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Abstract 

Designing novel catalysts is key to solving many energy and environmental challenges. Despite the 

promise that data science approaches, including machine learning (ML), can accelerate the development 

of catalysts, truly novel catalysts have rarely been discovered by ML because of one of its most common 

limitations and criticisms—the assumed inability of the models to extrapolate and identify extraordinary 

materials beyond those present in the training data set. Herein, we demonstrate an extrapolative ML 

approach to develop new multi-elemental catalysts based on supported Pt as an active metal and TiO2 

as a support for the low-temperature reverse water-gas shift (RWGS) reaction. Using 45 catalysts as the 

initial data points and performing 44 cycles of the closed loop discovery system (ML prediction + 

experiment), we experimentally tested a total of 300 catalysts and identified more than 100 catalysts with 

superior activity as compared to the previously reported high-performance catalysts. The composition of 

the optimal catalyst discovered by this approach was Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2. Notably, 

Nb was not included in the original dataset, and the catalyst composition identified was unpredictable 

even by human experts. 

 

One-Sentence Summary: Multi-element catalysts for the reverse water-gas shift (RWGS) reaction have 
been developed using a machine learning (ML) technique. 

Short title: ML-assisted discovery of multi-elemental catalysts 
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Discovery of novel catalysts is essential for accelerating the transition to a sustainable future(1). 

Despite the significant progress in the development of highly efficient catalysts, heterogeneous catalysis 

remains largely an empirical science owing to the complexity of the underlying surface chemistry(2–4). 

Currently, there is a lack of data and design guidelines for heterogeneous catalysis because the 

computational cost of obtaining accurate theoretical models for such complex systems is currently 

prohibitively high while high-throughput experimental methods that have been applied successfully in 

related fields have not yet been thoroughly explored(5–7). Most of the important catalysts were 

discovered by chance or through trial-and-error processes extending over several years; the discovery 

of truly novel catalysts is still challenging(8). 

 The recent revolution in data science is expected to accelerate the development of new catalysts 

significantly, and hence, impact catalysis research(9–12). Machine learning (ML) will play a central role 

in this paradigm shift. The application of ML-based approaches to catalysis(13–17) and broader fields of 

chemistry and materials science has attracted considerable attention(18–22). Although proof-of-concept 

examples of reduction in time and cost of catalyst development have been demonstrated using ML-based 

approaches, most of the ML-based research is directed toward the resolution of benchmark problems, 

while truly novel compounds and materials have rarely been discovered(23, 24). This is due to one of the 

most common limitations of ML—the assumed inability of the models to extrapolate and identify 

extraordinary materials beyond those present in the training data set(25). In materials and catalysis 

informatics, we often desire to use ML models to discover an entirely new class of materials and catalysts 

with unprecedented combinations of elements. In this context, our group has developed a new ML 

approach wherein elemental features are used as input representations rather than inputting the catalyst 

compositions directly(26, 27). Namely, each catalyst is represented as a set of elemental descriptors 

such as electronegativities and melting points, which are scaled by the element content, followed by 

aggregation into a single feature vector by a permutation-invariant readout operation (elementwise sort 

pooling, referred to as sorted weighted elemental descriptor (SWED))(26, 27). This ML method can guide 

catalyst design and discovery in areas where there is limited overlap of catalyst compositions and even 

for elements that were previously never included in a given dataset, thereby enabling extrapolative and 

ambitious prediction beyond the training data. Other studies have also validated the possibility of such 

extrapolative prediction using relevant feature engineering/selection approaches(28). Despite the 

theoretical evidences on the possibilities of finding novel catalysts and exceptional materials through 

extrapolative prediction, the use of ML to identify truly new and exceptional materials has remained 

elusive(29). 

