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Abstract: Advances in algorithm developments have enabled density functional theory (DFT) 

description of large molecules, including whole proteins, but the self-consistent field (SCF) 

convergence issues often hamper practical applications. The conductor-like polarizable continuum 

model (CPCM), although initially introduced as an implicit solvent model, was reported to 

improve SCF convergence in some large molecules. However, the underlying mechanisms and 

applicable use cases were unclear. We investigated the impacts of CPCM on the SCF convergence 

of 25 peptides and found that the CPCM only effectively reduced the SCF iterations for molecules 

with charge separations (e.g., the zwitterionic form of peptides) but had little effect on non-charge-

separated molecules. We observed that CPCM increased the HOMO-LUMO gap of both the 

zwitterionic and non-charge-separated molecules, but only the charge-separated molecules 

suffered from the vanishing HOMO-LUMO gap problem in the gas phase which is the origin of 

the convergence issue. We revealed CPCM’s gap-opening mechanism as the selective 

stabilization/destabilization of molecular orbitals (MO) based on their local electrostatic 

environment. Compared to level-shifting, a traditional SCF improvement technique, CPCM has 

superior performance because the stabilization/destabilization of MOs is consistent through SCF 
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iterations. Finally, we examined CPCM’s impacts on DFT density delocalization error (DDE) 

when used as an SCF accelerator. CPCM can mitigate the DDE and reproduce the density-derived 

properties (e.g., dipole moments) matching high-level methods when a very low dielectric constant 

is used but tends to over-localize the electron density at higher dielectric constants. 

I. INTRODUCTION 

Recent advances in large-scale quantum chemistry development have enabled numerous ab 

initio calculations of large molecular and biomolecular systems, from the prediction of properties 

(protein structures,1 protein-ligand binding affinities2) to the investigation of dynamics.3 Density 

functional theory (DFT) is still the most widely employed method in large-scale quantum 

chemistry calculations for its balance of cost and accuracy in main group chemistry. Practical DFT 

calculations use density functional approximations (DFAs) for the exchange-correlation (xc) 

functional. However, most DFAs suffer from self-interaction errors, also called the delocalization 

error (DE). The DE affects the accuracy of DFT prediction of energetic properties (electron 

affinities,4 band gaps,5 barrier heights,6 and dissociation energies7), density-derived properties 

(partial charges, molecular multipole moments), and geometry (bond lengths, bond angles).8 For 

large molecules like biological systems, the DE is also known to cause DFT self-consistent field 

(SCF) convergence issues due to the vanishing HOMO-LUMO gap.9 With a lot of computational 

resources wasted for each failed SCF, the convergence issue severely impacts the efficiency and 

usability of DFT in investigating biological systems.  

One simple yet effective remedy to DFT convergence issues in large molecules is to apply 

dielectric screening via a polarizable continuum model (PCM), first introduced by Atony and 

Grimme1 and later investigated by Payne et al.2, 9 It was found that the PCM field could open the 

HOMO-LUMO gap and avoid the frequent mixture of virtual and occupied orbitals between SCF 
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iterations. However, Kohn-Sham (KS) orbital energies are little affected by the PCM reaction field 

in other contexts, such as the optimal tuning of long-range corrected functionals in PCM.10, 11 The 

origin of PCM’s effects on SCF convergence improvement and DE reduction has not been 

thoroughly investigated for large molecules. It is unclear whether PCM can be used as a universal 

SCF accelerator or only effective for specific large molecules. How the electronic structure of the 

large molecules can be impacted by the PCM field has not been scrutinized either.  

Dale and Johnson recently showed that PCM reduces DEs and reproduces linear fractional 

charge behavior in DFAs because the polarization energy can be expressed as a quadratic concave 

down function12. Due to the overstabilization of fractional charge caused by DE, DFAs show a 

convex departure from the expected linear fractional charge behavior between N and N+1 electron 

systems. Therefore, common corrections counteract the DE by introducing a concave down 

fractional charge term that localizes electron density. Typical examples include the Hubbard U-

correction in DFT+U,13 an admixture of Hartree-Fock exchange globally14 or with range separation 

in hybrid functionals,15 and a general polynomial in jm-DFT.16 The quadratic concave-down 

function form of PCM also has electron localization effects. Dale and Johnson demonstrated the 

impacts of PCM in reproducing the linear fractional charge behavior for 147 small molecules. The 

work provides an insightful explanation of the counterintuitive density localization observed in 

PCM calculations and has discussed the possibility of using PCM to reduce DEs to improve the 

prediction of molecular properties. 

In this work, we investigate the origin of PCM’s SCF convergence effects and identify applicable 

molecular systems. We have found that the PCM-induced SCF convergence improvement is most 

prominent in molecules with charge separations, such as zwitterions. We will analyze the 

formalism of the conductor-like PCM (CPCM)17, 18 and show its preference for converging to a 
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polarized solute and the selective stabilization of molecular orbitals (MOs) based on the local 

electrostatic environment. Then we will use a set of small zwitterionic molecules and zwitterionic 

peptides to show the effects of CPCM in reducing density-driven DE and improving SCF 

convergence, which is superior to the traditional SCF convergence technique, level shifting.19 We 

will show that two effects of PCM lead to improved SCF convergence: (1) an increased HOMO-

LUMO gap that reduces the mixing of occupied and virtual orbitals, and (2) the 

stabilization/destabilization of selective MOs is consistent through all SCF iterations. 

