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Abstract 

Context: SARS-CoV-2 induced cytokine storm is the major cause of COVID-19 related deaths. Patients have 

been treated with drugs that work by inhibiting a specific protein partly responsible for the cytokines 

production. This approach provided very limited success, since there are multiple proteins involved in the 

complex cell signaling disease mechanisms. 

 Objective: To elucidate using machine learning (ML) the set of drugs targeting a group of proteins involved 

in the mechanism of cytokine storm.  

Methods: We selected for targeting five proteins: Angiotensin II receptor type 1 (AT1R), A disintegrin and 

metalloprotease 17 (ADAM17), Nuclear Factor-Kappa B (NF-𝜅𝜅B), Janus kinase 1 (JAK1) and Signal 

Transducer and Activator of Transcription 3 (STAT3) that are involved in the SARS-CoV-2 induced cytokine 

storm pathway. We developed ML models for these five proteins, using known active inhibitors. After 

developing the model for each of these proteins, FDA-approved drugs were screened to find novel 

therapeutics for COVID-19.  

Results: We identified twenty drugs that are active for four proteins and eight drugs active for five proteins. 

Mitomycin C is the most active drug across all five proteins with an average prediction score of 0.886. For 

further validation of these results, we used the PyRx software to conduct protein–ligand docking experiments 

and calculated the binding affinity. The docking results support findings by the ML model. 

Conclusions: It is possible to elucidate the drugs, targeting simultaneously several proteins related to 

cytokine production to treat the cytokine storm in COVID-19 patients.  

 
Keywords: COVID-19; SARS-CoV-2; docking; machine learning; multi-targeted drug discovery; 

screening of FDA-approved drugs. 

Acronyms and Abbreviations: 1D, 2D, 3D, one-, two-, three-dimensional; ADAM17, A disintegrin and 

metalloprotease 17; ARDS, acute respiratory distress syndrome; AT1R, Angiotensin II receptor type 1; 

ARDS, acute respiratory distress syndrome; AUROC, area under receiver operator characteristic curve, 

COVID-19, coronavirus disease 2019; CRS, cytokine release syndrome; CXCL10, CXC-chemokine 
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ligand 10; FDA, Food and Drug Administration; G-CSF, granulocyte colony stimulating factor; IC50, half 

maximal inhibitory concentration; ICU, intensive care unit; IL, interleukin; JAK1, Janus kinase 1; MCP1, 

monocyte chemoattractant protein-1; MIP1α, macrophage inflammatory protein 1; ML, machine learning; 

NF-𝜅𝜅B, Nuclear Factor-Kappa B; PaDEL, Pharmaeutical data exploration laboratory; PDB, Protein Data 

Bank; ROC, receiver operator characteristic curve; SMILES, Simplified Molecular-Input Line-Entry System; 

STAT3, signal transducer and activator of transcription 3; TNFα, tumor necrosis factor α; WEKA, Waikato 

Environment for Knowledge Analysis.  
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Introduction 

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) resulted in millions of infected patients and deaths worldwide [1,2]. Patients frequently 

encountered complications with significant mortality, particularly by acute respiratory distress syndrome 

(ARDS) with a broad spectrum of issues such as multiple-organ failure, and blood clots [3,4]. There has 

been tremendous amount of research going on towards discovering therapeutics for the COVID-19, and 

few drugs have been approved by FDA such as remdesivir, Paxlovid and molnupiravir, and all of them 

mainly target viral proteins[5,6].  

Mounting research data reveals that the severity of COVID-19 is mainly associated with an increased 

level of inflammatory mediators including cytokines and chemokines such as interleukin IL-2, IL-7, IL-8, IL-9, 

IL-10, IL-17, tumor necrosis factor α (TNFα), monocyte chemoattractant protein-1 (MCP1), macrophage 

inflammatory protein 1 alpha (MIP1α), granulocyte colony stimulating factor (G-CSF), CXC-chemokine 

ligand 10 (CXCL10), C-reactive protein, ferritin, and D-dimers in blood upon SARS-CoV-2 infection [7–

13]. More specifically, patients in intensive care unit (ICU) showed higher levels of plasma inflammatory 

cytokines compared to non-ICU patients [14], and therefore fatal COVID-19 is characterized as a cytokine 

release syndrome (CRS) that is caused by a cytokine storm. Thus, targeting proteins responsible for 

cytokine storm serves as a possible mechanism of treatment for severe COVID-19 patients [15–17].   

The SARS-CoV-2 induced cytokine storm pathway [18] shows that there are multiple proteins involved 

in the disease signaling mechanisms. Cytokines are cell signaling, small protein molecules that aid cell to 

cell communication in immune responses and stimulate the movement of cells towards sites of 

inflammation, infection, and trauma [19]. Cytokine Storm is essentially an unregulated immune response 

characterized by an excessive release of multiple pro-inflammatory Cytokines [20,21].  