 In this study, we have applied the extrapolative ML approach to develop new multi-elemental 

catalysts based on supported Pt as an active metal and TiO2 (P25) as a support for the low-temperature 
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reverse water-gas shift (RWGS) reaction. This reaction was chosen because its product, CO, is an 

important intermediate in various well-established catalytic processes for manufacturing value-added 

chemicals; that is, the RWGS reaction enables highly flexible utilization of CO2(30, 31). We explored M 

elements of up to five types for Pt(3)/M1(X1)-M2(X2)-M3(X3)-M4(X4)-M5(X5)/TiO2 RWGS catalysts (3 wt% 

Pt, TiO2 = P25). For M, elements with atomic number 3 (Li) through 83 (Bi), except for Be, B, C, N, O, P, 

S, As, Se, Tc, Te, Pm, Ta, Hg, Tl, halogens, noble gasses, and platinum group metals, were used as 

catalyst components (50 elements in total). Each M element had a unique loading amount (X) for each 

catalyst. Thus, the total number of catalyst candidates easily exceeded 1011 even if only integer values 

up to 5 wt% were considered as the loading amount of M (50C5 × 55 ≈ 800 billion). We have tested three 

types of ML approaches, each of which differs in the input representations of the catalysts: (i) a 

conventional ML model, which uses only elemental compositions; (ii) an exploitative ML model, which 

uses both elemental compositions and elemental properties; and (iii) an explorative ML model, which 

uses only elemental properties. For the input representation of the elemental compositions, each catalyst 

was represented as a vector of the compositional fractions for all the 50 elements under consideration. 

On the other hand, for the input representation of the elemental properties, vectors of 8 selected 

elemental descriptors for each element, scaled by its composition fraction, were aggregated into a single 

feature vector by sum pooling. The initial dataset consisting of 45 data points was constructed using the 

catalysts reported in our previous experimental study(32) and some catalysts fabricated in the present 

study (Table S4); this dataset was set as “Iteration” = 0. We then trained the explorative ML model based 

on Extra-Trees regression (ETR)(33) with the initial dataset (45 data points), calculated the expected 

improvement (EI) for all the test points in the catalyst composition grid, selected several prominent 

catalyst candidates considering the EI values and catalyst variety, synthesized the catalysts using the 

sequential impregnation method, performed the RWGS reaction, and updated the dataset to close the 

loop (Scheme S1). We continued this process for 44 loops to test 300 catalysts. The explorative ML 

model was used in the initial effort to explore many elements and because its prediction accuracy was 

the highest among the three ML models while the exploitative ML model was used after the prediction 

accuracy reached a certain level (after 30 iterations).  

Through experimental testing of 255 ML-predicted new catalysts corresponding to 44 cycles of 

the closed loop discovery system (ML prediction + experiment), we found more than 100 catalysts that 

showed higher activity than the previously reported high-performance catalyst (Pt(3)/Mo(10)/TiO2)(32), 

(Figure 1). The composition of the best catalyst discovered by this approach was Pt(3)/Rb(1)-Ba(1)-

Mo(0.6)-Nb(0.2)/TiO2, and it exhibited the highest activity (CO formation rate per catalyst mass, mmol 

min-1 gcat
-1) at temperatures below 250 °C compared to the previously reported catalysts, while retaining 
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100% CO selectivity (Table S3). Notably, Nb was not included in the original dataset (Figure 2), and the 

identified catalyst composition could hardly be predicted even by human experts. 

 Although ML is often employed as a black box without any prior insight into what the model has 

actually learned, supervised ML models can be used to identify important chemical moieties influencing 

the prediction, even without any explicit knowledge of its underlying principles(34). Extrapolative ML can 

reveal not only the effective catalyst compositions but also the required elemental features and electronic 

properties for the precise designing of ideal catalysts. SHapley Additive exPlanations (SHAP)(35, 36) 

was used to understand the importance of the descriptors for ML prediction, as shown in Figure 2D. 