II. THEORY 

Here, we analyze the electron localization effects of CPCM for a neutral molecule in the 

molecular cavity (fused Van der Waals spheres) and the impacts on KS orbital energies. It is worth 

noting that  is used to denote dielectric constant, whereas 𝜖 is used to denote MOs. 

1. CPCM formalism and its preference for a polarized solute 

In CPCM, the reaction potential generated by the solute charge distribution is described in terms 

of an apparent surface charge (ASC) distribution spread over the solute cavity surface. Outside the 

surface is a dielectric continuum with a dielectric constant , whereas the cavity containing the 

solute has a unit dielectric constant. The cavity boundary is usually discretized into M surface 

segments (tesserae) with an ASCs, { 𝑞𝑘
∞} , that describe the electric field of the polarized 

continuum. The values, q, are determined with a set of linear equations:20, 21 

𝐀𝐪 = −
𝜀 − 1

𝜀
𝐕. (1) 

Here, 𝐀 ∈ ℝ𝑀×𝑀 is the Coulomb interaction between unit polarization charges on two cavity 

tesserae, and 𝐕 ∈ ℝ𝑀is a vector that represents the solute electrostatic potential at each tessera. 

The CPCM solvation energy at equilibrium is given by  
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Δ𝐺CPCM = −
1

2

𝜀 − 1

𝜀
𝐕𝑇𝐀−𝟏𝐕 (2) 

In practical CPCM calculations, V is evaluated from the contribution of solute nuclei charge and 

solute electron density. To simplify the discussion, we represent the overall charge distribution of 

a neutral molecule as a dipole moment 𝜇 = 𝜇𝑙 at the center of mass of the molecule (𝑅⃗⃗COM), where 

𝑙 is the unit vector in the direction of the dipole moment and 𝜇 = |𝜇|. Then the solute electrostatic 

potential can be expressed as 

𝑉𝑘 =
𝜇 ⋅ (𝑟𝑘 − 𝑅⃗⃗COM)

|𝑟𝑘 − 𝑅⃗⃗COM|
3 = 𝜇𝑉𝑘

0, (3) 

where 𝑉𝑘
0 =

𝑙⋅(𝑟⃗𝑘−𝑅⃗⃗COM)

|𝑟⃗𝑘−𝑅⃗⃗COM|
3  is the electrostatic potential of a unit dipole, 𝑙, in the same direction as 𝜇. 

The CPCM solvation energy of this molecule is then given by 

Δ𝐺CPCM = −𝜇2
𝜀 − 1

𝜀
(

1

2
(𝐕𝟎)𝑇𝐀−𝟏𝐕𝟎) = −𝜇2

𝜀 − 1

𝜀
𝐶. (4) 

Since the Coulomb matrix, A, is a symmetric positive-definite matrix,22 its inverse 𝐀−𝟏 is also 

symmetric positive-definite, and the product 𝐱𝑻𝐀−𝟏𝐱  for an arbitrary vector 𝐱 ≠ 𝟎  is always 

positive. Hence, the term inside the parathesis of Eq (4), 𝐶 =
1

2
(𝐕𝟎)𝑇𝐀−𝟏𝐕𝟎, is positive. For a 

fixed direction of the dipole moment, 𝐶 is a positive constant, and Δ𝐺C−PCM is a negative quadratic 

function of the magnitude of the molecule dipole moment, 𝜇. Therefore, a neutral molecule with a 

larger dipole moment benefits more from CPCM stabilization, meaning that the formation of 

localized solute electron density with charge separation is energetically favored in CPCM 

calculation. The same conclusion can be reached when the derivation is done for the continuous 

form of the CPCM cavity surface charge distribution 𝜎(𝑟) (see supplementary material Text S1). 
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2. CPCM’s selective stabilization of molecular orbitals 

Here, we analyze CPCM’s stabilization for individual MOs in DFT calculations. The 1-electron 

Kohn-Sham (KS) equation of a DFT calculation in CPCM can be expressed as 

f̂ CPCM𝜑𝑖 = 𝜖𝑖𝜑𝑖 , (5) 

where f̂ CPCM = f̂ KS + Δf̂ CPCM is the modified Kohn-Sham (KS) operator in CPCM, f̂ KS is the gas 

phase KS operator, and Δf̂ CPCM is the CPCM reaction field operator given by 

Δf̂ CPCM = − ∑
𝑞𝑘

|𝑟 − 𝑟𝑘|

𝑀

𝑘

= −
𝜀 − 1

𝜀
∑

𝑞𝑘
∞

|𝑟 − 𝑟𝑘|

𝑀

𝑘

. (6) 

 

Figure 1. Illustration of CPCM cavity for a zwitterionic peptide (PDB ID: 3FTR). (upper) 

