
1

Revealing the thermal decomposition mechanism of RDX crystal by a neural
network potential

Qingzhao Chua, Xiaoya Changa, Kang Mab, Xiaolong Fuc, Dongping Chena,*

aState Key Laboratory of Explosion Science and Technology, Beijing 100081, China
bBeijing Institute of Electronic System Engineering, Beijing, 100143, China
cXi'an Modern Chemistry Research Institute, Xi'an, 710065, China.
__________________________________________________________________________________________

Abstract

A neural network potential (NNP) is developed to investigate the complex reaction dynamics of RDX
thermal decomposition. Our NNP model is proven to possess good computational efficiency and retain the ab
initio accuracy, which allows the investigation of the entire decomposition process of bulk RDX crystal from an
atomic perspective. A series of molecular dynamics (MD) simulations are performed on the NNP to calculate the
physical and chemical properties of the RDX crystal. The results show that the NNP can accurately describe the
physical properties of RDX crystal, like cell parameters and equation of state. The simulations of RDX thermal
decomposition reveal that the NNP could capture the evolution of species at the ab initio accuracy. The complex
reaction network was established, and a reaction mechanism of RDX decomposition was provided. The N-N
homolysis is the dominant channel, which cannot be observed in previous DFT studies of gas RDX. In addition,
the H abstraction reaction by NO2 is found to be the critical pathway for NO and H2O formation, while the
HONO elimination is relatively weak. The NNP gives an atomic insight into the complex reaction dynamics of
RDX and can be extended to investigate the reaction mechanism of novel energetic materials.
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1. Introduction

RDX (1,3,5-Trinitroperhydro-1,3,5-triazine) is a common high-energy dense oxidizer in many energetic

materials (EMs), which is a representative example of the caged polynitroamines, such as HMX and CL-201. RDX

has been used for more than 70 years, and there is a long history of scientific research on the material2. Thermal

decomposition is a fundamental process for any EMs exposed to external stimuli. It relates to the ignition of

explosives, the subsequent detonation performance, and their sensitivity from mechanical stimuli to direct heating3.

A comprehensive understanding of thermal decomposition mechanisms is essential for the performance and safety

of EMs.

The decomposition mechanism of RDX crystal is widely investigated in abundance by experiments and

computational simulations. Wight and Botcher 4 explored the initial products of RDX pyrolysis by FTIR spectrum;

they found NO and N2O4 are the main gas-phase products in the initial stage, illustrating that the N-N bond

scission is the first step in the thermal decomposition of RDX crystal. Zhao et al. 5 studied the infrared multiphoton

dissociation (IRMPD) of RDX in a molecular beam using time-of-flight velocity spectra (TOFVS). They detected

the major products from laser photolysis (mass range from 22 to 120 amu). It was concluded that the dominant

channel in the RDX decomposition is a concerted symmetric triple fission of the ring in RDX. Khichar et al.6

conducted thermal analysis on RDX using a coupled TGA/DSC-FTIR system. N2O, NO2, CH2O, NO, HCN, CO2,

CO, and H2O were identified as the major decomposition products. The combustion characteristics of RDX crystal

were studied by Yan et al. 7 with optical diagnosis methods. The reactions of NO and HCN (the products from

RDX decomposition) dominate the heat release in the flame, which are further converted to N2, H2O, and CO in

the downstream flame. Although many efforts are made to understand the thermal decomposition of RDX, the

overall chemical mechanism during thermolysis remains obscure due to the ultrafast and complex reactions

involved, which can hardly be captured in experiments.