It has been identified that proteins such as Angiotensin II receptor type 1 (AT1R), A disintegrin and 

metalloprotease 17 (ADAM17), Nuclear Factor-Kappa B (NF-𝜅𝜅B), Janus kinase 1 (JAK1) and Signal 

transducer and activator of transcription 3 (STAT3) are implicated in the production of proinflammatory 
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cytokines and are considered as a promising COVID-19 therapeutic targets [15]. Therefore, discovering 

a drug that can interfere with function of either all of the proteins or most of them synergistically would 

become an effective therapeutic. Based on literature search, as of now there are no such therapeutics exist. 

Discovery of novel effective drugs and therapies for COVID-19 is critical for tackling the disease. However, 

discovery and development of effective therapies can be costly and time-consuming. For this reason, it 

would be ideal to repurpose already existing FDA-approved drugs given the proven safety, if they can also 

interfere effectively with proteins responsible for cytokine storm.  

In this pathway, we have investigated five proteins: AT1R, ADAM17, NF-𝜅𝜅B1, JAK1, STAT3. AT1R 

signaling axis activates ADAM17, which results in the production of cytokines TNFα and IL-6. The IL-6 

amplifier plays a critical role in chronic inflammatory diseases. Activation of NF-𝜅𝜅B, JAK1 and STAT3 

triggers the IL-6 amplifier which causes the cytokine storm and leads to the ARDS and multiple-organ 

failure. Targeting these five proteins would prevent cytokine storm to yield the best potent COVID-19 drug. 

Conventional methods of drug discovery as shown in Fig. 1 are very expensive, complex processes that 

takes several years to bring drugs to the clinic. We used machine learning to expedite the drug discovery 

process by screening FDA drugs, so that the treatment for COVID-19 is available sooner. 

Recently, machine learning (ML) has emerged as an important computational technique and has been 

applied to various tasks in drug discovery, such as molecular property prediction and drug–target interaction 

prediction.  Given the great advantage of this computational tool in terms of the cost and time, in this project 

we have used ML classification model with a random forest algorithm in WEKA software [22] for 

repurposing of some FDA-approved drugs for use as COVID-19 therapeutics. These predictions can then 

be confirmed through structure-based virtual screening, specifically using docking simulators PyRX. The 

docking provides the binding energy for each conformer and helps validate the accuracy of prediction. 

 
Methods 

All research was completed in silico. The programs, tools, and websites used: PubChem, ZINC 

database subsection covering FDA-approved drugs, Protein Data Bank (PDB), Pharmaceutical Data 
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Exploration Laboratory (PaDEL-Descriptor), Waikato Environment for Knowledge Analysis (WEKA), 

PyRx, Discovery Studio Visualizer. A flowchart of methods is presented in Fig. 1. 

 

 
 

Figure 1. Flowchart of the methods. 
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Data collection 

Data for known active inhibitors and a control set of random compounds obtained from PubChem are 

listed in Table 1. Data for FDA-approved drugs obtained from the ZINC database. Activity values and 

SMILES (Simplified Molecular-Input Line-Entry System) [23] files for compounds tested with the proteins 

AT1R, ADAM17, NF-𝜅𝜅B, JAK1, STAT3 were retrieved from PubChem. To limit the tested compounds to 

the strongest inhibitors, compounds with top 100 IC50 values were chosen for training the model. One-

thousand-six-hundred-fifteen FDA-approved drugs and their SMILES were retrieved from ZINC database. 

 
Table 1. Known inhibitors obtained from PubChem. 

Protein Number of Known Inhibitors IC50 values range (μM) 

AT1R 1192 0.00005–19.98 
ADAM17 1813 0.000026–44.0 

NF-𝜅𝜅B   348 0.003–49.6 
JAK1 4596 0.0000013–39.81 

STAT3   588 0.0084–48.0 
 

The chemical structures are obtained in SMILES format. These files are 1D ASCII strings that represent 

3D molecular structure. An example of top ten inhibitors for AT1R are shown in Table 2. 

 

Table 2. The top ten inhibitors for AT1R. 

Compound IC50 (nM) 

 BDBM50049199   0.05 
 Saralasin     0.06 
 2Botbmip     0.08 
 CHEMBL42775  0.01 
 CHEMBL158809    0.01 
 CHEMBL298417        0.01 
 BDBM50283219  0.01 
 BDBM50283237  0.01 
 BDBM50283194  0.01 
 BDBM50283245  0.01 
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Molecular descriptor calculation 

PaDEL-Descriptor software [24] is used to calculate the molecular descriptors for the compounds. 