Presentation of the molecular dipole moment (𝜇), center of mass (𝑅⃗⃗COM), position (𝑟𝑘), and norm 

vector (𝑛⃗⃗𝑘) of the kth cavity tessera. Red plus signs around the C-terminal indicate positive surface 

polarization charges, and blue minus signs around the N-terminal indicate negative surface 

polarization charges. (lower) Examples of MOs that get stabilized (𝜑1, green shade), destabilized 

(𝜑2, yellow shade), or between the two extremes (𝜑3, gray shade) in CPCM. 
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Here, {𝑞𝑘
∞} is the cavity surface polarization charge when the solvent is a conductor (dielectric 

constant 𝜀 = ∞). The orbital energy 𝜖𝑖 can be calculated as 

𝜖𝑖 = 〈𝜑𝑖|f̂
CPCM|𝜑𝑖〉 = 〈𝑖|f̂ KS|𝑖〉 + 〈𝑖|Δf̂ CPCM|𝑖〉 = 𝜖𝑖

0 + Δ𝜖𝑖
CPCM, (7) 

where the CPCM contribution to the orbital energy is 

𝛥𝜖𝑖
CPCM = −

𝜀 − 1

𝜀
∑ ∫

𝑞𝑘
∞

|𝑟 − 𝑟𝑘|
|𝜑𝑖(𝑟)|2𝑑𝑟

𝑀

𝑘

. (8) 

The sign of 𝛥𝜖𝑖
CPCM  depends on the shape of the orbital 𝜑𝑖(𝑟)  and the distribution of the 

polarization charges {𝑞𝑘
∞}. Here, we qualitatively analyze the case for a large molecule with charge 

separation (Figure 1). Based on the CPCM formalism, the polarization charges {𝑞𝑘
∞} have the 

opposite sign to the adjacent solute charge distribution. In a zwitterionic peptide, the C-terminal 

carries a negative partial charge, so the surrounding {𝑞𝑘
∞} are positive. Hence, a MO localized 

around the C-terminal has 𝛥𝜖𝑖
CPCM<0 and gets stabilized by CPCM (𝜑1 in Figure 1). In contrast, a 

MO localized around the N-terminal gets destabilized (𝛥𝜖𝑖
CPCM>0) because of the surrounding 

negative {𝑞𝑘
∞} (𝜑2 in Figure 1). The CPCM stabilization of a delocalized MO is between these two 

extreme cases. 

Furthermore, the change of orbital energy during dielectric tuning can be analyzed based on the 

derivative of orbital energy with respect to 𝜀: 

𝜕𝛥𝜖𝑖
CPCM

𝜕𝜀
|

{φ𝑗}

= −
1

𝜀2
∑ ∫

𝑞𝑘
∞

|𝑟 − 𝑟𝑘|
|𝜑𝑖(𝑟)|2𝑑𝑟

𝑀

𝑘

=
1

𝜀(𝜀 − 1)
𝛥𝜖𝑖

CPCM . (9) 

Here the subscript {φ𝑗} indicates that all MOs are assumed to be fixed when tuning 𝜀. Then a MO 

like 𝜑1 in Figure 1 has 𝛥𝜖1
CPCM<0 [Eq. (7)] and 

𝜕𝛥𝜖1
CPCM

𝜕𝜀
|

{φ𝑗}
< 0 and will be more stabilized by 

CPCM as 𝜀  increases. In contrast, a MO like 𝜑2  in Figure 1 has 𝛥𝜖2
CPCM > 0  [Eq. (7)] and 
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𝜕𝛥𝜖2
CPCM

𝜕𝜀
|

{φi}
>0 and will be destabilized even more as 𝜀 increases. Hence, the energy gap between 

these two types of orbitals, 𝜑1 and 𝜑2, will increase as 𝜀 increases. 

III. COMPUTATIONAL DETAILS 

A. Peptides and Small Zwitterions. To test CPCM’s SCF improvement effects for large 

molecules, we selected a set of 25 canonical zwitterionic peptides from the RCSB PDB23 database 

obtained with aqueous solution nuclear magnetic resonance (NMR) or X-ray diffraction. The 

peptides range from 6 to 26 in the number of residues and 64 to 440 in the number of atoms, and 

most were found to converge within fewer SCF iterations in CPCM and XP-PCM24 than in the gas 

phase in previous studies.1, 25 Detailed properties of the peptides (PDB ID, number of residues and 

atoms, charge, and secondary structure) are summarized in the supplementary material, Table S1. 

We also made the non-charge-separated form for each zwitterionic peptide to investigate how 

CPCM’s SCF improvement effect depends on the molecule’s charge distribution. The non-charge-

separated structures were generated by transferring one proton from the N-terminal to the C-

terminal with the remaining atom coordinates fixed using Avogadro 1.2.0.26 To investigate the 

impacts of PCM on the electron density in detail, we selected four typical small zwitterions 

(glycine, β-Alanine, glycocyamine, and taurine) that can represent the charged residuals in 

peptides and are small enough to be calculated at the coupled-cluster level of theory. All the small 

zwitterion structures were downloaded from PubChem.27 

B. DFT Calculations. All DFT calculations in the gas phase and CPCM were carried out in the 

GPU accelerated quantum chemistry package TeraChem.28 The SCF convergence of peptides in 

the gas phase and CPCM were tested at the B3LYP29/6-31+G*30-32 level, where the global hybrid 

functional, B3LYP, has its DDE partially mitigated by HF exchange but still benefits from 