The quantum mechanics (QM) approach is employed in the investigations of the thermal decomposition of

RDX molecules, especially for the initial decomposition reaction of single RDX molecule. The first theoretical

analysis of the decomposition mechanism for RDX was conducted by Melius and Binkley8 at the MP4 level of

theory. They found that the N-N homolytic cleavage in an RDX molecule is the primary decomposition pathway

with a dissociation energy of ~48 kcal/mol. Harris and Lammertsma9 calculated the potential energy surface at the

B3LYP/6-31G* level of theory and identified that the N-NO2 and C-H bonds in RDX are fragile. A mechanism is

proposed to initiate the decomposition by N-N bond cleavage and propagate by H atom transfer. A detailed

decomposition mechanism was established by Patidar et al.10, including HONO elimination, N-NO2 homolysis,

reactions with NO, autocatalytic decomposition via HONO and ONNO2 addition, and hydrogen abstraction via

NO. In this mechanism, RDX gradually decomposes into N2O, NO2, NO, HCN, CH2O, CO, CO2, H2O, and other

small gas-phase products. Recently, Zhang et al.11 proposed a kinetic model for RDX decomposition. They

claimed that the N-NO2 homolysis to form RDR radical is the dominant decomposition pathway of RDX, which

subsequently undergoes C-H �-scission and ring-opening reaction. Although the accurate DFT calculations reveal



3

the decomposition of RDX molecules, the current analysis is all derived from single RDX molecules and the

potential intermolecular reactions in the condensed phase requires further investigation.

In the past two decades, ab initio molecular dynamics (AIMD) simulations were performed to investigate the

initial decomposition pathways of HMX12, CL-2013, and NTO14 molecules. However, these works were limited to

a small system (i.e., <300 atoms), and a short reaction time (i.e., <50 ps). Despite impressive progress in

computing hardware and software in recent decades, AIMD calculations on the complete reaction process of RDX

crystal are still challenging due to the high computational cost. To alleviate the demand for computing power,

empirical potentials (or force fields) were developed to construct the potential energy surface (PES) from DFT

calculations. Such empirical potentials, including ReaxFF15,16 and REBO17, trade accuracy for a lower

computational expense, making it possible to extend simulation scales to orders of magnitude beyond AIMD

methods. ReaxFF is a bond order-based force field that describes reactive systems without prior knowledge of the

predefined reactive sites. It is a powerful tool for studying kinetic mechanisms for large molecules and complex

reactions18. However, the computational accuracy of the ReaxFF model is relatively limited due to the underlying

functional forms. Recently, machine learning-based tools, especially neural networks (NNs), have been applied to

construct PES models in an entirely data-driven manner, where the PES is abstracted from a well-selected training

dataset using suitable functional expressions automatically19. NN models constitute a very flexible class of

mathematical functions, enabling the development of PES models with the efficiency of the empirical potentials

and the accuracy of the DFT method. A few successful NN-based potentials (NNPs) are proposed for materials

and biomolecules 20,21, which can accurately reproduce the interatomic forces and energies predicted by ab initio

calculations in condensed matters. In particular, Cao et al. 22 implemented an NNP to reveal the mechanisms of

CL-20/TNT co-crystal. They found that the TNT molecules in the co-crystal act as a buffer to slow down the chain

reactions triggered by nitrogen dioxide, which is more significant at lower temperatures.

In this work, we develop an NNP to explore the decomposition mechanism of RDX crystals. The NNP is first

trained and validated against the DFT database with bulk RDX molecules under a wide range of thermodynamic

states. The lattice constant, the equation of state, decomposition rate, and reaction pathways are calculated with the

NNP to evaluate its accuracy. Finally, the decomposition mechanism of bulk RDX molecules is proposed for the

first time at the ab initio level of accuracy.

2. Computational methods

2.1 Development of Neural network potential
The NNP is constructed following the Deep Potential (DP) scheme developed by Zhang et al. 20. In the DP

scheme, PES is represented by a deep neural network model that interprets the atomic coordination (R) into

interatomic forces (F) and energies (E). The deep neural network contains a filter (embedding) network with three

layers (25, 50, and 100 nodes/layer) and a fitting net with three layers (240 nodes/layer). The loss function (L) is

defined as,
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where pe and pf are the weight for the energy and force terms, respectively. N represents the number of atoms in

the structure. Similar to a classical neural network, the DP scheme trains the model by computing the gradient of

the loss function using the back-propagation algorithm 23. The NNP is trained for 1.0 × 106 iterations with an

exponentially decaying learning rate from 1.0 × 10-3 to 5.0× 10-8.

Fig. 1 Illustration of the NNP model training in the DP scheme.