These descriptors are the characteristics of the compound that are used for training of the ML model. For 

example, number of aromatic rings, number of pi bonds, molecular weight, atom count, etc. The software 

currently calculates 1875 descriptors (1444 1D and 2D descriptors and 431 3D descriptors) and 12 types of 

fingerprints. For our model building we have used 1444 1D and 2D descriptors.  

 
InfoGain filtering in WEKA to select top 100 descriptors 

To narrow down the calculated 1D and 2D descriptors from 1444 to only the most significant ones, we 

utilized attribute selection from WEKA [25], an open-source ML software. The descriptors were ranked by 

the Information Gain Attribute Evaluation (InfoGain) function, an unsupervised machine-learning 

algorithm, that measures how important each descriptor is in determining whether a given molecule is 

an inhibitor or not. InfoGain measures how each feature contributes to decreasing the overall computational 

entropy. Only the most significant descriptors were selected to be used by the ML model to reduce noise.   

Building a machine-learning model  

Machine-learning model for each protein was built using WEKA [22]. WEKA provides both standard 

and extensive ML functionality, integrated within classification, regression, clustering and other pattern 

recognition capabilities. Data for the model is prepared by taking top 100 descriptors of top 100 inhibitors 

for each of the proteins and 100 control set of random molecules.  

First, we submitted the prepared inhibitor file containing selected and random compounds with their 

molecular descriptors into WEKA. Then used the Random Forest algorithm 10-folds cross validation to 

build the model. Also, we used Random Forest algorithm with an 80%/20% training–testing split to evaluate 

the performance of the model. Such the training–testing split ensures that there is no overfitting as 20% of 

the data. It was not used to build the model but used for testing. Then we analyzed the model accuracy and 

elucidated the ROC curves. Saved model was used in the next step to screen FDA approved drugs. The 
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Receiver Operating Characteristic (ROC) curves were calculated to measure the effectiveness of the model. 

ROC curve summarizes the prediction performance of a classification model at all classification thresholds. 

Figs. 2a–2e present the ROC graphs for machine-learning models of proteins AT1R, ADAM17, NF-𝜅𝜅B, 

JAK1, and STAT3. Model accuracy is 91.5–99.0% range and Area Under the Receiver-Operating 

Characteristic curve (AUROC) is 0.97–1.00. That values confirm the accuracy of the models. Receiver-

Operating Characteristic (ROC) curves for five proteins are shown in Fig. 2. 
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Figure 2. Accuracies and AUROC of the predictions of inhibitors for five proteins related to cytokine storm in 

COVID-19: (a) AT1R Accuracy 98.5% and AUROC 99% ;(b) ADAM17 Accuracy 98.5% and AUROC 99%; 

(c) NF-𝜅𝜅B Accuracy 96%, AUROC 99%; (d) JAK1 Accuracy 98.5%, AUROC 100%; (e) STAT3 Accuracy 91.5%, 

AUROC 97.8%. 

 

Screening of FDA-approved drugs using the model 

FDA approved drugs are downloaded from ZINC database [26]. Using PaDEL descriptor software, the 

molecular descriptors were calculated for all the downloaded 1665 FDA-approved drugs. Out of 

1444 descriptors, the same 100 descriptors were selected as the training set of the corresponding protein 

inhibitors. These were then screened with the ML model built using WEKA. The output was analyzed for 

the prediction scores and the predicted drugs were ranked based on the ML predicted score. The predicted 

drugs were ranked for each protein and averaged the score among all five proteins listed in Table 3.  

Table 3. Active compounds with the greater than 0.6 predictive score. 