CPCM’s effects. The larger basis set, aug-cc-pVDZ,33, 34 was used when comparing the DFT 
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electron density of small zwitterions with coupled-cluster reference results. The DIIS35 algorithm 

was used for all SCF calculations and iterated until the largest component of the DIIS error vector 

was smaller than 1 × 10−6  Hartree. All electron integrals were evaluated on the GPUs using 

double precision arithmetic to isolate CPCM’s impacts on SCF, avoiding potential influence by 

TeraChem’s mixed precision or dynamic precision techniques.36 This also guarantees that 

conclusions in this work also apply to calculations done with CPU-based quantum chemistry 

packages where only double-precision arithmetic is available.  

For CPCM calculations, the solute cavity was built using defaults available in TeraChem (i.e., 

1.2 times Bondi’s van der Waals radii). The relative dielectric constant of the solvent, ε, was varied 

from 1 (gas-phase) to 80 (water), with values taken at 1, 2, 4, 10, and 80 for all the 25 peptides, 

because the CPCM field strength is proportional to 
ε−1

ε
. To show the change of MO with ε, 

additional calculations at ε=1.2, 1.5, 3.0, and 6.0 were performed for several small peptides. For 

small zwitterions, calculations were performed at ε=1.0, 1.2, 1.5, 2.0, 3.0, 6.0, 10.0, 20.0, 40.0, 

and 80.0 to show a clear trend of the changes in molecule dipole moments and atomic charges.  

The performance of PCM in improving SCF convergence was compared to the widely used 

level-shifting technique.19 The level-shifting value for each peptide was set as the difference of 

HOMO-LUMO gaps calculated in aqueous solvation (ε=80) and the gas phase.  

C. Wave Function Theory References. The gas-phase reference calculations for all small 

zwitterions were obtained with orbital-optimized coupled-cluster singles and doubles with 

perturbative triples (orb-opt CCSD(T))37-39 theory using the aug-cc-pVTZ33, 34 basis set with 

ORCA 5.0.2.40 All small zwitterions studied in this work are singlets and were calculated in a 

restricted formalism. 
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D. Density Analysis. We employed Hirshfeld charges41 to obtain a systematic estimate of the 

charge based on the real-space total density, simplifying the comparison of partial charges across 

distinct basis sets and electronic structure methods or software. To compare the electron density 

calculated with CPCM DFT at different dielectric constants relative to the gas-phase reference 

electron density calculated by orb-opt CCSD(T), we performed Hirshfeld population analysis41 on 

all small zwitterions using Multiwfn,42 which read molecular orbital information from molden files 

generated by TeraChem or converted from ORCA gbw files. Additional comparisons were done 

with other charge methods, including atomic dipole moment corrected Hirshfeld (ADCH),43 

Bader,44 charge model 5 (CM5),45 and Merz-Singh-Kollman (MK).46 The Gaussian cube file’s grid 

spacing was set to 0.04 Bohr to ensure convergence (supplementary material Table S2). 

IV. RESULTS AND DISCUSSION 

In the following subsections, we will investigate the applicable molecular systems and 

mechanisms for CPCM as an SCF convergence accelerator. We will first test the performance of 

CPCM in improving SCF convergence on zwitterionic and non-charge-separate peptides and 

amino acids. We will then compare CPCM with a conventional SCF convergence accelerator, 

level-shifting, and investigate the origin of their different performance despite their similar effects 

in opening the HOMO-LUMO gap. Finally, we will demonstrate the CPCM’s reduction of DDE 

in the tested molecules while being used to accelerate SCF convergence. 
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Figure 2. SCF iteration number for B3LYP/6-31+G* calculation in the gas phase (ε=1) and CPCM 

at different ε values (2, 4, 10, 80) for 8 out of 25 zwitterionic peptides (upper) and their non-charge-

separated forms (lower). The level-shifting results for zwitterionic peptides are shown in green 

bars labeled with “ls”. Peptide structures are shown in the inset. 

A. The Impact of CPCM on SCF Convergence. We compared the SCF convergence of the 

B3LYP/6-31+G* calculations for 25 zwitterionic peptides and their non-charge-separated 

counterparts in the gas phase and CPCM (Figure 2 and supplementary material Table S3). It is 

known that CPCM’s convergence improvement effect is most prominent for pure GGA 

functionals9 like BLYP47, 48 and PBE.49 However, neither functional can generate converged gas-

phase calculations for any of our benchmark molecules, making it hard to compare the SCF 

convergence quantitatively. Therefore, we chose the B3LYP functional, which had converged SCF 

but in an undesirably large number of iterations. In the gas phase (=1), the charge-separated 

peptides are always harder to converge than their non-charge-separated counterpart: all non-

charge-separated peptides converge within 61 DIIS iterations while 17 out of 25 peptide 

zwitterions take over 100 iterations or do not converge within 1000 steps. Applying CPCM with 
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even a low dielectric constant of ε=2 (corresponding to non-polar solvents like cyclohexane) 

significantly reduces the SCF iterations for all zwitterionic peptides by at least 63% (Figure 2), 

with the only exception, 1aqg. When a high dielectric constant of ε=80 (corresponding to water) 

is applied, the DIIS iterations for 19 out of 25 peptides are reduced to <50% of the gas-phase 

results. In contrast, the SCF convergence of non-charge-separated peptides seems to benefit little 

from CPCM in the whole range of  values tested (2 to 80), with only 3 out of 25 non-charge-

separated peptides getting marginally reduced iterations. Our result demonstrates that CPCM can 

only effectively reduce the SCF iterations for zwitterionic peptides.  