SHAP can be used to explain the contribution of a given input feature to the model output (e.g. CO 

formation rate) by identifying and ranking the descriptors(26). Elemental properties such as group, 

electronegativity (EN), and density were identified as important factors, with smaller values tending to 

positively affect the model output. The SHAP values were also calculated using the exploitative elemental 

descriptor representation, because this method considers the elemental composition directly and 

facilitates the understanding of the contribution of the elements in the given data. For the catalyst 

composition, Mo, Tb, Na, and Ba were identified as important descriptors. The SHAP values were 

analyzed using waterfall plots for the two representative catalysts (Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-

Nb(0.2)/TiO2 and Pt(3)/Mo(10)/TiO2), as shown in Figure 2C,D. The analysis reveals the descriptors that 

are responsible for the increase or decrease from the average value of the dataset (2.28) relative to the 

predicted value. EN, group, and oxide band gap (BG) values were found to strongly contribute to the high 

activity of the catalyst. The waterfall plots for some additional catalysts are also included in the 

Supplementary Material (Figures S9, 10, 13 and 14).  
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Fig. 1. ML-assisted exploration of RWGS catalysts. (A) ML-assisted exploration of RWGS catalysts using 
the explorative and exploitative ML methods based on ETR. (B) Radar charts of the elemental descriptors for 
the best catalysts at each iteration. Descriptor values relative to the (i) Pt(3)/Mo(10)/TiO2 catalyst are shown. 
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Fig. 2. Visualization of RWGS catalyst datasets and ML-assisted statistical analysis. (A,B) Histograms 
for each additive oxide component categorized by the RWGS activity; the elements in the original (left) and 
final (right) datasets are shown in the periodic tables. The maximum values on the Y axis for (A) represent the 
sum of the number of data points while that for (B) represent percentage of the RWGS activity category. (C) 
Number of component elements as additive oxides. (D) SHAP values of the descriptors used to predict CO 
formation rates (red and blue correspond to high and low features, respectively). Breakdown of SHAP values 
as waterfall plots for (E) the original best catalyst Pt(3)/Mo(10)/TiO2 and (F) the current best Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)-Nb(0.2)/TiO2 to determine the feature values that are responsible for the increase or decrease from 
the base. Positive and negative contributions of each feature are shown in red and blue, respectively. 
Explorative elemental descriptor representation was used. 
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With the best catalyst composition in hand, we then performed structural analysis (Figures 3 and 

S15-23 and Tables S6 and S7) and mechanistic studies (Figures 4 and S24-28 and Table S8). This is 

important because investigations of extraordinary materials can provide new scientific insights. The X-

ray diffraction (XRD) pattern of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 was essentially the same as that 

of pristine TiO2 (P25) (Figure S15). High-angle annular dark-field scanning transmission electron 

microscopy (HAADF-STEM) was performed for TiO2 (P25), Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, and 

Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 (Figure 3A). The oxide additive species was found to be highly 

dispersed over the TiO2 surface. In addition, the Pt nanoparticles in Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-

Nb(0.2)/TiO2 were highly dispersed, with an average Pt particle diameter of 1.8 nm (Figure S18). 

Comparison with the previously identified Pt(3)/Mo(10)/TiO2 active catalyst (particle size of 2.6 nm)(32) 

revealed that the average particle size of the supported Pt was smaller in Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-

Nb(0.2)/TiO2.  

 X-ray absorption spectroscopy (XAS) was conducted to identify the chemical states of the 

introduced species in the RWGS catalyst (Figures 3B and S20). The X-ray absorption near-edge 

structure (XANES) of the reduced Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst was identical to that 

of the Pt foil used as the reference. Mo K-edge XANES showed that the shape and edge position of the 

unreduced Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst were identical to those of the reference MoO3. 

For the reduced Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 sample, the absorption edge shifted toward 

lower energies, indicating the reduction of the Mo species upon pretreatment with H2. X-ray photoelectron 

spectroscopy (XPS) measurements were conducted to identify the oxidation states of Mo (Figure 3C). 

Peaks corresponding to Mo4+ were predominantly observed, in addition to small peaks of Mo6+ and Mo2+. 