Name of Predicted 
Inhibitor ZINCID Average score for five 

proteins 
Machine Learning 

(ML) rank 

Mitomycin C ZINC000030726187 0.886 1 
Valrubicin ZINC000028232755 0.882 2–3 
Pomalidomide ZINC000003940470 0.882 2–3 
Fludarabine ZINC000004216238 0.880 4 
Clarithromycin ZINC000085534098 0.872 5–6 
Trabectedin ZINC000150338708 0.872 5–6 
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Capreomycin ZINC000150338698 0.868 7 
Sonidegib ZINC000068202099 0.852 8 
Abacavir ZINC000002015928 0.820 9 
Raltegravir ZINC000013831130 0.816 10 
Saxagliptin ZINC000013648755 0.810 11 
Nimodipine ZINC000019632713 0.790 12–13 
Suvorexant ZINC000049036447 0.790 12–13 
Boceprevir ZINC000014210457 0.783 14 
Saquinavir ZINC000026985532 0.780 15 
Balsalazide ZINC000003952881 0.760 16 
Minocycline ZINC000014879992 0.750 17 
Eribulin ZINC000169344691 0.742 18 
Isradipine ZINC000100001918 0.731 19 
Cangrelor ZINC000085537017 0.730 20 
Tinidazole ZINC000000113446 0.721 21 
Oxymorphone ZINC000003875483 0.720 22 
Brivaracetam ZINC000003979899 0.718 23 
Naloxegol ZINC000095564694 0.715 24 
Roflumilast ZINC592419 0.712 25–27 
Methotrexate ZINC1529323 0.712 25–27 
Piperacillin ZINC3913937 0.712 25–27 
Darunavir  ZINC3955219 0.711 28 
Apremilast ZINC30691736 0.710 29 
Tenidap  ZINC100001953 0.700 30–32 
Dibrospidium  ZINC1842693 0.700 30–32 
Ladostigil   ZINC27623417 0.700 30–32 
Tibezonium   ZINC4217561 0.682 33 
Taribavirin  ZINC3781686 0.673 34 
Omoconazole  ZINC1532917 0.650 35–36 
Irampanel   ZINC7363 0.650 35–36 
Ciprostene   ZINC3800479 0.640 37 
Nalfurafine  ZINC4393014 0.630 38–39 
Ritonavir   ZINC3944422 0.630 38–39 
Fingolimod  ZINC1542002 0.620 40 
Lisinopril    ZINC3812863 0.620 41 
Lesinurad    ZINC84757007 0.610 42–44 
Ibrutinib    ZINC35328014 0.610 42–44 
Ticagrelor  ZINC28957444 0.610 42–44 
Ertapenem ZINC3918453 0.600 45 
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Docking of predicted FDA-approved drugs to selected proteins 

To confirm the activity and binding to the protein, docking of predicted FDA-approves drugs was 

performed using PyRx tool [27] with Discovery Studio software [28] to visualize the results. For docking 

the selected compounds, the crystal structure of the protein was downloaded from PDB [29,30] for each of 

the five proteins. PDB IDs for selected proteins are AT1R—4ZUD, ADAM17—2FV5, NF-𝜅𝜅B—1SVC, 

JAK1—4EI4, and STAT3—6NUQ. A binding active site is defined for each protein based on the reported 

ligand interactions with protein. 

To validate the specificity of the docked compounds, docking of random compounds was also 

conducted. A random number generator without repetition was used to obtain 100 random compound IDs 

and to select entries from the PubChem database that correspond to the random numbers obtained. 

Each of the five proteins’ 3D structure with a known ligand was downloaded from the PDB database. 

Each predicted FDA-approved drug’s 3D structure was downloaded from PubChem. From each 

downloaded protein–ligand complex, the ligand was removed in Discovery Studio and remained protein 

was loaded into PyRx. The active sites of each protein were defined as a box that encompasses residues of 

the binding site. Then we ran the AutoDock Wizard for the top 12 predicted compounds, 12 best-activity 

known compounds, and 12 random compounds with each protein. For each compound nine conformers 

were generated and docked. In total there were generated 324 conformers, which were docked to each 

protein. The docked protein–ligand complexes were analyzed to elucidate the interactions of compounds 

with amino-acid residues. Binding Free Energy values are listed in Tables 10 and 11. 

 

Results 

Machine-learning prediction results 

The results of the ML models’ predictions were evaluated using confusion matrices and their 

derivatives: the accuracy (ACC), precision (PREC), Matthews correlation coefficient (MCC), true-positive 
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rate (TPR) or recall (REC), false-positive rate (FPR), as well as the area under the receiver operating 

characteristic (ROC) curve (AUROC), and the area under the precision–recall curve (PRC area).  

The weighted averages for each of these metrics are listed in Table 4. The ROC curve compares the 

sensitivity and specificity across a range of values. Thus, the vertical axis is the TPR, that is, the sensitivity 

or recall; and the horizontal axis is the FPR or (1−specificity). The FPR is the probability of falsely 

classifying a positive class. The model’s low FPR of 0.015 to 0.040 demonstrates a low probability of 

wrongly classifying an inactive compound to active compound. The TPR (sensitivity) is the probability of 

correctly classifying a positive class. The model’s high TPR of 0.915 to 0.985 indicates a high probability 

of correctly classifying an active compound. The large average AUROC value 0.978 to 1.0 indicates that 

the classification is accurate. Another way to evaluate the performance of the proposed method is the PRC 

area, which shows precision values for the corresponding sensitivity (recall, i.e., TPR) values. The model’s 

large PRC area value of 0.979 to 1.0 again shows the good performance of our method for all the five 

proteins. 

Table 4. Performance of the developed ML models for the five proteins related to cytokine storm in 
COVID-19. 

Protein ACC TPR FPR PREC MCC AUROC PRC Area 
AT1R 98.5% 0.985 0.015 0.985 0.970 0.999 0.999 
ADAM17 98.5% 0.985 0.015 0.985 0.970 0.999 0.999 
NF-𝜅𝜅B 96% 0.960 0.040 0.961 0.921 0.993 0.993 
JAK1 98.5% 0.985 0.015 0.985 0.970 0.999 0.999 
STAT3 91.5% 0.915 0.085 0.915 0.830 0.978 0.979 

Note: ACC, accuracy; TPR, true-positive rate; FPR, false-positive rate; PREC, precision; MCC, Matthews correlation 
coefficient; AUROC, area under the receiver-operating characteristic curve; PRC area, area under the precision–
recall curve. 