To understand the mechanism behind this, we investigated the HOMO-LUMO of these peptides 

as a function of  values (Figure 3 and supplementary material Table S4). The gas phase 

 

Figure 3. HOMO-LUMO gap (in eV) for 8 representative zwitterionic peptides (upper) and their 

non-charge-separated forms (lower) calculated with B3LYP/6-31+G*. Gas-phase (ε=1) and 

CPCM (ε=2, 4, 10, 80) calculations without level-shifting are denoted by circles. For zwitterionic 

peptides, gas phase calculations with level-shifting were denoted by green bars with the label “ls”.  
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calculations of 21 out of 25 zwitterionic peptides have small HOMO-LUMO gaps less than 0.5 

eV, agreeing with the vanishing HOMO-LUMO gap problem reported in previous studies of DFT 

convergence issues in proteins.9 The HOMO-LUMO gap increases as  increases, with an 

approximately linear relationship to (−), consistent with our analysis in Section 2. The gap 

opening usually results in faster convergence than the gas-phase SCF. However, the DIIS iteration 

does not decrease monotonically as the gap (or ) increases, remaining almost unchanged for ε 

values from 2 to 80. The increased gap is also observed for the non-charge separated peptides, but 

the increment is much smaller than that observed in zwitterions. 

Previous research attributed the vanishing HOMO-LUMO gap to two main reasons: the intrinsic 

density delocalization error for DFAs50 and the electric field caused by the surface dipole of 

 

Figure 4. Dipole moment (in Debye) for 8 representative zwitterionic peptides (upper) and their 

non-charge-separated forms (lower) calculated by B3LYP/6-31+G*. Gas-phase (ε=1) and CPCM 

(ε=2, 4, 10, 80) calculations without level-shifting are denoted by circles. For zwitterionic peptides, 

gas phase calculations with level-shifting were denoted by green bars with the label “ls”. 
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proteins.51 CPCM could eliminate the second factor by inducing solvent polarization charges to 

screen this electric field. Therefore, the HOMO-LUMO gap can be gradually recovered when  

increases. In contrast, the non-charge-separated peptides’ surface charges have much smaller 

magnitudes, as indicated by the relatively low dipole moments (Figure 4 and supplementary 

material Table S5). Hence, the non-charge-separated peptides do not suffer from the vanishing gap 

problem and benefit little from CPCM’s SCF acceleration effect.   

We also investigated why the exception, zwitterionic 1aqg, does not get SCF acceleration from 

CPCM. Compared to other peptide zwitterions, 1aqg has a significantly larger HOMO-LUMO gap 

of 4.049 eV and can converge easily in the gas phase within similar iterations as the non-charge-

separated counterpart. As shown in Figure 5, further investigation of this peptide’s structure shows 

strong salt bridges and ionic hydrogen bonds between oppositely charged residues. All three 

carboxylate anions are within 2.2 Å of an amino cation, electrostatically stabilizing each other and 

making this peptide resemble a non-charge-separated molecule. In contrast, other peptide 

zwitterions have at least a pair of oppositely charged residues separated by more than 6.0 Å. 

 

Figure 5. The structure of 1aqg peptide zwitterion. Only charged residues and terminals are 

specifically shown in sticks. The hydrogen bonds are shown in red dashed lines.  
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B. Comparison to Level-Shifting. Although we have already observed the increased HOMO-

LUMO gap and reduced SCF iterations in CPCM calculations, it is unclear whether CPCM’s 

acceleration effects can be attributed solely to the increased gap. To deepen our understanding of 

the acceleration mechanism, we compared the performance of CPCM to level-shifting, a more 

conventional technique with a similar mechanism focusing on increasing the HOMO-LUMO gap. 

Level-shifting was initially introduced by Saunders and Hillier to address oscillatory SCF 

iterations caused by rapid mixing between the occupied (occ.) and virtual (virt.) space.19 The 

algorithm shifts up the virtual-space diagonal elements of the Hamiltonian represented in the 

previous iteration’s MO basis by a constant value λ (typically around 0.2 Hartree), and therefore 

limits vigorous occupied-virtual mixture upon diagonalization, making the SCF iterations more 

stable. Mathematically, level-shifting for a closed-shell molecule can be expressed as: 

𝐇(𝑘)
MO = 𝐂(𝑘−1)

† 𝐇(𝑘)
AO𝐂(𝑘−1),

𝐻𝑝𝑝
MO,shifted = {

𝐻𝑝𝑝
MO, 𝑝 ∈ occ.