The performance of NNPs highly depends on the training dataset 24–26. Although NNs are good at

interpolating between training points, they cannot predict the energies and forces of configurations away from

those in the training set. Therefore, it is critical to ensure the dataset covering the PES of interest. Fig. 1 illustrates

the overall training using the DP scheme. The unit cell of RDX crystal is used to prepare the training sets. A set of

reactive MD simulations are performed for 40 ps to obtain trajectories under an NVT ensemble at temperatures of

300, 1000, 2000, 3000, and 4000 K using the ReaxFF forcefield27,28. One thousand configurations are randomly

selected from the above trajectories to build the initial dataset, and high-level DFT calculations are further

conducted to obtain accurate energies and forces. DFT calculations are performed using the CP2K package 29.

Core electrons are treated using Goedecker−Teter−Hutter (GTH) pseudopotentials and the Perdew Burke

Ernzerhof (PBE) generalized gradient approximation method 30,31. The Grimme DFT-D3 method 32 is used to

account for dispersion interactions. A double-zeta Gaussian basis set plus polarization (DZVP-MOLOPT) 33 is

considered. In addition to MD simulations, further configurations are obtained using active learning sampling

implemented in the DP-GEN package 34. In the stage of active learning, four NNPs are firstly trained with different

random seeds. Then, MD simulations with a temperature range from 300 to 4000 K are performed using one of the

NNPs. The MD trajectories are evaluated by the other three NNPs to obtain the deviation of atomic forces, which

is used as a criterion to identify the new configurations. The configurations with relative deviation in the range of

0.05-0.15 are added to the training set. In total, we perform 20 iterations of active learning to derive an accurate

NNP for the decomposition of RDX crystal (Table 1). The iterations 1-13 investigate the RDX decomposition

process under an NVT ensemble with a 2x2x2 supercell. The temperature gradually increases from 300 K to 4000

K, covering the entire potential surface during RDX decomposition. In addition, we add iterations 14-20 to impose
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the mechanical behaviors under compression and tension, and construct the equation of states for the RDX crystal.

With the above method, the final ab initio NNP is trained.

Table 1 Detailed simulation setting in the active learning process of DPGEN.

Iteration Scale factor1,2 MD steps Ensemble Temperature (K) 2

1 1.00 1000

NVT 300, 5002 1.00 3000

3 1.00 5000

4 1.00 10000

5 1.00 1000

NVT 1000, 20006 1.00 5000

7 1.00 10000

8 1.00 1000

NVT 3000, 4000

9 1.00 5000

10 1.00 10000

11 1.00 40000

12 1.00 100000

13 1.00 400000

14 0.96, 1.00, 1.04 5000
NVT 300, 50015 0.96, 1.00, 1.04 10000

16 0.88, 0.92, 1.08, 1.12 10000

17 0.96, 1.00, 1.04 5000

NVT 3000, 4000
18 0.88, 0.92, 1.08, 1.12 10000

19 0.88, 0.92, 0.96, 1.00,
1.04, 1.08, 1.12 10000

20 0.88, 0.92, 0.96, 1.00,
1.04, 1.08, 1.12 10000

1The coordinates of systems are transformed by the scale factors in x-, y- and z-directions.
2MD simulations are performed under different scale factors and temperatures respectively.

2.2 MD simulations
The RDX decomposition process is investigated with the final NNP. The simulation is performed under the

NVT ensemble with a 2x2x2 supercell. The equations of motion are integrated by the velocity Verlet method using

periodic boundary conditions. A Nose–Hoover thermostat is applied with an equilibrium temperature of 1000,

1250, 1500, 1750, 2000, 2250, 2500 K and a dump parameter of 20 fs. A 100-ps MD simulation is performed with

a time step of 0.l fs. Three parallel simulations are performed for each NVT MD simulation to ensure the statistical

significance of the simulated results. The ReacNetGenerator 35 is used to extract species and reactions from the

MD trajectories.