 
Total 45 compounds found to be active inhibiting all five proteins AT1R, ADAM17, NF-𝜅𝜅B, STAT3, 

JAK1. Forty-five active compounds with the greater than 0.6 average predictive score is shown in Table 4. 

Top eight FDA-approved drugs predicted active for all five proteins AT1R, ADAM17, NF-𝜅𝜅B, STAT3, 

and JAK1 are shown in Table 5. 
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Table 5. Eight compounds active for five proteins with greater than 0.85 average predictive score. 

Name of 
Predicted 
Inhibitor 

Prediction score  Average 
score 

ML 
Rank AT1R ADAM17 NF-𝜅𝜅B JAK1 STAT3 

Mitomycin C 0.99 0.76 0.90 0.78 1.00 0.886 1 
Valrubicin 0.97 0.73 1.00 0.71 1.00 0.882 2–3 
Pomalidomide 1.00 0.76 0.92 0.73 1.00 0.882 2–3 
Fludarabine 1.00 0.73 0.94 0.73 1.00 0.880 4 
Clarithromycin 0.99 0.70 0.95 0.72 1.00 0.872 5–6 
Trabectedin 0.99 0.75 0.91 0.71 1.00 0.872 5–6 
Capreomycin 1.00 0.70 0.89 0.75 1.00 0.868 7 
Sonidegib 0.91 0.72 0.94 0.71 0.98 0.852 8 

 

Mitomycin C (Table 3) is top ranked FDA drug across all five proteins with average prediction score 

of 0.886. Top 20 FDA-approved drugs predicted active for four proteins (AT1R, ADAM17, NF-𝜅𝜅B, 

STAT3) showed an average score of greater than 0.83 are shown in Table 6. 

Table 6. Twenty compounds active for four proteins with greater than 0.83 average predictive 
score. 

Name of 
Predicted 
Inhibitor 

Prediction score Average 
score 

ML 
Rank AT1R ADAM17 NF-𝜅𝜅B STAT3 

Abacavir 0.93 0.73 1.00 1.00 0.9600 1–2 
Raltegravir 0.73 0.74 0.98 0.89 0.9600 1–2 
Saxagliptin 0.99 0.88 0.97 1.00 0.9250 3–4 
Valrubicin 0.97 0.73 1.00 1.00 0.9250 3–4 
Pomalidomide 1.00 0.76 0.92 1.00 0.9200 5 
Nimodipine 0.97 0.72 0.95 1.00 0.9175 6–7 
Fludarabine 1.00 0.73 0.94 1.00 0.9175 6–7 
Suvorexant 0.95 0.72 1.00 1.00 0.9150 8 
Boceprevir* 0.72 0.72 0.99 0.97 0.9125 9–11 
Mitomycin C 0.99 0.76 0.90 1.00 0.9125 9–11 
Trabectedin 0.99 0.75 0.91 1.00 0.9125 9–11 
Saquinavir 0.99 0.88 0.97 1.00 0.9100 12–13 
Clarithromycin** 0.99 0.70 0.95 1.00 0.9100 12–13 
Capreomycin 1.00 0.70 0.89 1.00 0.8975 14–16 
Balsalazide 0.93 0.71 0.96 0.94 0.8875 14–16 
Sonidegib 0.91 0.72 0.94 0.98 0.8875 14–16 
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Minocycline 0.73 0.74 0.98 0.89 0.8850 17 
Eribulin 0.92 0.71 0.86 1 0.8500 18 
Isradipine 0.98 0.72 0.94 1 0.8350 19–20 
Cangrelor 0.96 0.70 0.95 1 0.8350 19–20 

*Boceprevir [31] showed in-vitro activity for COVID-19. 
**Clarithromycin [32,33] is in clinical trials to treat COVID-19. 

 

Thirteen drugs (Table 6) showed average scores of greater than 0.9. Abacavir and raltegravir (Table 6) 

showed top average scores of 0.96. Chemical structures of top active compounds are shown in Fig. 3. 

 
 

 

 

 

Figure 3. Chemical structures of the top predicted active for treatment of cytokine storm FDA-approved 
drugs: (a) mitomycin C; (b) abacavir; (c) raltegravir. 
 

Current use of predicted active drugs is shown in Table 7. 

 
Table 7. Current use of predicted active drugs. 

