 

We carried out molecular docking calculations with Autodock21 to rationalize the 176 

underlying molecular causes of bioactivities in PFAS and predict their interaction with target 177 

enzymes. The Supporting Information gives additional details of our molecular docking 178 

calculations. We successfully docked all PFASs into the active sites of the targets and binned 179 

the binding affinity results based on their bioactivity with the target. Figure S5 displays one of 180 

the bioactive structures with the ester group of the CYP2C9-PFAS complex, methyl 4-[2-181 

propyl-1-({[4-trifluoromethyl)phenyl]sulfonyl}amino)-2-hexen-1-yl]benzoate. 182 

To verify the correlation between the Autodock binding affinities and their bioactivity, we 183 

performed a dimension reduction procedure using unsupervised learning on the CF dataset, 184 

which consists of molecular structures with binding affinity data (see Figure 3). We used 185 

unsupervised learning here to make the point that unsupervised learning underperforms when 186 

only structural data is provided. Specifically, if the classification accuracy is improved with 187 

additional feature inputs, those features must contain some information to discriminate among 188 

the population.25,26 In other words, if the inclusion of binding affinity data enhances the 189 

clustering accuracy, it provides another co-descriptor for bioactivity. Indeed, Figures 3b and 190 

3a show that descriptors consisting of chemical structures and binding affinity data give a better 191 
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separation/distinction between active and inactive molecules compared to the unsupervised 192 

learning results based only on chemical structures.  193 

 194 

 195 
Figure 3: Clustering of molecules predicted with unsupervised learning (dimension reduction) on CF 196 

datasets containing (a) chemical structures and (b) chemical structures and binding affinities with 197 

CYP2C9. Each point represents a molecule that is either bioactive (red) or inactive (blue) towards 198 

CYP2C9. 199 

 200 

3-4. Bioactivity predictions on OECD dataset 201 

In 2018, the Global Perfluorinated Chemicals Group27 within the OECD published a list of 202 

4,730 PFASs to develop regulatory approaches for reducing the use of perfluorinated 203 

substances in products. However, researchers have yet to discover the bioactivities of the 204 

molecules in the list. Using the QSAR model developed in this work, we give predictions and 205 

a rationale for the bioactivities of molecules in the OECD list. 206 

We performed molecular docking calculations on molecules containing the ester group 207 

among the OECD list to verify similar binding conformations. Of the 4,730 PFASs in the 208 

OECD list, 414 have an ester functional group. Figure S6 shows four different representative 209 

ester-containing molecules bound to CYP2C9. In particular, the ester-containing molecules in 210 
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the OECD list bind strongly with Fe2+ of the HEME group (an active site of Cyp enzyme), 211 

which is similar to the binding interactions that we observed in the CF dataset. Therefore, we 212 

expect a large portion of the 414 ester-containing molecules among the OECD list to form 213 

strong bonds with Fe2+ of the HEME group with a similar conformation, leading to bioactivity 214 

toward Cyp enzymes. Furthermore, based on our docking calculations, 87.7% of these 414 215 

molecules have a stronger binding affinity than -5 kcal/mol (the average binding affinity is -216 

5.77 kcal/mol), which falls in the range of the mean binding affinity of the bioactive molecules 217 

from the CF dataset. 218 
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 219 
Figure 4: (a) OECD dataset classified by PC t-SNE and clustered based on the k-means clustering 220 

method. The orange and yellow dots represent ester-containing molecules. The colors closer to red 221 

(yellow) represent a higher (lower) concentration of bioactive molecules. (b) PFAS molecules included 222 
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in the OECD list are grouped into 40 clusters. Each point represents a molecule, and clusters 13, 25, 223 

and 39 denote a high ratio of ester-containing groups. 224 

 225 

We then clustered the OECD dataset into 40 clusters using the k-means clustering method. 226 

Using both the clustered results (Figure 4b) and the distribution of ester-group-containing 227 

molecules (Figure 4a), we found that clusters 13, 25, and 39 contain ester functional groups. 228 

Analyzing the CF dataset, we found that the ester group plays a possible role in bioactivity 229 

toward Cyp enzymes; that is, molecules in these clusters have a high probability of being 230 

bioactive against CYP2C9 and CYP3A4. 231 

In summary, we have developed a new QSAR model validated with CheMLB structural 232 

alerts and molecular docking calculations, which constitutes the first application of semi-233 

supervised metric learning for predicting/rationalizing bioactivities in PFASs. Using a semi-234 

supervised metric learning algorithm, our machine-learning-based QSAR model accurately 235 

identified specific substructures, such as ester-containing groups, that play a possible role in 236 

determining bioactivities. With our semi-supervised learning approach, we obtained a distinct 237 

classification between bioactive and inactive molecules, resulting in an accuracy of up to 97.3% 238 

in the CF dataset. We also used semi-supervised metric learning to automatically 239 

classify/cluster and predict functional groups that could possibly play a role in bioactivity. 240 

In addition, our machine learning model proposed a few significant substructures that could 241 

induce bioactivity, which were subsequently examined with molecular docking calculations. 242 

Most importantly, our machine learning predictions on bioactivities can provide a more 243 

efficient screening of potentially bioactive PFASs that can be used to complement in vitro 244 

assessments. All of our machine learning algorithms are publicly available (see Supporting 245 

Information), and we anticipate that researchers can further extend our methodology to screen 246 

other contaminants or analyze the potential bioactivity of PFAS molecules. 247 

 248 
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