3. Results and discussion

3.1 Accuracy and efficiency of the NNP model
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The overall performance of the NN potential is tested against the ab initio database. Figure 2 shows the

prediction of DFT energies and forces using the NNP trained by the DP scheme. The results predicted from the

ReaxFF model 28 are also included for comparison. The energies predicted from the NNP cluster on the diagonal in

Figure 2a suggesting the good fitting ability of the NNP. In contrast, the energies of the ReaxFF model scatter with

the maximum deviation as 0.2 eV/atom. The NNP exhibits a lower mean absolute error (MAE) than the ReaxFF

model (0.026 v.s. 0.091 eV/atom). Besides atomic energies, the NNP shows excellent force prediction performance

with an MAE of 0.41 eV/Å (Figure 2a). However, the ReaxFF model predicts unphysical results against the QM

values. This issue can be explained by the parameterization of ReaxFF, as only atomic energies are taken as the

training targets. By considering the atomic forces in the loss function (Eq. 1), the NNP significantly improves the

model prediction and thus accurately captures the dynamic evolution of the RDX decomposition process.

Fig. 2 Mean absolute errors of (a) atomic energy and (b) force for NNP and ReaxFF models on the ab initio

database.

We also evaluate the computational costs of NNP, ReaxFF, and DFT methods on the bulk RDX systems with

100 to 100,000 atoms (Figure 3). The neural network potential-based molecular dynamics simulations (NNP-MDs)

are performed on an NVIDIA V100 GPU. The ReaxFF and DFT calculations are solved on a 64-processor server

with two AMD EPYC 7452 CPUs. The NNP shows a linear scaling rule in the computational cost, which is 27

times faster than the ReaxFF model. Compared to the AIMD method, the simulations using NNP are faster by four

orders of magnitude. This significant improvement in the computational costs is consistent with previous works

using the NNPs36. This can be attributed to the implementation in the neural network combining the-state-of art

GPU computing. The computing efficiency of the NNP in small systems with hundreds of atoms deviates from

other significant cases. This is expected as the implementation of the NNP is optimized for large systems. Also, it

is worth noting that the ReaxFF model exhibits an O(N) scaling rule rather than an O(NlogN) scaling rule,

different from previous works in the low-density gas36. The better performance of the NNP enables the exploration

of a system with tens of thousands or even millions of atoms at the ab initio accuracy, providing a feasible

approach to investigate the complex reaction network of RDX crystal from an atomic perspective.
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Fig. 3 Computational cost of NNP (red square), ReaxFF (blue circle), and DFT (purple square) methods on bulk

RDX systems with 100 to 100,000 atoms. The insert shows snapshots of the corresponding systems (from 168 to

223,608 atoms).

3.2 Physical properties
Table 2 presents the cell parameters of �-RDX crystal predicted from DFT, NNP, and ReaxFF methods and

the values from the experiments by Choi et al.37. As described in section 2.1, DFT calculations are performed by

the PBE-D3 level of theory. In Table 2, the cell parameters calculated by PBE-D3 method are in good agreement

with experiments, ensuring the excellent quality in the training dataset. The cell parameters from the NNP fall

within 2% of the experimental values, and the error in the volume of unit cell is within 3%. The predicted values

from the ReaxFF model are also well reproduced as the experimental values; all three cell parameters are

underestimated by 2% and the volume of unit cell is smaller by 6%. This highlights that the parameterization in the

ReaxFF model with atomic energy is capable of reproducing the crystallographic parameters of �-RDX crystal.

Table 2 Crystallographic parameters of �-RDX crystal calculated using DFT, NNP, and ReaxFF methods. a

Parameter Experiment37 DFT (PBE-D3) NNP ReaxFF28

a (Å) 13.182 13.325 13.415 (0.02) 12.938 (-0.02)

b (Å) 11.574 11.614 11.462 (-0.01) 11.331 (-0.02)

c (Å) 10.709 10.807 10.960 (0.02) 10.502 (-0.02)

V (Å3) 1633.856 1672.454 1685.233 (0.03) 1539.598 (-0.06)

aThe values in parentheses are the percentage error deviating from experimental values.