ZINCID Name of Drug Current Uses 

ZINC000004216238 Fludarabine Purine analogue and antineoplastic agent 
ZINC000019632713 Nimodipine Calcium channel blocker used for high blood pressure 
ZINC000028232755 Valrubicin Used to treat bladder cancer 
ZINC000068202099 Sonidegib A small molecule used to treat cancer 
ZINC000026985532 Saquinavir A peptide used to treat HIV 
ZINC000013648755 Saxagliptin A small molecule/peptide used for diabetes 
ZINC000030726187 Mitomycin C A small molecule used to treat cancer 
ZINC000003952881 Balsalazide Used to treat inflammatory bowel disease 
ZINC000002015928 Abacavir A nucleotide used to treat HIV 
ZINC000013831130 Raltegravir A small molecule used to treat HIV 
ZINC000014210457 Boceprevir A peptide used to treat  HCV 
ZINC000014879992 Minocycline A tetracycline antibiotic used for bacterial infections  
ZINC000085534098 Clarithromycin A macrolide antibiotic used to treat bacterial infections 

(b) (c)  (a) 
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Docking results 

Docking of the top three predicted FDA-approved drugs mitomycin C, abacavir and raltegravir with 

the protein binding site are shown in Fig. 4 and Fig. 5. 

     (a)      (b) 
 

 
     (c)      (d) 
  

 
 
 
 
 
 
 
 
 
 

     (e)  

ZINC000150338698 Capreomycin A macrolide antibiotic used to treat TB 
ZINC000049036447 Suvorexant A small molecule used to treat insomnia 
ZINC000100001918 Isradipine Used to treat high blood pressure 
ZINC000003940470 Pomalidomide A small molecule used to treat cancer 
ZINC000150338708 Trabectedin A small molecule used to treat cancer 
ZINC000169344691 Eribulin A small molecule used to treat cancer 
ZINC000085537017 Cangrelor A nucleotide used to treat cancer 
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Figure 4. Docking of mitomycin C with proteins: (a) AT1R; (b) ADAM17; (c) NF-𝜅𝜅B; (d) JAK1; (e) STAT3. 

 

     (a)      (b) 

 

 

     (c)      (d) 

 

 

     (e)      (f) 
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     (g)      (h) 

  
     (i)      (j) 

  
Figure 5. Docking of abacavir and raltegravir with proteins: (a) AT1R–abacavir; (b) ADAM17–abacavir; (c) NF-𝜅𝜅B–
abacavir; (d) JAK1–abacavir; (e) STAT3–abacavir; (f) AT1R–raltegravir; (g) ADAM17–raltegravir; (h) NF-𝜅𝜅B–
raltegravir; (i) JAK1–raltegravir; (j) STAT3–raltegravir. 

 

Mitomycin C docked with all five proteins showed binding affinity ranging from −6.0 to −7.5 kcal/mol. 

(Table 8). 

 
Table 8. Binding free energy for mitomycin C. 
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Protein Binding free energy 
(kcal/mol) 

AT1R −7.5 
ADAM17 −7.0 
NF-𝜅𝜅B −6.0 
JAK1 −7.2 
STAT3 −6.5 

 
Abacavir docked with four proteins showed binding free energy ranging from −6.1 to −8.6 kcal/mol 

(Table 9). Raltegravir docked with four proteins showed binding energy ranging from −7.4 to −9.6 kcal/mol 

(Table 9) which is considered as reasonable binding affinity. 

Table 9. Binding free energy for abacavir and raltegravir. 

Protein Binding Free energy with 
abacavir (kcal/mol) 

Binding Free energy with 
raltegravir (kcal/mol) 

AT1R −7.8 −9.4 
ADAM17 −8.6 −9.6 
NF-𝜅𝜅B −6.1 −7.4 
STAT3 −7.2 −8.3 

 
Binding affinities calculated using PyRx docking for the top 12 compounds. Table 10 lists the top 

predicted active compounds docked for all five proteins.  

 
Table 10. Binding free energies of the top 12 ML-predicted FDA-approved drugs docked using PyRx 
software. 

 

Compound 
Binding free energy to  

AT1R ADAM17 NF-𝜅𝜅B JAK1 STAT3 

Mitomycin C   −9.2   −7.9 −6.1 −7.4 −6.7 
Pomalidomide   −8.5   −7.1 −5.9 −8.3 −7.2 
Fludarabine   −8.1   −9.1 −6.2 −8.1 −7.5 
Sonidegib −10.1 −10.1 −7.3 −9.1 −8.5 
Abacavir   −9.6   −8.5 −7.8 −10.1 −7.9 
Raltegravir   −7.8   −7.3 −6.1 −7.7 −7.2 
Saxagliptin   −7.3   −8.6 −5.3 −6.9 −5.9 
Nimodipine   −7.9   −6.2 −6.4 −8.4 −7.5 
Suvorexant   −9.4   −8.9 −7.4 −9.7 −8.3 
Boceprevir   −8.6   −9.6 −6.8 −7.4 −7.8 
Balsalazide   −7.5   −7.1 −6.0 −7.2 −6.5 
Minocycline   −6.5   −7.0 −5.6 −7.2 −6.1 
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The box plots (Fig 6) demonstrated that the predicted inhibitors had the better binding affinities than 

known and random compounds. They were constructed using binding affinities obtained from docking for 

predicted compounds, known inhibitors and control random compounds and are shown in Fig. 6. Docking 

free energies are listed in Table 11.  