The other additives, including Rb, Ba, and Nb, did not change their oxidation states and existed in the 

form of Rb2O, BaO, and Nb2O5, respectively, after the reduction pretreatment with H2 (Figure S22). 

In situ CO adsorption IR spectroscopy experiments were conducted to examine the electronic 

state of the Pt species on a series of supported Pt catalysts in order to understand the effects of the 

introduced additives (Figure 3D). All the spectra showed a peak at 2071–2077 cm-1, corresponding to 

the CO bound to the on-top sites of the metallic Pt surface. The center of the CO adsorption peak shifted 

to higher wavenumbers, following the order Pt(3)/TiO2, Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, 

Pt(3)/Mo(0.6)/TiO2 and Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2. Therefore, the introduction of additives 

favors the formation of more electron-deficient metallic Pt0 species, compared to pristine Pt(3)/TiO2, and 

is expected to improve the resistance to CO poisoning during the RWGS reaction. The same trend was 

also observed by XPS (Figure S23). 
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Fig. 3. Structural analysis of the ML-identified RWGS catalyst. (A) HAADF-STEM images of TiO2, Rb(1)-
Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, and Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2. (B) Mo K-edge XANES of 
unreduced and reduced Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 and reference compounds. (C) XPS spectra 
of the supported Pt catalysts after the H2 reduction pretreatment at 300 °C without exposure to air. (D) IR 
spectra of the CO adsorbed on the supported Pt catalysts recorded at 250 °C after the H2 reduction 
pretreatment at 300 °C. The sample was exposed to a flow of 1% CO/He (100 mL min-1) for 5 min and purged 
with He for 5 min. 
 

 Kinetic studies were conducted on the optimal catalyst (Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2). 

The apparent activation energy (Ea), as calculated from the Arrhenius plot, was 45.6 kJ mol-1 (Figure 4A). 

Similarly, the Ea values of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, Pt(3)/Mo(0.6)/TiO2, and Pt(3)/TiO2 were 48.7, 

52.8, and 58.4 kJ mol-1, respectively. The apparent reaction orders with respect to H2, CO2, and CO were 

calculated to understand the effect of the introduced additives (Table S8).The apparent reaction orders 

for both CO2 and H2 in the case of the catalyst with oxide additives decreased as compared to those for 

pristine Pt(3)/TiO2, indicating weaker dependence on their concentrations. In addition, the reaction order 

with respect to CO was the smallest for Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, indicating the less inhibitory 

effect of CO for the best catalyst. This result is consistent with results of the in situ IR and XPS 

experiments. These combined results indicate that the introduction of Nb renders Pt more electron-
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deficient and induces high tolerance to CO poisoning, leading to a high catalytic activity. The CO2-TPD 

analysis of the catalysts without Pt (Figure S24) suggested that the introduced additives could facilitate 

the adsorption of CO2 owing to the introduced base metal oxides, particularly Rb and Ba, thereby 

promoting the reaction efficiently. 

The RWGS reaction is known to proceed mainly via the (i) redox mechanism and (ii) 

associative mechanism (37). In the former, oxygen vacancies are formed on the surface of the 

support oxide by H2, while CO2 reoxidizes the partially reduced oxide to fill the formed oxygen 

vacancies(38), resulting in the formation of CO. In the latter mechanism, CO is produced through 

decomposition of the surface-reactive intermediates such as formate and carbonates(37). 

To elucidate the reaction mechanism, operando XANES measurements were conducted under 

CO2, H2, and CO2 + H2 flow at 250 °C (Figure 4B). The Mo K-edge XANES of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-

Nb(0.2)/TiO2 shows that the absorption edge shifts to higher energies after the introduction of CO2, while 

CO was simultaneously detected by GC. The results clearly demonstrated that CO2 acted as an oxidant 

to oxidize the Mo species. Notably, CO was formed even upon the introduction of H2, suggesting that the 

reaction also proceeded through the associative mechanism. For the Pt L3-edge (Figure S25), the white 

line intensity became slightly stronger under CO2 flow, suggesting that metallic Pt was also oxidized by 

CO2. Note that this change can be solely because of the adsorption of the CO formed, as it is well-known 

that the Pt L3-edge XANES intensity and shape is altered by the adsorption of CO(39). The K-edge 

XANES spectra of Ti, Ba, Rb, and Nb were also obtained employing a protocol similar to that described 

above (Figure S25). The edge positions in all these XANES spectra hardly changed following the 

introduction of CO2, indicating that no redox reactions of TiO2, BaO, Rb2O, and Nb2O5 occurred during 

the RWGS reaction. 