The predictions of the equation of state (EOS) by DFT, NNP, and ReaxFF models are presented in Fig. 4. The

NNP well reproduces the DFT results of the RDX crystal. It should be noted that only the central portion of the

EOS curves (the rectangle region) is included in the training dataset. However, the NNP also achieves a good
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agreement on structures out of the training dataset, indicating a satisfactory extrapolation performance. In

comparison, the ReaxFF method fails to construct the EOS of RDX crystal and predicts an incorrect equilibrium

structure. The ReaxFF overestimates the potential energies at the compression process (Volume = 5-10 Å3/atom),

which might affect the investigation of explosion or shock loading leading artificial formation of local hotspots.

Fig. 4 Equation of state curve for RDX crystal. The blue line, red line, and purple circles denote ReaxFF, NNP,

and DFT results, respectively. The dashed rectangle represents the structures included in the training sets.

3.3 Species evolution during RDX decomposition
The species evolution during RDX decomposition is calculated at 1500, 1750, 2000, 2250, and 2500 K.

Figure 5 presents the evolution of RDX molecules predicted by NNP and ReaxFF models. Initially, 64 RDX

molecules are packed in the supercell, and gradually decomposes in the first 10 ps. For both models, the

decomposition rate of RDX increases with the temperature. The NNP predicts a higher decomposition rate than

ReaxFF model at all temperatures. We also perform an AIMD simulation for RDX decomposition to validate the

reaction rate seen in the NNP. Considering the calculation cost, the AIMD simulation is performed on an RDX

unit cell (8 molecules) at 3000 K. As shown in Fig. S1a, the NNP reproduces the species evolution of RDX in

AIMD simulations. In contrast, noticeable deviations are seen in the ReaxFF model, highlighting the importance of

model accuracy to mimic the dynamic evolution in thermal decomposition.
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Fig. 5 Evolution of the number of RDX molecules predicted by NNP (a) and ReaxFF (b) models. The temperatures

are 1500, 1750, 2000, 2250, and 2500 K. The shadow regions represent the error bars among the three simulations.

To better understand the RDX decomposition kinetics, the reaction rate constant is calculated using the

first-order reaction model:

� � = �0 exp (− 푘�),

where C0 is the initial number of reactants, C(t) refers to the reactant number at a specific time t, and k is the rate

constant. By logarithmic transformation, we can compute the rate constant of RDX decomposition using the

following equation:

푘 = ln �0

� �
/�.

The rate constants are calculated using the species evolution of RDX molecules in 10 ps. The rate constant derived

from the NNP is in the same order as the ReaxFF model but higher by a factor of two. From the Arrhenius plot in

Fig. 6, Arrhenius parameters for RDX decomposition are determined by a direct fitting. The activation energies

predicted by NNP and ReaxFF are 25.24 and 26.01 kcal/mol, respectively. The results from both models are in

good agreement with the experimental value of 28.6 kcal/mol using the Kissinger method38. The above discussion

confirms that the NNP accurately describes the kinetics of RDX decomposition. In the following section, we

discuss the detailed decomposition mechanism of RDX crystal from condensed phase into gas-phase

intermediates.

Fig. 6 Predicted activation energy for RDX decomposition by NNP (red) and ReaxFF (blue) models.

The evolution of seven key gas-phase molecules at 2500 K is presented in Figure 7. Figure 7a shows the

decomposition in the first 100 ps by the NNP. During the decomposition, the first major intermediate is NO2

produced from the homolytic fission of the N-NO2 bond in RDX molecules. This finding is consistent with

previous works39 as the breakage of N-NO2 bond triggers the RDX decomposition. Chakraborty et al.39 identified

the first bond-breaking event as N-NO2 bonds in a single RDX molecule compared to the HONO elimination and

concerted ring break. The corresponding dissociation energy is the lowest among the other two potential reactions
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computed by the B3LYP method. The NO2 molecules are subsequently consumed in a rapid manner within 10 ps,

followed by the production of NO and H2O molecules. In the later stage, the production of N2 and CO2 are

observed, and the overall reactions reach an equilibrium after 100 ps. The production of NO2, NO, HNO2, H2O,

and CO2 is also reported in a recent FTIR experiment40.The RDX decomposes into NO2, NO and H2O first, and

then NO2 and NO starts to decrease after a certain time, while H2O continues to increase. Although the

experiments40 are performed at a lower temperature (e.g. 538K), the product evolution agrees with our NNP

simulations qualitatively. The predicted species evolution using the ReaxFF model is included in Figure 7b. The

overall evolution is similar with the NNP results, where NO2 is the major intermediate, and N2, H2O, and CO2 are

the major products. Compared with the results of ReaxFF model, the NNP predicts more NO molecules, a faster