 

     (a)      (b) 

  
     (c)      (d) 



21 
 

  
     (e)  

 

 

 
Figure 6. Free energies of docking interactions—docking scores—of predicted, known, and random compounds: 
(a) AT1R; (b) ADAM17; (c) NF-𝜅𝜅B; (d) JAK1; and (e) STAT3.  
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Table 11. Summary of binding free energies (kcal/mol) for predicted FDA-approved drugs, known 
inhibitors and random compounds. 

Protein min q1 med q3 max mean 

AT1R       
Predicted −10.10 −9.30 −8.30 −7.65 −6.50 −8.37 
Known −8.30 −8.10 −7.65 −7.35 −6.40 −7.63 
Random −8.10 −7.05 −6.35 −5.60 −4.00 −6.28 

ADAM 17       
Predicted −10.10 −9.00 −8.20 −7.10 −6.20 −8.10 
Known −8.40 −7.80 −7.20 −6.10 −5.10 −6.91 
Random −8.50 −7.65 −6.80 −6.65 −5.30 −7.08 

NF-𝜅𝜅B       
Predicted −7.80 −7.05 −6.15 −5.95 −5.30 −6.40 
Known −6.40 −6.25 −6.00 −5.80 −5.60 −6.00 
Random −6.10 −5.20 −4.50 −4.35 −3.80 −4.70 

JAK1       
Predicted −10.10 −8.75 −7.90 −7.30 −6.90 −8.12 
Known −9.10 −7.70 −7.40 −6.60 −6.30 −7.37 
Random −8.90 −6.35 −5.80 −5.45 −4.50 −6.09 

STAT3       
Predicted −8.50 −7.85 −7.35 −6.60 −5.90 −7.25 
Known −7.00 −6.25 −5.90 −5.75 −5.30 −6.00 
Random −7.20 −6.05 −5.15 −4.85 −4.00 −5.45 

 
The box plots (Fig 6) demonstrates that the predicted inhibitors had an average binding affinity of 

−6.40 kcal/mol (NF-κB) to −8.37 kcal/mol for AT1R (Fig. 6a), which was better than that of known 

inhibitors, which had an average of −6.0 kcal/mol for STAT3(Fig. 6e) to −7.63 kcal/mol for AT1R (Fig 6). 

The control group of random molecules had an average binding affinity of −4.78 kcal/mol for NF-𝜅𝜅B 

(Fig 6c) to −7.0 kcal/mol for ADAM17 (Fig 6b). This confirms that the predicted inhibitors performed 

statistically better than the control group. 

In this project, five crucial proteins—AT1R, ADAM17, NF-𝜅𝜅B, JaK1, STAT3—playing the important 

roles in cytokine production pathway are targeted to predict the best potential drug for treatment of 

COVID-19 cytokine storm. Number of known inhibitors with reported IC50 values for each protein obtained 

from PubChem were 1192, 1813, 348, 4596, and 588 respectively. Machine-learning models developed 
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exhibited an accuracy ranging from 91.5–99.0%, with their AUROC values ranging from 0.98–1.0, which 

is considered as excellent predictive performance of the models.  

The box plots (Fig. 6) show that the predicted active compounds have better binding energies than the 

already known inhibitors and control set of random compounds. One can see that the predicted inhibitors 

had an average binding affinity of −6.40 kcal/mol (NF-κB) to −8.37 kcal/mol (AT1R), which was better 

than that of known inhibitors, which had an average of −6.0 kcal/mol (STAT3) to −7.63 kcal/mol (AT1R). 

The control group of random molecules had an average binding affinity of −4.78 kcal/mol (NF-𝜅𝜅B) to 

−7.0 kcal/mol (ADAM17). This confirms the predicted inhibitors performed statistically better than the 

control group. 

From the docking results, binding free energy values ranging from −6.0 to −9.6 kcal/mole targeted for 

five and four proteins confirms that the predicted compounds bind at the active site of the proteins. The 

amino acids that showed interaction in the docking experiments for the top three drugs mitomycin C, 

abacavir and raltegravir are listed in Table 12.  

 
Table 12. Summary of binding residues involved for each protein with top predicted drugs. Bold are 
residues that are involved in binding to more than one compound. 