𝐻𝑝𝑝
MO + 𝜆, 𝑝 ∈ virt.

(10)
 

Here, 𝐇(𝑘)
AO  denotes the k-th iteration’s Hamiltonian in AO basis, and 𝐂(𝑘−1)  denotes the MO 

coefficients of the (k-1)-th iteration. The shift value, λ, is equivalent to an artificial increase of the 

HOMO-LUMO gap and is removed from the virtual orbital energies after each diagonalization. 

To make a fair comparison between CPCM and level-shifting, we set λ for each molecule to match 

the increased HOMO-LUMO gap caused by CPCM at ε=80: 

𝜆 = [𝜖HOMO(ε = 80) − 𝜖LUMO(ε = 80)] − [𝜖HOMO(gas) − 𝜖LUMO(gas)] (11) 

In the situation where gas phase calculation is not converged, we assume that 𝜖HOMO(gas) −

𝜖LUMO(gas) = 0. If their SCF acceleration mechanisms are the same, they should give similar 

performance. The applied λ values range from 0.07 to 0.25 Hartree (1.9 to 6.8 eV) for the 25 tested 



   

 

 16 

peptides. For gas-phase calculations that cannot converge within 1000 steps, we assume that the 

gas phase HOMO-LUMO gap is zero. 

Contrary to our intuition, level-shifting has significantly worse performance than CPCM, with 

only 4 out of 25 peptides (1uao, 2ceh, 2jof, 3fva) showing non-trivial reduction (more than 50%) 

of DIIS iterations (Figure 2). Moreover, 3vfa and 2jof yield unphysical negative HOMO-LUMO 

gaps with level-shifting, and their energies are also 0.11 eV and 2.80 eV higher than their gas-

phase result, indicating that level-shifting may cause the electronic structure converges to a 

different state (Figure 3). Therefore, CPCM performs better in some tricky molecules that cannot 

be handled by level-shifting. CPCM’s acceleration mechanism cannot be explained in the same 

way as level-shifting by merely opening the HOMO-LUMO gap. This motivates us to investigate 

the different mechanisms in CPCM vs. level shifting in opening the gap in Section III C. 
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  C. The Selective Stabilization of Kohn-Sham Orbitals by CPCM. Although both lead to the 

gap-opening effect, CPCM and level shifting modify orbital energies differently. Level-shifting 

applies the same shift to all virtual orbitals regardless of their local electrostatic environment (Eq 

(10)). In contrast, the change of orbital energy caused by CPCM, 𝛥𝜖𝑖
CPCM, depends on the shape 

of the orbital 𝜑𝑖(𝑟) and the distribution of the solvent polarization charges, as detailed in our 

theoretical analysis in Section II. To verify this, we investigated the change of HOMO and LUMO 

energies and orbital shapes as functions of CPCM dielectric constant, ε, for a representative 

zwitterionic peptide, 3ftr. As shown in Figure 6, The HOMO is mainly localized at the negatively 

charged C-terminal and therefore is expected to get electrostatically stabilized by surrounding 

positive CPCM polarization charges. In contrast, the LUMO is closer to the positively charged N-

 

Figure 6. Frontier orbitals for 3ftr with different dielectric constants and their energies (in Hartree). 

(upper) Shape of the HOMO and LUMO at ε=1.0, 1.2, 1.5, 2.0, 3.0, 6.0, and 80.0. (lower) The 

HOMO (in red) and LUMO (in blue) energies plotted against 
ε−1

ε
. 
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terminal and is expected to be destabilized by surrounding negative CPCM polarization charges. 

Indeed, 𝜖HOMO
CPCM  decreases with ε, while 𝜖LUMO

CPCM  increases with ε, leading to the enlarged HOMO-

LUMO gap (Figure 6). The relation between the orbital energy, 𝜖𝑖
CPCM, and (ε-1)/ε deviates slightly 

from the linear relationship shown by Eq (8) since orbital relaxation was not considered when 

deriving Eq. (8). Specifically, there is a significant change to the shape of 3ftr LUMO when  

increases (Figure 6). Due to the increasingly unfavorable electrostatic environment at the N-

terminal at higher ε values, the LUMO gradually moves away from that region.  

To further validate CPCM’s selective stabilization of MOs based on their local electrostatic 

environments, we extended our analysis to more MOs in the zwitterionic 3ftr. We focused on core 

orbitals that were minimally impacted by orbital relaxation at different ε values and, hence, are 

expected to follow the trend of Eqs. (8) and (9). To further simplify the comparison, we limited 

our analysis to MOs with very similar shapes but distinct local electrostatic environments. Based 

 

Figure 7. The energy change (in eV) of the 1s orbitals on 3FTR backbone atoms after adding 

CPCM with ε=80. The structure and sequence of 3FTR and positions of charged functional groups 

are shown in the inset. Bars are colored according to the amino acid label to which they belong. 