H2O production rate, and a higher N2 concentration at the equilibrium. To validate the accuracy of the NNP in

species evolution, the evolution of NO2, NO, and H2O are also compared in Fig. S1, indicating that the NNP

outperforms the ReaxFF model in the prediction of the decomposition process. In addition, the NNP predicts that

N2 is the most abundant final product, followed by H2O and CO2. This finding agrees with the experiments where

the final products of RDX decomposition is 37% N2, 31% H2O, 18% CO2, and 14% CO.41 It should be noted that

the NNP predicts a lower concentration of CO, because PBE method underestimates the stability of CO42. The

current NNP inherits this issue to some extent, and further improvement can be carried on to add more accurate

DFT calculations of CO-involved reactions in the training set.

Fig. 7 Gas-phase species during RDX decomposition predicted by NNP (a) and ReaxFF (b) models.
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3.4 Decomposition mechanism
The MD trajectories using the NNP are further analyzed by ReacNetGenerator 35 to reveal the complex

reaction network. The primary reaction pathways of RDX decomposition and the formation of final products are

constructed in Fig. 8, where the arrow width represents the observed number of reactions. The major channel of

RDX decomposition starts with N-N homolysis to produce NO2 molecules and RDR radicals, which agree with

previous DFT studies10,11. Then, the RDR radicals mainly decompose through three pathways: (1) subsequential

N-N homolysis to INT1 and NO2 molecules, (2) ring-opening reactions to form INT2, and (3) H

abstraction/addition reactions. The N-N homolysis is the primary pathway for RDX and RDR decomposition to

rapidly form NO2 molecules, corresponding to the peak of NO2 at ~1 ps in Figure 7a. The NO2 is a key precursor

to form HNO2; it can abstract H from molecules such as RDX, RDR, INT1, INT2, and INT3. The HNO2 further

decomposes into NO and OH radicals, corresponding to the peak of NO at ~10 ps in Fig. 7a. The OH radical

undergoes H abstraction to form H2O.

In our simulations using the NNP, the N-N homolysis is more critical compared to the ring-opening reactions

and the H abstraction/addition reactions in the RDR decomposition as the corresponding frequency number is 49,

16 and 11. This finding here disagrees with the DFT calculations by Chakraborty et al.39; they reported that the

RDR prefers to decompose through the ring-opening reactions rather than N-N homolysis. The reason might be

attributed to the effects of neighbor molecules. Chakraborty et al. 39 studied the reaction dynamic of an isolated

molecule. In contrast, our NNP-MD simulations resolve the decomposition of the bulk RDX crystal. The neighbor

molecules around the RDR might impose intense steric effects on the ring-opening reactions prohibiting the

progress of ring opening, and this effect are discussed latter. In previous DFT studies 10,39, the HONO pathway is

another channel for RDX decomposition, where H atoms migrate to -NO2 in RDX and undergoes a direct

elimination of HNO2. This pathway is observed in our NNP-MD simulations, but its frequency is very low (e.g. 2

times). Instead, majority of HNO2 molecules is produced by the H abstraction reaction involving NO2 (e.g. 1890

times). Such H abstraction reaction is also reported by Patidar et al.10 and Zhang et al.11. Their results showed that

the H abstraction by NO2 has a much lower energy barrier than HONO elimination reactions (30.8 v.s. 38.3

kcal/mol). In addition to the NO2- and HNO2-related reactions, large fragments (INT1, INT2, INT3) are identified

in simulations. The INT1 undergoes a N-N homolysis and H abstraction reaction to yield TAZ, which can further

decompose via a ring-opening process to form INT3. Both INT2 and INT3 are chain-like molecules; they undergo

chain breakage to form small fragments such as (CH2)2N and CH2N2, which yield HCN molecules in further

decomposition. Finally, HCN molecules are oxidized to form N2, CO, and CO2. These reactions are slower and