Protein binding 
residues Mitomycin C Abacavir Raltegravir 

AT1R  Tyr35, Trp84, Thr88, 
Arg167, Ile288 

Tyr35, Trp84, Tyr87, Tyr92, 
Ile288, Val108 

Trp84, Val108, Arg167, 
Lys199, Ile288 

ADAM17  Gly354, Ser355, Ser360, 
Gly362, Thr461, Ser457 

Leu348, Glu398, Val402, 
Glu406, His405, Leu401, 
Try436, Ile438, Ala439, 
Val440 

Gly346, Thr347, Leu348, 
Gly349, Val402, Glu406, 
His405, His415, Ile438, 
Ala439 

NF-𝜅𝜅B  Ser243, Ser249, Asp250, 
Asp274, Lys275, Lys244 

Arg54, Lys52, Ala73, 
Lys252, Leu251, Glu341 

Lys52, Gln53, Arg54, 
Ala73, Glu341, Thr342 

JAK1  Asp1003, Gly884, 
Asp1042 

Gly887, Leu910, Leu922, 
Leu1024, Gly884, His885, 
Asp1042 

Asp1039, His918, Asp921, 
Lys1026, Lys908, 
Leu1024, Arg1002, 
His885 

STAT3  Lys383, Ser381, Leu436, 
His437 

Gln247, Cys251, Ile252, 
Pro256, Glu324, Arg325, 
Asp334, Pro336 

Asp371, Ser381, Leu430, 
Leu438, Lys488, Val490 
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From Table 12 one can see that AT1R’s binding residues—Tyr35, Trp84, Val108, Arg167, and 

Ile288—are common for mitomycin C, abacavir and raltegravir; ADAM17’s binding residues—Glu406, 

His405, Ile438, and Ala439—are common for abacavir and raltegravir ; NF-𝜅𝜅B’s binding residues—Lys52, 

Ala73, and Glu341—are for abacavir and raltegravir; JAK1’s binding residues—Asp1042, Gly884, and 

His885—are common for abacavir and raltegravir; STAT3’s binding residue—Ser381—is for abacavir and 

raltegravir binding to STAT3. 

These results support the idea that the compounds are binding at the active site of protein and not at the 

non-bonding sites, thus proving that these compounds could act specifically on the protein makes them 

some of the most promising candidates to treat COVID-19. 

Discussion 

The main goal of this project was to predict the drugs that can target as many as possible cytokine-

related genes. We know that there is a number of such genes that are activated in response on SARS-CoV-2 

viral proteins. Here we have a problem that is eternal for medicine. We cannot prescribe more drugs than a 

set that would be tolerated by the organism. Here we selected five genes that have to be targets of inhibiting 

agent to prevent the cytokine storm or just decrease the immune response to viral agents. Our model 

predicted drugs that can simultaneously target at least four of such cytokine-related genes. Based on model 

average prediction scores over 0.6, 45 FDA-approved drugs were predicted active, with 20 drugs having 

predicted scores greater than 0.8 for 4 proteins (AT1R, ADAM17, NF-𝜅𝜅B, STAT3). Eight FDA-approved 

drugs had predicted scores over 0.85 for all five proteins involved in the mechanism of the cytokine storm 

(AT1R, ADAM17, NF-𝜅𝜅B, JAK1, STAT3). Mitomycin C is the most active drug across all five proteins 

with an average prediction score of 0.886. Abacavir and raltegravir are the top active compounds for four 

proteins with average scores of 0.96. 

We predicted several drugs that can target simultaneously several proteins in cytokine-storm-related 

pathway. These may be useful drugs to treat patients because these therapies can fight cytokine storm 

caused by the virus at multiple points of inhibiting, leading to synergistically effective treatments. 
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Mitomycin C ranked top with highest average scores for all five proteins suggesting that it possesses 

all required chemical functional groups with desired spatial arrangements, so that it can interact and bind 

well with all proteins. Abacavir and raltegravir with excellent predictive scores for four proteins (except 

JAK1) suggesting that changes in chemical structure of the drugs made the difference in biological activity. 

Two of predicted drugs—boceprevir [31] and clarithromycin [32,33] are already tested for COVID-19 

treatment. 

 

Conclusions 

Our hypothesis that it is possible to develop a valid predicting machine-learning model to select the drugs 

that would target multiprotein pathways for treatment of the COVID-19 cytokine storm is confirmed and gave 

the model accuracy ranging from 91.5–99%, with AUROC ranging from 0.978 to 1.0, considered as excellent 

predictive performance of the models.  

This project not only provides drug candidates that could treat COVID-19, but it also demonstrates the 

application of predictive models for multi-target drug discovery approach with machine learning. 

Future steps for this project would be to confirm the inhibitory activity of the predicted drugs against 

the target proteins in animal models. The methods of this project could be extended to predictive models 

for discovering therapeutics for other disease areas, such as chronic inflammatory diseases. 
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