The 1s orbitals are marked with their corresponding atom names on the x-axis. 
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on these criteria, we selected the MOs corresponding to the 1s orbitals of the backbone atoms (N, 

Cα, C, O, N) of each residue, whose similarities and insensitivity to ε change were verified 

(supplementary material Text S2). Clear trends showed up as we plotted the orbital energy 

contribution by CPCM, 𝛥𝜖𝑖
CPCM, ordered by the spatial location of these orbitals (Figure 7). The 

orbital energy change, 𝛥𝜖𝑖
CPCM , gradually transits from negative (stabilization) to positive 

(destabilization) as the location of the 1s orbital changes from the C-terminal (GLY-6) to the N-

terminal (SER-1), meeting the expectation of Eq. (8) and Eq. (9). The same trend was observed 

for another three small zwitterionic peptides, 2ol9, 2onw, and 3fva (supplementary material Figure 

S1). 

We further compared CPCM and level-shifting by tracking the frontier orbital energy changes 

over SCF iterations. For the gas phase SCF of zwitterionic 3ftr without level-shifting, the HOMO 

and LUMO energies are constantly oscillating and very close to each other, with less than 0.03 eV 

difference in most iterations (Figure 8). Because of the small HOMO-LUMO gap, the LUMO 

switch between the MO localized on the N-terminal and the MO localized on the C-terminal. This 

near degeneracy of HOMO and LUMO also occasionally causes a vigorous mixture of the virtual 

and occupied spaces, leading to drastic character change for multiple frontier orbitals (e.g., 

iteration 51 of Figure 8), requiring many more iterations to reconverge. Level-shifting leads to 

more stable orbital energies in the short term but still suffers from occasional vigorous oscillations 

that cause the SCF to continue for many iterations. The reason is that the energetic order of frontier 

MOs in the first few iterations may significantly deviate from the converged result, but level-

shifting reinforces this wrong order by separating the virtual and occupied space, which delays the 

convergence. For example, the converged LUMO (localized on the N-terminal) used to be HOMO-

2 in iterations 27-38, and the level-shifting keeps it in the occupied space for a long time (Figure 
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8). In contrast, CPCM (ε=80) has the HOMO and LUMO well separated throughout all iterations 

and converges within 14 steps. CPCM’s selective stabilization of MOs is consistent over different 

iterations because it recognizes each MO by its character rather than the current energy ordering 

(Figure 8). 

In summary, level-shifting artificially increases the energy for all virtual orbitals at the current 

iteration without considering orbital character. Therefore, it often keeps the wrong order of orbitals 

obtained in the first few SCF iterations, delaying the convergence. In contrast, CPCM has 

 

Figure 8. Frontier orbital energy for 3ftr during the SCF for single point energy calculation in (a) 

gas phase, (b) level shifting, and (c) ε=80. Orbital energies for the level-shifting result are already 

subtracted by the used level-shifting value. The gas-phase HOMO of iteration 40 and the level-

shifting HOMO-2 of iteration 31 are shown in the insets of (a) and (b), respectively. 
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consistent HOMO/LUMO definitions during SCF iterations, increasing the gap and preventing the 

SCF oscillation, therefore addressing the convergence problem.  

D. Impacts of CPCM on electron density. 

While CPCM could be useful for improving SCF convergence of large molecules, it also impacts 

the electronic structure. We selected four representative zwitterions (glycine, β-alanine, taurine, 

and glycocyamine) and computed their Hirshfeld partial charge on oppositely charged groups. For 

these zwitterions, the negatively charged terminal is the carboxyl anion (or sulfonic anion for 

taurine), while the positively charged terminal is the amino cation (or guanidino cation for 

glycocyamine). It is known that GGA functionals suffer from density delocalization errors (DDE),8 

which is reflected as the underestimated partial charges of gas-phase BLYP calculations compared 

 

Figure 9. Partial charge (in e) on the cation N-terminal (upper) and the anion N-terminal (lower) 

for the four zwitterions for the CPCM B3LYP/aug-cc-pVDZ calculations with ε ranges from 1.0 

to 80.0 (denoted by circles) and the orb-opt CCSD(T)/aug-cc-pVTZ reference (denoted by green 

bars). The abbreviations gly, β-ala, taur, and glycy on the x-axis correspond to glycine, β-alanine, 

taurine, and glycocyamine, respectively. 
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to the CCSD(T) reference for the four zwitterions (supplementary material Figure S2). Although 

adding the Hartree-Fock exchange can mitigate DDE, the needed percentage varies for different 

molecules and is often larger than the optimal percentage for accurate energy, e.g., 20% for 

B3LYP.8 Hence, the partial charges by gas-phase B3LYP calculations are also underestimated 

(Figure 9). As CPCM is applied with increasing dielectric constant, ε, the magnitude of partial 

charges on both terminals monotonically increases, agreeing with CPCM’s density localization 

effects as reported in the literature,12, 52 as well as our analysis in Section II-A. For all four 

zwitterions, the cationic N-terminals and anionic C-terminals can get their B3LYP calculated 

partial charges recovered to the CCSD(T) reference values by an ε of about 1.2. The corresponding 

BLYP calculations need a slightly higher ε of 1.5 due to the lack of Hartree-Fock exchange 

mitigation (supplementary material Figure S2). It is worth noting that these optimal ε values to 

eliminate DDE are very small compared to even the most nonpolar solvents, e.g., ε=2.0 for 

cyclohexane at 298.15K.53 

To further verify CPCM’s density localization effects, we repeated the partial charge analysis 

for B3LYP and BLYP with another four charge models (see Section III D). All charge models 

agree on the trend, and the optimal ε for correcting DDE is always 1.2 and 1.5 for B3LYP and 