more complex than the NO2-related reactions, resulting in the decay in N2 and CO2 production. In summary, the

decomposition mechanism of RDX can be divided into two stages: (1) N-N homolysis to form NO2 and HNO2; (2)

ring-opening and chain breakage reaction of large fragments. The first stage exhibits a high reaction rate and

produces NO2, NO, and H2O. The second stage is relatively slower and more complex, resulting in the formation

of N2, CO, and CO2.
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Fig. 8 Primary reaction pathways for the RDX decomposition and the formation of H2O, CO2, and N2. The arrow

width represents the observed number of reactions (n), where width = ln (n+1).

In addition, we further perform MD simulations on RDX in the gas phase using NNP, where the densities are

selected as 0.5 and 0.1 g/cm3. The simulations are performed under an NVT ensemble at 2500 K. The results from

RDX crystals (1.8 g/cm3) are also included for comparison. Figure 9 shows the flux of N-N homolysis, H

abstraction, and ring-opening reactions of RDX and RDR molecules. As discussed above, RDX crystals are mainly

consumed through the N-N homolysis, while the proportion of H abstraction and ring-opening reaction increase

for RDR molecules. As the density decreases, the proportion of ring-opening reaction increases significantly (from

6% to 26% for RDX, 17% to 34% for RDR). The proportion of N-N homolysis, and H abstraction reactions

decrease with the system density. Such behaviors are attributed to the effects of neighbor molecules. At

high-density conditions, the ring-opening reaction is hindered by the neighbor molecules due to the steric effects.

Decreasing the density, RDX decomposition is less affected by the neighbor molecule, which is close to the

isolated molecule in the previous DFT study39. In summary, the effect of the neighbor molecule should be taken

into consideration when studying the reaction mechanism of RDX and other EM in the condensed phase in

practice.
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Fig. 9 Flux analysis of N-N homolysis, H abstraction, and ring-opening reactions for the (a) RDX and (b) RDR

molecules with densities of 1.8, 0.5, 0.1 g/cm3.

4. Conclusions

In this work, we develop a neural network-based model to explore the reaction mechanism of RDX with good

accuracy. NN-based molecular dynamics simulations of bulk RDX crystals are performed to investigate the

mechanism of RDX decomposition. The physical properties of RDX crystal are firstly calculated to validate the

accuracy of NN potential, and then the detailed species evolutions are compared with AIMD simulation. Finally,

large-scale NN MDs are performed to derive the decomposition reaction mechanism of bulk RDX crystal. The

detailed decomposition mechanism is investigated with our NN model. We find that the intermediate and products

in the simulations agree well with the TG-FTIR experiments. The RDX decomposition can be divided into two

stages. The N-N homolysis dominates the first stage to form NO2, followed by H abstraction reactions, and

produces NO and H2O. The second stage refers to the ring-opening of large fragments and subsequent chain

breakage reactions, forming the final products as N2 and CO2.

The present work develops a NN model for RDX at the level of ab initio calculations. Our NN model

considers both atomic energy and force information from high-level DFT calculations. We demonstrate the

accuracy of our NNP outperforms the widely used ReaxFF model. In particular, the ReaxFF model predicts

unphysical atomic force compared to DFT calculations. This issue makes it unsuitable for the exploration of the

processes in the reaction dynamics. Our NN model also exhibits a great computational efficiency, which is 10000

times faster than the DFT method, and 27 times faster than the ReaxFF method, allowing the possibility of
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investigating the complex reaction process of bulk RDX crystal from an atomic perspective. Thus, this study opens

new opportunities for complex reactive systems to build reaction kinetics models.

Acknowledgments

This work is supported by the State Key Laboratory of Explosion Science and Technology (Grant

ZDKT21-01) and the National Natural Science Foundation of China (Grant 52106130). The authors also

acknowledge the support from the Foundation of Science and Technology on Combustion and Explosion

Laboratory.

Supplementary material

Fig. S1 Evolution of the major species (RDX, NO2, NO, H2O) during the initial stage of RDX decomposition

process predicted by AIMD, DP, and ReaxFF models.
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