 Operando IR spectroscopy was also performed to investigate the adsorbed surface species that 

are likely to be involved in the RWGS reaction (Figure 4C). Bands in the range of 1700–1200 cm-1, which 

can be assigned to the surface-adsorbed species such as carbonate and formate(37), appeared 

immediately after the introduction of CO2. Simultaneous formation of CO in the gas phase was also 

observed using an IR gas cell at the outlet. Bands at 2100–1950 cm-1, which can be assigned to adsorbed 

CO, were also observed. The amount of these surface species over the best catalyst was higher than 

those over Pt(3)/Mo(0.6)/TiO2 and Pt(3)/TiO2, yet lower than that over Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2 

without Nb (Figure S26). The evolution of the bands in the νCH region (2800–2960 cm-1) also supports 

the formation of formate species under the flow of CO2 and H2. These results indicate that the Ba and Rb 

species act as base components to generate the surface adsorbed species that lead to the formation of 

CO. To confirm this, H2 was introduced to the Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 catalyst with such 

adsorbed species, as shown in Figures 4C and S27. Note that for this purpose, a lower temperature 
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(200 °C) was also employed to clearly observe the adsorbate peaks. Intensities of the bands between 

1700 and 1200 cm-1 decreased upon the introduction of H2, and simultaneous formation of CO in the gas 

phase was observed. These operando XAS and IR results indicated that Mo acted as a redox species 

while Rb and Ba acted as bases to promote the RWGS reaction. Nb was not directly involved in the 

reaction; it rather modified the electronic structure of Pt, ensuring high CO tolerance. These multiple 

functions realized by the combination of the oxide additives identified are vital for achieving high catalytic 

performance.  

Finally, the durability test (Figure S29) confirmed the high durability of the optimal catalyst 

compared to those of the other reference catalysts, including the previously identified Pt(3)/Mo(10)/TiO2 

catalyst and a commercial Cu/ZnO/Al2O3 catalyst. Therefore, Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2, 

which was predicted by the ML-assisted method, is an outstanding state-of-the-art catalyst for the low-

temperature (250 °C) RWGS reaction. 
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Fig. 4. Mechanistic studies. (A) Arrhenius plots for the RWGS reaction conducted over Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)-Nb(0.2)/TiO2, Pt(3)/Rb(1)-Ba(1)-Mo(0.6)/TiO2, Pt(3)/Mo(0.6)/TiO2, and Pt(3)/TiO2 under the following 
reaction conditions: 10 mg catalyst, 20 mL min-1 CO2, 60 mL min-1 H2, 5 mL min-1 N2, and 200–275 °C. (B) 
Operando Mo K-edge XANES of Pt(3)/Rb(1)-Ba(1)-Mo(0.6)-Nb(0.2)/TiO2 measured under a sequential flow 
of 25% CO2/He, 75% H2/He, and 25% CO2 + 75% H2 at 250 °C (left). Changes in the X-ray energy at μ = 0.6 
eV and CO concentration in gas phase (right). (C) Operando IR measurements for the Pt(3)/Rb(1)-Ba(1)-
Mo(0.6)-Nb(0.2)/TiO2 catalyst conducted under a sequential flow of CO2, He, H2, and 25% CO2 + 75% H2 at 
250 °C (left). Variations in the intensities of the peaks related to the surface adsorbed species and 
concentration of CO in the effluent gas upon the introduction of CO2 (right). 
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