BLYP, respectively. The only exception is the Bader charges for cations, which are significantly 

lower than other charge models. The Bader charges for cationic C-terminals obtained with 

CCSD(T) are lower than that for gas-phase BLYP, meaning that further applying CPCM will 

worsen the results compared to CCSD(T). We believe that this exception is caused by the nature 

of the Bader charge itself, as some studies have shown that the Bader charge has very insufficient 

reproducibility for molecular properties such as dipole moment and electrostatic potential.54 
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We also investigated these zwitterions’ dipole moments, which indicate the polarization of 

charge distribution (Figure 10). Consistent with the partial charge results, the dipole moment 

increases with ε. The optimal ε for recovering the dipole moment values to the CCSD(T) reference 

for different zwitterions is always between 1.2 and 1.5 for B3LYP calculations, whereas the 

optimal ε for BLYP is larger, ranging from 1.2 to 6.0 for different molecules (supplementary 

material Figure S5). In summary, the SCF tends to converge to a more localized electron density 

distribution when CPCM is applied, increasing the partial charges and dipole moments. This 

localization effect could recover some gas-phase density properties affected by DDE when a very 

small dielectric constant is applied.  

V. CONCLUSIONS 

 

Figure 10. Dipole moments (in Debye) of four zwitterions calculated with CPCM B3LYP/aug-

cc-pVDZ calculations at different ε (denoted by circles) and the gas phase orb-opt CCSD(T)/aug-

cc-pVTZ reference (denoted by green bars). The abbreviations gly, β-ala, taur, and glycy on the x-

axis correspond to glycine, β-alanine, taurine, and glycocyamine, respectively. 
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This work seeks to understand the mechanisms for CPCM's SCF improvement effects previously 

observed in the DFT calculations of proteins and identify the applicable type of molecules to be 

accelerated by CPCM. 

We investigated the DFT convergence of 25 peptides in their zwitterionic and non-charge-

separated form and concluded that CPCM could only effectively reduce the SCF iteration steps for 

charge-separate systems. The reason is that CPCM can open the near vanishing HOMO-LUMO 

gap in the zwitterionic peptide and avoid the vigorous virtual-occupied space mixing over 

iterations, the origin of convergence issues. Non-charge-separated molecules do not suffer from 

the vanishing gap problem and, therefore, their convergence does not benefit from CPCM even 

though their HOMO-LUMO gaps are also slightly increased by CPCM. 

Further comparison with the level-shifting technique revealed that CPCM and level-shifting 

have different mechanisms for opening the HOMO-LUMO gap. Level-shifting artificially lifts the 

energies of all virtual orbitals by a constant value regardless of the shape of the MOs, which may 

mistakenly keep some MOs in the virtual space for many iterations because of the wrong energetic 

ordering of MOs at the early stage of SCF. This issue is not likely for CPCM, whose selective 

stabilization or destabilization of specific MOs is based on the MO's local electrostatic 

environment and is consistent over iterations. Because of this, CPCM performs better than level-

shifting in reducing SCF iterations for charge-separated molecules. 

Finally, we emphasized that CPCM can significantly impact the converged electronic structure 

while being used as an SCF accelerator. CPCM tends to localize the electron density, increasing 

the extent of charge separation and the dipole moment magnitude. A very low dielectric constant 

of 1.2 (or 1.5) can mitigate DDE and recover density-driven molecular properties to the orb-opt 

CCSD(T) reference results. However, these values are lower than the typical epsilon of real 
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solvents. Using CPCM at larger epsilon values to improve SCF convergence is likely to over-

localize the electron density if the purpose is to study the molecule in the gas phase. 

These conclusions provide guidelines about when CPCM is useful for fixing convergence issues 

in large-scale DFT calculations, especially when traditional SCF convergence techniques fail. The 

epsilon value can now be selected more transparently: it should fall in the range efficient for 

improving convergence and appropriate for DDE mitigation. Further investigations are needed to 

determine the effect of CPCM on the DFT convergence of other systems, such as transition metal-

containing molecules. In addition, it is also possible to develop new SCF convergence techniques 

based on the mechanism of CPCM's convergence acceleration effects. 

SUPPLEMENTARY MATERIAL 

See the supplementary material for the proof of Eq. (4) in the continuous form of CPCM, the 

characteristics of the 25 tested proteins, Bader charge convergence tests, the SCF iteration number, 

HOMO-LUMO gap, and dipole moment for all the 25 peptides, the criteria for selecting 

comparable 1s orbitals, energy variation of 1s orbitals for the other three peptides, the partial 

charge and dipole moment for the 4 small zwitterions calculated by BLYP, and the comparison of 

charge calculation methods using the BLYP and B3LYP result for the 4 zwitterions (PDF). 

The structures of all tested 25 zwitterionic proteins and their non-charge-separated counterparts, 

and the structure of the 4 zwitterions (ZIP). 
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